首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The activity of thyroid peroxidase (TPO) in porcine follicles cultured for 96 h in suspension with five hormones (5H) still attained over 50% of that in the freshly isolated follicles. On the other hand, the activity in those cultured with 5H + TSH (6H) was several times higher than that cultured with 5H after 96 h, although an initial decrease of TPO activity during the first 24 h of culture was observed in both conditions. The ability of follicles to metabolize iodide (uptake and organification) when cultured with 6H for 96 h was also several times higher than that of those cultured with 5H. The half-maximal dose of TSH for stimulation of TPO activity and iodide metabolism was 0.03-0.04 mU/ml and the effect was mediated by cAMP. These results indicate that in porcine thyroid follicles in primary suspension culture, TPO activity as well as the ability of iodide metabolism is induced by chronic TSH stimulation. In addition, epidermal growth factor (EGF, 10(-9)M) and phorbol 12-myristate 13-acetate (PMA, 10(-8) M) completely inhibited TSH stimulation on both activities and also basal (5H) activity of iodide metabolism.  相似文献   

2.
For thyroid cells in culture DNA fragmentation and morphological changes related to apoptosis were first described in dog thyroid cells after deprivation of serum, epidermal growth factor or thyrotropin. With intact porcine thyroid follicles in three-dimensional culture, the effect of deprivation of growth factors and of incubation with transforming growth factor beta1 (TGF-beta1), epidermal growth factor (EGF), thyrotropin (TSH) or insulin-like growth factor I (IGF-I) on the incidence of apoptosis was studied. Thyroid follicles were embedded in growth factor-depleted Matrigel and cultured in serum-free medium with or without growth factors for 7 days followed by incubation for 4, 24 and 72 h with TGF-beta1 (2 or 5 ng/mL). The percentage of apoptotic cells was determined by direct counting in electron-microscopy. Approximately 1% of apoptotic bodies could be detected in unstimulated follicles. This was unchanged in the presence of TSH (1 mU/mL) or IGF (10 ng/mL) but significantly increased up to 3.99 +/- 1.24% with 2 ng/mL of EGF. After incubation with TGF-beta apoptosis increased dose-dependently to 4.05 +/- 0.67% with 2 ng/mL TGF-beta1 and 5.16 +/- 1.75% with 5 ng/mL TGF-beta1. The incidence of necrotic cells remained constant at about 1 to 2%. Preincubation of follicles with 2 ng/mL of EGF followed by incubation with 5 ng/mL TGF-beta1 increased the rate of apoptic bodies up to 13.19 +/- 1.9%. We conclude that growth factor depletion in thyroid follicles in three-dimensional culture does not lead to apoptosis. TGF-beta1, however, induces apoptosis even in quiescent thyroid follicular cells and is significantly more pronounced in growing thyroid cells. EGF, which is a dedifferentiating growth factor for thyroid cells, also induces apoptosis. As EGF enhances TGF-beta1 mRNA and protein in thyroid follicular cells, the induction of apoptosis by EGF might also be due to TGF-beta1.  相似文献   

3.
The effects of thyroid-stimulating hormone (TSH) and a tumor promoter: 12-0-tetradecanoyl-phorbol-13-acetate on glycosaminoglycan (GAG) synthesis were studied in porcine thyroid epithelial cells in primary culture. TSH is known to involve cyclic AMP mechanism and phorbol ester to act by protein kinase C pathway. Chronic treatment of cells with TSH increased the synthesis of heparan sulphate associated with the cell layer and hyaluronic acid in the culture medium. Phorbol ester increased the radioactivity of total GAGs in the culture medium but had no effect on GAGs associated with the cell layer. It inhibited the positive effect of TSH on heparan sulphate synthesis. These results suggest that in thyroid epithelial cells the synthesis of the GAGs associated with the cell layer and those secreted into the culture medium are regulated by different intracellular mechanisms.  相似文献   

