首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on a 13-month-old girl showing dysmorphic features and a delay in psychomotor development. She was diagnosed with a balancedde novo translocation 46, X, t(X;13)(p11. 2;p13) and non-random inactivation of the X chromosome. FISH analysis, employing the X chromosome centromere andXIST-region-specific probes, showed that theXIST locus was not involved in the translocation. Selective inactivation of paternal X, which was involved in translocation, was revealed by the HUMARA assay. The pattern of methylation of 5 genes located within Xp, which are normally silenced on an inactive X chromosome, corresponded to an active (unmethylated) X chromosome. These results revealed that in our proband the X chromosome involved in translocation (Xt) was preferentially inactivated. However, genes located on the translocated Xp did not includeXIST. This resulted in functional Xp disomy, which most probably accounts for the abnormal phenotype in our patient.  相似文献   

2.
Mouse embryonal carcinoma (EC) cell lines are divided into two classes with or without the capability of reactivating the inactive X chromosome from a fusion partner of female lymphocyte. The 5′ region ofXistwas partially methylated in reactivating-competent EC cells but was fully methylated in reactivating-incompetent EC cells having a single X chromosome. Partial or heterogeneous methylation implies methylation of each CpG site in about half of the cell independently of methylation status of neighboring CpG sites. Fusion of the reactivating-competent EC cells with female lymphocytes induced not onlyde novomethylation in the 5′ region ofXistallele on the hitherto inactivated X chromosome, but also demethylation of the same region ofXiston the other X chromosome from the female somatic cell. In contrast, no such changes occurred in hybrid cells involving reactivating-incompetent EC cells. Thus, partial methylation of the 5′ region ofXistmost probably maintained by low maintenance and highde novomethylation efficiency is correlated with reactivation potential of the EC cell. It is possible that this unique methylation pattern is implicated in random X inactivation in EC-hybrid cellsin vitroand in epiblast cellsin vivo.  相似文献   

3.
4.
Anderson CL  Brown CJ 《Human genetics》2002,110(3):271-278
X chromosome inactivation results in dosage equivalency for X-linked gene expression between males and females. However, some X-linked genes show variable X inactivation, being expressed from the inactive X in some females but subject to inactivation in other women. The human tissue inhibitor of metalloproteinases-1 ( TIMP1) gene falls into this category. As TIMP1 and its target metalloproteinases are involved in many biological processes, women with elevated TIMP1 expression may exhibit different disease susceptibilities. To address the potential impact of variable X inactivation, we analyzed TIMP1 expression levels by using an RNase protection assay. The substantial variation of TIMP1 expression observed in cells with monoallelic TIMP1 expression precluded analysis of the contribution of the inactive X to total TIMP1 RNA levels in females, so we examined expression in rodent/human somatic cell hybrids. TIMP1 expression levels varied more widely in hybrids retaining an inactive X than in those with an active X chromosome, suggesting variable retention of the epigenetic silencing mechanisms associated with X inactivation. Therefore, we investigated the contribution of methylation at the promoter to expression level variation and found that methylation of the TIMP1 promoter correlated with instability and low level expression, whereas stable TIMP1expression from the inactive X equivalent to that seen from the active X chromosome was observed when the promoter was unmethylated. Since all female cell lines examined showed methylation of the TIMP1 promoter, the contribution of expression from the inactive X appears minimal. However, as women age, they may accumulate cells stably expressing TIMP1 from the inactive X, with a resulting increase of TIMP1, which may explain some sex differences in various late-onset disorders.  相似文献   

5.
6.
7.
8.
X chromosome inactivation of the human TIMP gene.   总被引:12,自引:0,他引:12       下载免费PDF全文
  相似文献   

