首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To prove the general applicability of a recently published flow cytometric method to determine the membrane potentials of cells on the absolute (mV) scale, the validity of the premises involved were analyzed individually. Experimental evidence was given for bis-oxonol, the applied membrane potential indicator being a Nernstian dye. The results of special measurements proved that extracellular dye concentrations were not affected by cellular dye uptake under the applied experimental conditions and that the dye content of the suspending medium did not contribute directly to the measured cellular fluorescence. A direct, membrane-potential-independent contribution of the extracellular dye to cellular fluorescence was also found to be negligible, as membrane potential values of the same type of cells evaluated from measurements in the presence of different extracellular oxonol concentrations were very close to each other. The transmembrane potential of B lymphoid JY cells was measured by the method as a function of cell density in the tissue culture. Cells isolated during the log phase of growth displayed a –40±4 mV membrane potential. At a high density of the culture (plateau phase), a significant increase of the membrane potential to –61±3 mV was observed and a medium value of –47±3.5 mV was measured at an intermediate density of the cells. Our observation indicates that nonadherent cells can also be hyperpolarized when optimal growth conditions are terminated. Received: 14 April 1998 / Revised version: 22 June 1998 / Accepted: 16 July 1998  相似文献   

2.
Incubation of cultured human umbilical vein endothelial cells with factors derived from human peripheral blood mononuclear cells (MNCF) or adherent monocytes (AMF) resulted in concentration-and time-dependent increases in prostacyclin and prostaglandin E2 (PGE2) production. MNCF and AMF also stimulated prostacyclin and PGE2 biosynthesis in cultured human arterial smooth muscle cells and human dermal fibroblasts. The effect of these monokines on endothelial cells and fibroblasts was mimicked by treatment with purified human interleukin 1 (IL 1). Mononuclear cell-conditioned medium subjected to gel filtration yielded fractions (Mr 12,000 to 18,000 daltons) which simultaneously contained endothelial cell and fibroblast prostaglandin-stimulating activity and IL 1 activity. Therefore, monokines, specifically IL 1, appear to serve as chemical mediators of the interaction between monocytes and vascular cells as would occur in blood vessel injury, inflammation, and atherosclerosis.  相似文献   

3.
The contribution of the cellular and fibrillar microenvironment to angiogenesis still remains unclear. Our purpose was to evaluate the effect of the extracellular matrix deposited by fibroblasts on the capacity of human endothelial cells to form capillaries in vitro. We have drastically decreased the amount of extracellular matrix surrounding fibroblasts in our model of endothelialized-reconstructed connective tissue (ERCT) by culturing it without ascorbate. Under these conditions, the number of capillary-like tubes (CLT) formed by endothelial cells was reduced by up to 10-fold after 31 days of culture compared to controls. This decrease was due neither to a variation of MMP-2 and MMP-9 secretion, nor to a reduction in the number of fibroblasts and/or endothelial cells, or a diminution of fibroblast growth factor 2 (FGF2) synthesis. The secretion of vascular endothelial growth factor (VEGF) by fibroblasts accounted for 25-70% of the capillary-like tube formation when tissues were cultured in the presence or absence of ascorbate, as demonstrated by VEGF-blocking studies. The culture of endothelial cells on a similar extracellular matrix but in the absence of living fibroblasts did not promote the formation of CLT, even when tissues were fed with fibroblast-conditioned medium. Thus, the deposition of a rich extracellular matrix by living fibroblasts appeared necessary, but not sufficient to promote capillary-like formation. Fibroblasts seem to induce endothelial cells to spontaneously form CLT by secreting and organizing an abundant extracellular matrix, which creates a microenvironment around cells that could in turn trap growth factors produced by fibroblasts and promote three-dimensional cell organization.  相似文献   

4.
Changes in membrane potential of rat aorta smooth muscle cells were investigated using the bis-oxonol sensitive probe DIBAC2(3). We compared the changes in membrane potential induced by a high external KCl concentration in aorta smooth muscle cells from normotensive 2 kidney (2K) and from renal hypertensive 2 kidney-1 clip (2K-1C) rats. The spectral properties of the membrane potential were first characterized in aqueous buffers and in cultured smooth muscle cells from 2K and 2K-1C rat aortas. Fluorescence emission and the images were recorded using a laser scanning confocal microscope. The relationship between fluorescence intensity (FI) and membrane potential (psi(m)) as a function of the increasing extracellular KCl concentration was linear in the 5-40 mmol/L KCl range in both 2K and 2K-1C rat aorta cells. Cell membranes from 2K-1C rat aorta cells were more depolarized (-55 mV) than 2K rat aorta cells (-65 mV). The results show that in 2K-1C aorta cells only 10 mmol/L KCl was needed to induce complete membrane depolarization while in 2K cells 40 mmol/L KCl was needed to induce a similar effect. This study clearly shows that the method is suitable to measure the membrane potential in cultured smooth muscle cells.  相似文献   