4.
In the present study, we have investigated the potential regulation of thyroglobulin (Tg) and extracellular matrix components synthesis by thyroid-stimulating hormone (TSH) and tetradecanoyl phorbol-13-acetate (TPA) on thyroid cells. Porcine thyroid cells isolated by trypsin-EGTA digestion of thyroid glands were maintained in serum containing medium on poly (L-lysine)-coated dishes. Cells differentiated into follicular or vesicular-like structures were distinguished by their ability to organify Na[125l] and to respond to TSH stimulation. After an incubation of the cells with radiolabeled proline or methionine, two major proteins were identified, p450–480 and p290 (so named because of their molecular masses). Tg (p290) synthesis was demonstrated by the synthesis of [131l]-labeled polypeptides with electrophoretic properties identical to those of authentic Tg molecules. P450–480 resolved to Mr 190,000 under reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) conditions. It was identified as thrombospondin by its reactivity with a monoclonal anti-human thrombospondin and by peptide sequencing of some of its tryptic fragments that displayed identity to thrombospondin l. Collagen synthesis was demonstrated by the formation of radioactive hydroxyproline and by the synthesis of pepsin-resistant polypeptides ranging from Mrs 120,000 to 200,000. When the cells were cultured in the presence of 100 nM TPA, the culture medium contents of thrombospondin and collagen were increased by 2.7 and 1.6-fold, respectively, whereas Tg content was decreased by a factor 3.9. In contrast, the acute treatment of control cells with TPA induced a decrease in both Tg and collagen content by factors 3.0 and 1.5, respectively, and an increase in thrombospondin content by a factor 2.5. In the presence of 100 nM TPA, TSH (1 mU/ml) did not counteract the stimulating effect of TPA on extracellular matrix components synthesis. In contrast, when cells were cultured in the presence of TSH alone at concentrations higher than 0.1 mU/ml, collagen and thrombospondin in the medium were decreased by a factor 2.0 and 1.9, respectively, and TSH preferentially activated Tg synthesis. However, no acute response to TSH was observed in cells incubated for 2 days without effectors (control cells). On TSH differentiated cells, TPA decreased both collagen and Tg accumulation by factor 1.2 and 1.8, respectively, whereas it increased the one of thrombospondin by a factor 2. These results, together with the stimulating effect of TPA on TSH mediated cell proliferation, argue for a role of thrombospondin in cell adhesion and migration events within the thyroid epithelium. © 1994 Wiley-Liss, Inc.  相似文献   

5.
Protein phosphorylation was studied in primary cultures of thyroid epithelial cells after the addition of different mitogens: thyrotropin (TSH) acting through cyclic AMP, epidermal growth factor (EGF), or 12-O-tetradecanoylphorbol-13-acetate (TPA). EGF or TPA increased the phosphorylation of five common polypeptides. Among these, two 42-kilodalton proteins contained phosphotyrosine and phosphoserine with or without phosphothreonine. Their characteristics suggested that they are similar to the two 42-kilodalton target proteins for tyrosine protein phosphorylation demonstrated in fibroblasts in response to mitogens. No common phosphorylated proteins were detected in TSH-treated cells and in EGF- or TPA-treated cells. The differences in the protein phosphorylation patterns in response to TSH, EGF, and TPA suggested that the newly emerging cyclic AMP-mediated mitogenic pathway is distinct from the better known growth factor- and tumor promoter-induced pathways.  相似文献   

6.
We studied the effects of epidermal growth factor (EGF), thyroid-stimulating hormone (TSH) and amiloride on cytoplasmic pH (pHi) in cultured porcine thyroid cells. We used 2',7'-bis(2-carboxyethyl)-5- (and 6-)carboxyfluorescein (BCECF), an internalized fluorescent pH indicator, to measure pHi. EGF stimulated thyroid cell alkalinization and proliferation, which were blocked by amiloride. EGF-stimulated thyroid cell alkalinization depended on extracellular Na+ concentrations. EGF stimulation resulted in an activation of Na+/H+ exchange, which alkalinized the cells. The results indicated that Na+/H+ exchange or cell alkalinization might function as a transmembrane signal transducer in the action of EGF. In the present system, TSH did not stimulate alkalinization or proliferation.  相似文献   

7.
Previously, we and others have shown that epidermal growth factor (EGF) stimulates the synthesis of its own receptor and the accumulation of EGF receptor mRNA. Here, we demonstrate that the tumor promotor, 12-O-tetradecanoylphorbol-13-acetate (TPA), like EGF, also stimulates receptor synthesis in the human breast carcinoma cell line, MDA468 cells. The receptor synthesis rate increased 5-fold with a peak at 8 h after exposure to TPA with half-maximal stimulation at a dose of 5 ng/ml TPA. This stimulation of receptor synthesis occurred despite a 30% decrease in general cellular protein synthesis. The increased receptor synthesis rate resulted in the accumulation of 60% more receptor protein as determined by quantitative immunoblotting using a newly developed monoclonal antibody, H9B4. Although TPA treatment resulted in an immediate loss of high affinity EGF-binding sites, the long-term effect was an increase in both the low and high affinity binding sites. The effects of EGF and TPA on receptor synthesis were not additive. Furthermore, down-regulation of protein kinase C (the Ca2+/phospholipid-dependent enzyme) by long-term TPA treatment resulted in cells unable to respond to the stimulatory effects of both TPA and EGF on receptor synthesis. Nevertheless, the TPA-pretreated cells were still growth-inhibited by EGF. These results suggest that the stimulatory effect of EGF on receptor synthesis requires protein kinase C, whereas the inhibitory effect of EGF on the proliferation of these cells does not. Although we confirmed that EGF stimulated the incorporation of phosphate into phosphatidylinositol in A431 cells, it failed to do so in the MDA468 cells. Thus, in MDA468 cells, EGF may require protein kinase C for part of its action, but we could not demonstrate an associated activation of phosphatidylinositol turnover by EGF. The exact mechanism of involvement of protein kinase C in EGF action is still not clear.  相似文献   