9.
10.
N Takagi  M A Yoshida  O Sugawara  M Sasaki 《Cell》1983,34(3):1053-1062
A series of near-diploid embryonal carcinoma-like hybrid cells were obtained from polyethylene glycol mediated cell fusion between murine embryonal carcinoma cells (PSA-6TG1 or OTF9-63) having one X chromosome and thymocytes or bone marrow cells from female mice carrying Cattanach's or Searle's translocation. Prior to fusion with EC cells the somatic cells are presumed to contain only one active X chromosome. Following hybrid formation, the chronology of X chromosome replication and the expression of X-linked gene Pgk-1 indicated that all X chromosomes contributed by both parents were active in these hybrids. Experiments were performed to rule out the possibility that the hybrids were formed by fusion of EC cells with rare somatic cells in which both X chromosomes were active. Taken together the data indicate that within four days of fusion there is reactivation of the entire inactive X chromosome.  相似文献   

11.
Regulatory sequences can influence the expression of flanking genes over long distances, and X chromosome inactivation is a classic example of cis-acting epigenetic gene regulation. Knock-ins directed to the Mus musculus Hprt locus offer a unique opportunity to analyze the spread of silencing into different human DNA sequences in the identical genomic environment. X chromosome inactivation of four knock-in constructs, including bacterial artificial chromosome (BAC) integrations of over 195 kb, was demonstrated by both the lack of expression from the inactive X chromosome in females with nonrandom X chromosome inactivation and promoter DNA methylation of the human transgene in females. We further utilized promoter DNA methylation to assess the inactivation status of 74 human reporter constructs comprising >1.5 Mb of DNA. Of the 47 genes examined, only the PHB gene showed female DNA hypomethylation approaching the level seen in males, and escape from X chromosome inactivation was verified by demonstration of expression from the inactive X chromosome. Integration of PHB resulted in lower DNA methylation of the flanking HPRT promoter in females, suggesting the action of a dominant cis-acting escape element. Female-specific DNA hypermethylation of CpG islands not associated with promoters implies a widespread imposition of DNA methylation during X chromosome inactivation; yet transgenes demonstrated differential capacities to accumulate DNA methylation when integrated into the identical location on the inactive X chromosome, suggesting additional cis-acting sequence effects. As only one of the human transgenes analyzed escaped X chromosome inactivation, we conclude that elements permitting ongoing expression from the inactive X are rare in the human genome.  相似文献   

12.
The overall nuclease sensitivity and methylation of active and inactive X chromosomes of kangaroos were examined by in situ nick translation. Cultured fibroblasts of subspecies wallaroo-euro (Macropus robustus robustus; Macropus robustus erubescens) hybrids were used, enabling the paternally and maternally derived X chromosomes to be distinguished. No difference was found between the active and inactive X chromosomes with DNase I or MspI digestion. When chromosomes were digested with the methylation sensitive restriction enzymes HpaII and HhaI, the inactive X chromosome was labelled to a greater extent. These results indicate no overall difference in chromatin condensation between the active and inactive X chromosomes and greater overall methylation of the active X chromosome. This relative undermethylation of the inactive X chromosome may be important in X chromosome inactivation, but its function, if any, remains to be determined.by A. Bird  相似文献   

13.
Polymorphic X-chromosome inactivation of the human TIMP1 gene.   总被引:4,自引:0,他引:4       下载免费PDF全文
X inactivation silences most but not all of the genes on one of the two X chromosomes in mammalian females. The human X chromosome preserves its activation status when isolated in rodent/human somatic-cell hybrids, and hybrids retaining either the active or inactive X chromosome have been used to assess the inactivation status of many X-linked genes. Surprisingly, the X-linked gene for human tissue inhibitor of metalloproteinases (TIMP1) is expressed in some but not all inactive X-containing somatic-cell hybrids, suggesting that this gene is either prone to reactivation or variable in its inactivation. Since many genes that escape X inactivation are clustered, we examined the expression of four genes (ARAF1, ELK1, ZNF41, and ZNF157) within approximately 100 kb of TIMP1. All four genes were expressed only from the active X chromosome, demonstrating that the factors allowing TIMP1 expression from the inactive X chromosome are specific to the TIMP1 gene. To determine if this variable inactivation of TIMP1 is a function of the hybrid-cell environment or also is observed in human cells, we developed an allele-specific assay to assess TIMP1 expression in human females. Expression of two alleles was detected in some female cells with previously demonstrated extreme skewing of X inactivation, indicating TIMP1 expression from the inactive chromosome. However, in other cells, no expression of TIMP1 was observed from the inactive X chromosome, suggesting that TIMP1 inactivation is polymorphic in human females.  相似文献   