5.
The membrane potential of cultured bovine aortic endothelial cells was assessed by a fluorescent probe as an alternative to direct methods. We used the fluorescent cationic dye rhodamine 6G, a lipophilic probe with high permeability in cell membranes. A linear relationship was obtained between fluorescence intensity (F.I.) and membrane potential (Em) as a function of the extracellular Na(+) concentration in the presence of the ionophore gramicidin. From the equation derived from the linear relationship F.I. = -0.004 Em + 0. 03 (P < 0.001), the fluorescence measurements could be converted to membrane potential. The resting plasma membrane potential obtained was -65 +/- 7 mV. Nigericin (27 microM), ouabain (1 mM), and bradykinin (20 nM) induced a decrease in F.I. (depolarization), while ATP (25-100 microM) induced an increase in F.I. (hyperpolarization). Mitochondrial membrane potential inhibitors myxothiazol (3 microM) and oligomycin (4 microM) did not influence F. I. measured in the cultured bovine aortic endothelial cells. The results indicate that rhodamine 6G can be used as a sensitive and specific dye in studies of substances that affect the membrane potential of endothelial cells.  相似文献   

6.
Recent studies have shown that the extracellular matrix modifies the behaviour of endothelial cells. We have studied the effects of extracellular matrix components on retinal capillary endothelial cell migration and proliferation. Bovine retinal capillary endothelial cells were selectively cultured from collagenase-digested microvessel fragments. In a filter system for the assessment of migration, endothelial cells responded to substrate-bound fibronectin but not to soluble fibronectin. Cell migration on collagen- or gelatin-coated filters was minimal, and these cells failed to adopt a spread morphology, remaining instead as round cells. Cell replication was quantified using a protein dye binding assay for adherent cells in 96 well plates. Serum was essential for growth irrespective of the substrate. Cells harvested from microvessel cultures proliferated more rapidly on collagen- and gelatin-coated plastic than on fibronectin and were unaffected by additions to the medium such as endothelial cell conditioned medium, whereas cells proliferating directly from the microvessels grew at a faster rate on fibronectin and also responded to conditioned medium supplement. When cultured on collagen gels, initial microvessel cells and harvested cells required surface fibronectin in order to adopt a cobblestone morphology. These results show that fibronectin is a requirement for bovine retinal capillary endothelial cell migration, but proliferation of these cells can be supported, with slight differences, by both fibronectin and collagen provided serum growth factors are present. These findings are relevant to the early phase of angiogenesis in which migration and proliferation of endothelial cells occurs.  相似文献   

7.
Cell-penetrating peptides (CPPs) constitute a new class of delivery vectors with high pharmaceutical potential. However, the abilities of these peptides to translocate through cell membranes can be accompanied by toxic effects resulting from membrane perturbation at higher peptide concentrations. Therefore, we investigated membrane toxicity of five peptides with well-documented cell-penetrating properties, pAntp(43-58), pTAT(48-60), pVEC(615-632), model amphipathic peptide (MAP), and transportan 10, on two human cancer cell lines, K562 (erythroleukemia) and MDA-MB-231 (breast cancer), as well as on immortalized aortic endothelial cells. We studied the effects of these five peptides on the leakage of lactate dehydrogenase and on the fluorescence of plasma membrane potentiometric dye bis-oxonol. In all cell lines, pAntp(43-58), pTAT(48-60), and pVEC(615-632) induced either no leakage or low leakage of lactate dehydrogenase, accompanied by modest changes in bis-oxonol fluorescence. MAP and transportan 10 caused significant leakage; in K562 and MDA-MB-231 cells, 40% of total lactate dehydrogenase leaked out during 10 min exposure to 10 microM of transportan 10 and MAP, accompanied by a significant increase in bis-oxonol fluorescence. However, none of the CPPs tested had a hemolytic effect on bovine erythrocytes comparable to mastoparan 7. The toxicity profiles presented in the current study are of importance when selecting CPPs for different applications.  相似文献   

8.
The effects of different substances on [Ca2+]i and membrane potential (measured by fura-2 and bis-oxonol fluorescence techniques, respectively) were studied in wild-type and NIH-3T3 fibroblasts transfected with the cDNA encoding the human epidermal growth factor receptor. Application of partially purified PDGF or FGF induced, after a lag (0.5-1 min), a [Ca2+]i increase composed by an initial, slow peak, sustained primarily by intracellular Ca2+ release followed by a plateau, sustained by Ca2+ influx from the medium. The [Ca2+]i changes were paralleled by plasma membrane hyperpolarization mainly due to the activation of a K+ efflux, since raising the extracellular K+ concentration progressively reversed the effect of both growth factors. These responses were much slower than those induced by other agents (bradykinin, extracellular ATP, and EGF). The close resemblance between PDGF- and FGF-induced early signals (time-course and insensitivity to phorbol esters) suggests similar transmembrane signalling mechanisms at the cognate receptor.  相似文献   

9.
Mesangial cells are smooth muscle-like cells of the renal glomerulus which contract and produce prostaglandins in response to vasopressin and angiotensin. These responses serve to regulate the glomerular capillary filtering surface area. We have used the membrane potential-sensitive fluorescent dye bis-oxonol and the intracellular fluorescent calcium-sensitive probe Indo-1 to study the changes in membrane potential (Em) and intracellular free calcium concentration ([Ca2+]i) in cultured rat mesangial cells in response to vasoconstrictor hormones. Basal [Ca2+]i was 227 +/- 4 nM, and stimulation by maximal concentrations of either vasopressin or angiotensin resulted in a transient 4-6-fold rise. Resting membrane potential was 45.8 +/- 0.9 mV and vasoconstrictor hormones caused a depolarization of 14-18 mV. The following extracellular ion substitutions indicated that chloride efflux was the predominant ion flux responsible for depolarization: 1) depolarization persisted when sodium in the medium was substituted with N-methylglucamine; 2) substitution of medium sodium chloride with sodium gluconate, which enhances the gradient for chloride efflux, augmented vasoconstrictor-stimulated depolarization; 3) suspension of cells in potassium chloride medium resulted in depolarization, following which, stimulation by either vasopressin or angiotensin resulted in hyperpolarization; and 4) this hyperpolarization did not occur when potassium gluconate medium was used to depolarize the cells. The calcium ionophore ionomycin also resulted in membrane depolarization. However, prevention of the rise in [Ca2+]i by prior exposure to ionomycin in calcium-free medium or by loading mesangial cells with the intracellular calcium buffer BAPTA did not abrogate the depolarization response to vasoconstrictor hormones. This indicates that a rise in intracellular calcium is not necessary for depolarization. In contrast, prior depolarization of the cells using varying concentrations of KCl in the external medium, which dissipated the electrochemical gradient for chloride efflux, resulted in a corresponding prolongation of the transient calcium response to vasopressin and angiotensin. These findings indicate that angiotensin and vasopressin depolarize mesangial cells by activating chloride channels and that this activation can occur by both calcium-dependent and -independent mechanisms. In addition, activation of chloride channels with resulting depolarization may serve to modulate the calcium signal.  相似文献   

10.
The conventional whole cell patch-clamp technique was used to measure the resting membrane conductance and membrane currents of nonstimulated cultured human umbilical vein endothelial cells (HUVECs) in different ionic conditions. Three electrophysiological phenotypes of cultured HUVECs (n = 122) were determined: first, 20% of cells as type I mainly displaying the inwardly rectifying potassium current (IKi); second, 38% of cells as type II in which IKi was super-posed on a TEA-sensitive, delayed rectifying current; third, 27% of cells as type III predominantly displaying the outwardly rectifying current which was sensitive to TEA and slightly inhibited by a chloride channel blocker niflumic acid (N.A.). In cells of type I, the mean zero-current potential (V0) was dependent on extracellular K+ ([K+]o) but not on Cl-, indicating major permeability to K+. Whereas V0 of type II was also affected by extracellular Cl- ([Cl-]o), indicating the contribution of an outward Cl- current in setting V0. The cells of type III were not sensitive to decrease of [Cl-]o and the outward current was activated in a relative stable voltage range. This varying phenotypic expression and multipotential behavior of HUVECs suggests that the electrical features of HUVEC may be primarily determined by embryonic origin and local effect of the microenvironment. This research provided the detailed electrophysiological knowledge of the endothelial cells.  相似文献   