14.
Nobuo Takagi 《Genetica》1993,88(2-3):107-117
For the cytogenetic study of X chromosome inactivation as an X chromosome dosage compensation mechanism, we isolated a number of XXXX, XXX, and XXY near-tetraploid mouse hybrid cell clones by fusing XX or XO embryonal carcinoma cells with lymphocytes carrying a structurally altered X chromosome(s). The inactive X chromosome from the female lymphocyte was reactivated in these hybrid clones which retained embryonal carcinoma morphology so far as they were cultured on the collagen-coated plastic surface in the medium supplemented with leukemia inhibitory factor (LIF) and betamercaptoethanol (BME). Some of these clones developed balloon-like cystic embryoid bodies when they were allowed to form cell aggregates in medium without LIF and BME in bacteriological petri dishes to which they do not adhere. X chromosome inactivation occurring during this process detected by the incorporation of 5-bromodeoxyuridine did not conform to the expected pattern leaving two X chromosomes active in every tetraploid cells. This may suggest either that the X-inactivation mechanism evolved primarily, for the diploid cell is unable to deal with tetraploid conditions efficiently, or that the present system ofin vitro differentiation represents an anomalous situation never encounteredin vivo.  相似文献   

15.
16.
A role of X chromosome inactivation process in the development of breast cancer have been suggested. In particular, the relationship between the breast cancer predisposing gene BRCA1 and XIST, the main mediator of X chromosome inactivation, has been intensely investigated, but still remains controversial. We investigated this topic by assessing XIST behaviour in different groups of breast carcinomas and in a panel of breast cancer cell lines both BRCA1 mutant and wild type. In addition, we evaluated the occurrence of broader defects of heterochromatin in relation to BRCA1 status in breast cancer cells. We provide evidence that in breast cancer cells BRCA1 is involved in XIST regulation on the active X chromosome, but not in its localization as previously suggested, and that XIST can be unusually expressed by an active X and can decorate it. This indicates that the detection of XIST cloud in cancer cell is not synonymous of the presence of an inactive X chromosome. Moreover, we show that global heterochromatin defects observed in breast tumor cells are independent of BRCA1 status. Our observations sheds light on a possible previously uncharacterized mechanism of breast carcinogenesis mediated by XIST misbehaviour, particularly in BRCA1-related cancers. Moreover, the significant higher levels of XIST-RNA detected in BRCA1-associated respect to sporadic basal-like cancers, opens the possibility to use XIST expression as a marker to discriminate between the two groups of tumors.  相似文献   

17.
X-chromosome inactivation in monkey embryos and pluripotent stem cells   总被引:1,自引:0,他引:1  
Inactivation of one X chromosome in female mammals (XX) compensates for the reduced dosage of X-linked gene expression in males (XY). However, the inner cell mass (ICM) of mouse preimplantation blastocysts and their in vitro counterparts, pluripotent embryonic stem cells (ESCs), initially maintain two active X chromosomes (XaXa). Random X chromosome inactivation (XCI) takes place in the ICM lineage after implantation or upon differentiation of ESCs, resulting in mosaic tissues composed of two cell types carrying either maternal or paternal active X chromosomes. While the status of XCI in human embryos and ICMs remains unknown, majority of human female ESCs show non-random XCI. We demonstrate here that rhesus monkey ESCs also display monoallelic expression and methylation of X-linked genes in agreement with non-random XCI. However, XIST and other X-linked genes were expressed from both chromosomes in isolated female monkey ICMs indicating that ex vivo pluripotent cells retain XaXa. Intriguingly, the trophectoderm (TE) in preimplantation monkey blastocysts also expressed X-linked genes from both alleles suggesting that, unlike the mouse, primate TE lineage does not support imprinted paternal XCI. Our results provide insights into the species-specific nature of XCI in the primate system and reveal fundamental epigenetic differences between in vitro and ex vivo primate pluripotent cells.  相似文献   

18.
19.
20.
Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 22 X-linked genes, including XIST, using 27 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this analysis indicated heterogeneous maintenance of gene silencing along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号