11.
The energization of System A in cultured human fibroblasts has been studied by measuring the energy transfer from the electrochemical gradient of Na+ to the chemical gradient of the site A-specific substrate amino acid 2-methylaminoisobutyric acid. The co-transport Na+/amino acid, studied by kinetic analysis and radiochemical measurements, showed a coupling ratio of 1:1. The assessment of the Na+ electrochemical gradient in cultured adherent cells relied on the development of noninvasive procedures as follows: the membrane electrical potential was estimated from the accumulation of L-arginine at equilibrium (Bussolati, O., Laris, P. C., Nucci, F. A., Dall'Asta, V., Longo, N., Guidotti, G. G., and Gazzola, G. C. (1987) Am. J. Physiol. 253, C391-C397); the chemical gradient of Na+ was determined from spectrometric measurements of Na+. The accumulation of 2-methylaminoisobutyric acid was strongly sensitive to changes of Na+ gradient and of membrane electrical potential, indicating that the electrochemical gradient of Na+ contributed energy for the uphill transport of the amino acid through System A. Changes in the Na+ electrochemical gradient were obtained by: (i) alterations of extracellular concentration of Na+; (ii) changes of membrane electrical potential obtained by variation of extracellular [K+]; and (iii) changes of [Na+]in and membrane electrical potential upon incubation of the cells in serum-free saline solutions (Dall'Asta, V., Gazzola, G. C., Longo, N., Bussolati, O., Franchi-Gazzola, R., and Guidotti, G. G. (1986) Biochim. Biophys. Acta 860, 1-8). The correlation between the chemical gradient of 2-methylaminoisobutyric acid and the Na+ electrochemical potential followed a straight line with a yield close to the thermodynamic equilibrium, thus suggesting that the energy stored in the gradient of Na+ electrochemical potential is fully adequate to energize the intracellular accumulation of site A-reactive amino acids in human fibroblasts.  相似文献   

12.
Several physiological and pathophysiological events involving vascular endothelium occur at the microvascular level. Studies on human microvasculature require homogenous primary cultures of microvascular endothelial cells. However, procedures available for isolating and culturing human dermal microvascular cells (HDMEC) result in significant contamination with fibroblasts. To eliminate contamination with fibroblasts or other cells, we developed a procedure to isolate HDMEC from neonatal human foreskin by panning the cells using EN4, an anti-endothelial cell monoclonal antibody. Panned cells uniformly expressed von Willebrand factor and CD36, confirming their microvascular endothelial characteristics, whereas cells cultured without panning showed a significant degree of contamination with fibroblasts. In the presence of vascular endothelial growth factor (VEGF), HDMEC could be cultured under serum-free conditions. VEGF stimulated the growth of HDMEC in a dose-dependent manner in serum-free medium or in media supplemented with either human serum or newborn calf serum. Since differences exist between large vessel endothelial cells and microvascular endothelial cells, we compared the response to VEGF stimulation of HDMEC with human umbilical vein endothelial cells (HUVEC). The dose response of the two cell types to VEGF was different. This effect of VEGF on endothelial cells may be mediated by the VEGF receptorkdr,since mRNA forkdrwas detected using RT–PCR in both HDMEC and HUVEC. The procedure described in this study will make possible the culture of highly enriched HDMEC without contamination with fibroblasts and facilitate studies with these cells under defined assay conditions in a serum-free environment.  相似文献   

13.
Neovascular responses induced by cultured aortic endothelial cells   总被引:7,自引:0,他引:7  
Neovascularization was studied in the chorioallantoic membrane of the chick embryo after implantation of bovine aortic endothelial and smooth muscle cells, Swiss and BALB/c 3T3 cells and human diploid fibroblasts cultured separately on microcarrier beads. Quantitative analysis of neovascularization indicated a 3 1/2-fold increase in the number of blood vessels responding to endothelial cells while smooth muscle cells induced a twofold increase when compared to the response of beads without cells. Skin fibroblasts and Swiss 3T3 cells did not elicit a comparable response. The marked angiogenic response induced by endothelial cells was characterized by a 137% increase in total vessel length and a 35% increase in average vessel area when compared to controls. Two of the properties required for an angiogenesis factor--stimulation of cellular migration and proliferation--can also be demonstrated using endothelial cell-conditioned medium in cell culture systems. Medium from cultured bovine aortic endothelium stimulates DNA synthesis, proliferation, and migration of smooth muscle cells. In addition, conditioned media from both endothelial cells and smooth muscle cells produced an angiogenic response in the chorioallantoic membrane assay, which was comparable to that produced by intact cells growing on microcarrier beads. Similar responses were not evident with medium conditioned by other cell types. These results indicate the potential importance of endothelial cells and endothelial cell products in regulating blood vessel growth.  相似文献   

14.
The origin of the cyanine dye fluorescence signal in murine and human peripheral blood leukocytes was investigated using the oxa- and indo-carbocyanines di-O-C5(3) and di-I-C5(3). Fluorescence signals from individual cells suspended with nanomolar concentrations of the dyes were measured in a flow cytometer modified to permit simultaneous four-parameter analysis (including two-color fluorescence or fluorescence polarization measurements). The contributions of mitochondrial membrane potential (psi m) and plasma membrane potential (psi pm) to the total voltage-sensitive fluorescence signal were found to depend on the equilibrium extracellular dye concentration, manipulated in these experiments by varying the ratio of dye to cell density. Hence, conditions could be chosen that amplified either the psi m or the psi pm component. Selective depolarization of lymphocytes or polymorphonuclear leukocytes (PMN) in mixed cell suspensions demonstrated that defining the partition of dye between cells and medium is requisite to assessing the heterogeneity of cell responses by cyanine dye fluorescence. At extracellular dye concentrations exceeding 5 nM in equilibrated cell suspensions, both mitochondrial and plasma membrane dye toxicity were observed. In murine splenic lymphocytes, plasma membrane toxicity (dye-induced depolarization) was selective for the B lymphocytes. Certain problems in calibration of psi pm with valinomycin at low dye concentrations and perturbations of psi pm by mitochondrial inhibitors are presented. These findings address the current controversy concerning psi m and psi pm measurement in intact cells by cyanine dye fluorescence. The finding of selective toxicity at low cyanine dye concentrations suggest that purported differences in resting psi m among cells or changes in psi pm with cell activation may reflect variable susceptibility to dye toxicity rather than intrinsic cell properties.  相似文献   

15.
In microvessels, periendothelial cells expressing alpha smooth muscle actin (alphaSMA) interact with the endothelial cells and are essential for vessel maturation and stabilization. In adult tissues, the cellular origin of the periendothelial cells is still not clear, in particular in humans. To determine the origin of human periendothelial cells, we used a recently developed 3D co-culture system that mimics human skin connective tissue. This system is composed of normal human dermal fibroblasts (NHDF), human dermal microvascular endothelial cells (HMEC-1), and a collagen matrix. In this system, "microvessels" composed of an endothelial lumen associated with periendothelial cells develop. Using this co-culture system, we (i) labelled fibroblasts with the vital dye CFDA-SE, cultured them with unlabelled endothelial cells, and observed that only endothelium-associated CFDA-SE-labelled cells express alphaSMA; (ii) infected endothelial cells with a retrovirus stably expressing eGFP, cultured them with unlabelled fibroblasts, and observed that cells expressing alphaSMA did not co-express eGFP, but were associated with the eGFP-expressing endothelial cells of the microvessels. Together, these results indicate that periendothelial cells arise by differentiation from fibroblasts and that they require interaction with endothelial cells to do so.  相似文献   

16.
The intracellular activities of four lysosomal glycosidases (alpha-L-fucosidase, beta-D-hexosaminidase, beta-D-galactosidase and beta-D-glucuronidase) in human skin fibroblasts cultured in a medium with 0.1% serum increased in a greater degree than that in a medium with 10% serum. Only two glycosidases (alpha-L-fucosidase and beta-D-hexosaminidase) were secreted by fibroblasts in the culture medium. The extracellular activity of alpha-L-fucosidase and beta-D-hexosaminidase was equivalent to 80 and 25% of their intracellular activity in serum-sufficient fibroblasts and 40 and 15%--in serum-restricted fibroblasts. These results suggest that the observer phenomena are controlled by the levels of autophagy, endocytosis and membrane recycling.  相似文献   

17.
Regulation of sterol transport in human microvascular endothelial cells   总被引:1,自引:0,他引:1  
In cultured human dermal microvessel endothelial cells, the rate of efflux (about twofold greater than for fibroblasts under equivalent conditions) was coupled to an equivalent high rate of sterol net transport from the cells to the medium. This net transport was linked with esterification via lecithin:cholesterol acyltransferase. Since the use of free sterol by plasma transferase is constant, such increased net transport indicates that endothelial cells are highly efficient, in competition with plasma lipoproteins, in supplying free sterol for esterification. These results indicate the marked ability of endothelial cells to regulate and maintain their sterol balance in the face of high sterol levels to which these cells are uniquely exposed in human plasma.  相似文献   

18.
The fluorescent dye 3,3'-dipropylthiadicarbocyanine, diS-C(3)(3), is a suitable probe to monitor real changes of plasma membrane potential in yeast cells which are too small for direct membrane potential measurements with microelectrodes. A method presented in this paper makes it possible to convert changes of equilibrium diS-C(3)(3) fluorescence spectra, measured in yeast cell suspensions under certain defined conditions, into underlying membrane potential differences, scaled in the units of millivolts. Spectral analysis of synchronously scanned diS-C(3)(3) fluorescence allows to assess the amount of dye accumulated in cells without otherwise necessary sample taking and following separation of cells from the medium. Moreover, membrane potential changes can be quantified without demanding calibration protocols. The applicability of this approach was demonstrated on the depolarization of Rhodotorula glutinis yeast cells upon acidification of cell suspensions and/or by increasing extracellular K(+) concentration.  相似文献   

19.
We studied the extracellular localization of factor VIII-related antigen (VIIIR: Ag) in cultures of human endothelial cells. The cells deposited both VIIIR: Ag and fibronectin already during their initial adhesion phase and in immunofluorescence microscopy of spread cells extracellular VIIIR: Ag was localized to fibrils coaligning with pericellular fibronectin. When human fibroblasts, which do not synthesize VIIIR: Ag, were cultured in endothelial cell post-culture medium, a fibrillar matrix localization of VIIIR: Ag was seen, comparable to that of endothelial cell cultures. A fibrillar VIIIR: Ag-specific staining was also seen in cell-free pericellular matrices of endothelial cells, produced by deoxycholate treatment. In immunoelectron microscopy, VIIIR: Ag was seen in fibrillar extracellular material between and underneath the cells and in cell-free matrices of endothelial cells as well.In immunofluorescence microscopy of cell-free matrices, VIIIR: Ag codistributed with both fibronectin and type III procollagen. Digestion of the matrices with purified bacterial collagenase abolished the type III procollagen-specific fluorescence, whereas the fibrillar VIIIR: Ag-specific staining, codistributing with fibronectin, remained unaffected. In electrophoresis of isolated, metabolically labelled endothelial cell matrices, major polypeptides with Mr 220–240; 180; 160; 80 and 45 kD and some minor polypeptides were resolved. In addition, immunoblotting revealed fibronectin, VIIIR: Ag and type III procollagen as components of cell-free matrices of endothelial cells. Direct overlay of iodinated cellular fibronectin on electrophoretically separated polypeptides of cultured endothelial cells, transferred to nitrocellulose, suggested that fibronectin binds directly to VIIIR: Ag. Our results indicate that VIIIR: Ag produced by human endothelial cells is a component of the pericellular matrix and is not bound to collagen but may directly associate with fibronectin.  相似文献   

20.
The cellular mass of sn-1,2-diacylglycerols, which are intracellular second messengers which activate protein kinase C, were quantitatively determined with an enzymatic assay. The method employed to harvest cultured human skin fibroblasts or human epidermal A431 cells prior to extraction of lipid into chloroform/methanol affected diacylglycerol (DAG) levels. Scraping or trypsinization significantly increased DAG levels. A method was devised to allow reliable and reproducible DAG measurements from adherent cells. The addition of methanol prior to scraping was shown to stop cellular metabolism and to permit accurate quantitation. Importantly, this solvent was compatible with cultures grown on plastic. Using this method, growth conditions which could affect DAG levels were investigated. Changes in the osmolality of the culture medium did not affect the DAG levels of A431 cells; exposure of A431 cells to acidic pH or elevated temperature lowered DAG levels. In contrast to fibroblasts, the total DAG levels of A431 cells continued to increase during serum deprivation. The highest DAG levels, normalized to phospholipids, were observed during the exponential growth phase. This ratio dropped when the cultures reached confluency. These experiments also demonstrated that A431 cells possess higher DAG levels than do normal fibroblasts. The function of DAG in cellular regulation is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号