8.
It has been proposed from in vivo studies that thyroid angiogenesis during thyroid enlargement may be due to paracrine mitogenic factors released by epithelial thyroid cells. To study this paracrine growth regulating communication between thyroid cells and endothelial cells in vitro, culture medium from isolated porcine thyroid follicles was investigated for a growth promoting effect on porcine aortal endothelial cells. Serum-free conditioned medium (CM) from thyroid follicles in suspension culture contains a dose-related mitogenic activity which stimulates endothelial cell growth up to 197%. Stimulation of the thyroid follicles with TSH (1 mU/ml) significantly reduced the mitogenic activity for endothelial cells in CM to 131%. Thyroid hormones had no influence on mitogenic activity in CM. When follicles were treated with iodide (20 microM) during CM production, no proliferation of endothelial cells was observed by this CM. In contrast, CM from epidermal growth factor-treated thyroid follicles significantly enhanced the mitogenic activity for endothelial cells up to 235%. The mitogenic activity was precipitable by saturated ammonium sulfate, showed high affinity to heparin by chromatography on heparin-sepharose, and was abolished after treatment of CM with trypsin. On gel electrophoresis the heparin-binding fraction showed a double band with a mol wt of 15 and 15.5 k. These data show a paracrine mitogenic activity on endothelial cells released by thyroid follicles which is regulated by TSH, epidermal growth factor, and iodide in parallel with the direct effect of these substances on thyroid cell growth. The data suggest that the mitogenic factor is a polypeptide, which belongs to the heparin-binding growth factors.  相似文献   

9.
Effects of phorbol esters and epidermal growth factor (EGF) on prostaglandin E2 production by cultured porcine thyroid cells were examined. Both phorbol 12-myristate 13-acetate (PMA) and EGF stimulated prostaglandin E2 production by the cells in dose related fashion. PMA stimulated prostaglandin E2 production over fifty-fold with the dose of 10(-7) M compared with control. EGF (10(-7) M) also stimulated it about ten-fold. The ED50 values of PMA and EGF were respectively around 1 X 10(-9) M and 5 X 10(-10) M. Thyroid stimulating hormone (TSH), however, did not stimulate prostaglandin E2 production from 1 to 24-h incubation. The release of radioactivity from [3H]-arachidonic acid prelabeled cells was also stimulated by PMA and EGF, but not by TSH. These results indicate that both PMA and EGF are potent stimulators of prostaglandin E2 production, associated with the activity to stimulate arachidonic acid release in porcine thyroid cells.  相似文献   

10.
J M Mullin  M T McGinn 《FEBS letters》1987,221(2):359-364
Exposure of cultured kidney epithelial (LLC-PK1) cell sheets to 10(-7) M TPA, a potent tumor promoter and activator of protein kinase C, initiates within minutes a drop in the transepithelial voltage across these sheets. This fall in potential difference correlates with an over 40-fold increase in the transepithelial flux of 1 mM D-mannitol, suggesting that the intercellular junctions have become leaky. Dual labeling experiments with 1 mM D-[14C]mannitol and 10 nM 125I-EGF show that after promoter treatment, a 7-fold increase in net 125I flux accompanies the increase in mannitol flux. Gel filtration and gel electrophoresis indicate that for control cell sheets only 15% of the transited 125I is actually EGF, whereas with TPA-treated cell sheets, 60% of the 125I which passed across is EGF. These percentages permitted determination of actual EGF flux values, and show that TPA treatment engenders a 35-fold increase in transepithelial EGF flux. Diacylglycerols also increase the junctional permeability of these cells, thereby suggesting the involvement of protein kinase C.  相似文献   

11.
We have previously reported that human placental cytotrophoblasts (C-cells) contain nuclear 3,5,3'-triiodo-L-thyronine (T3) receptors. Using a C-cell culture system, the present study was undertaken to clarify some of the effects of T3 and EGF on trophoblastic cells. C-cells were purified from human term placenta by treatment with trypsin-DNAse and percoll gradient centrifugation aggregated, then fused, differentiating into multinuclear syncytiotrophoblasts (S-cells) with incubation times up to 96 h in vitro. As the incubation time increased, the number of immunocytochemically reactive cells with antibodies to hCG-alpha, hCG-beta and hPL increased. Anti-EGF antibody reacted only with the initial C-cells, while anti-EGF receptor antibody reacted only with fused S-cells. Maximum secretion of hCG and hCG-alpha by the cultured cells was evident only when the cells were cultured in T3 (10(-8)M) or EGF (10 ng/ml) containing medium. When the initial cells were exposed to 10(-8) M T3 from 0 to 48 h of incubation, the secretion in 48-96 h was significantly accelerated. However, exposure from 48 to 96 h had no effect on peptide excretion. Although an exposure of these cells to 10 ng/ml EGF during 48-96 h of incubation stimulated the secretion of hCG and hCG-alpha, 0-48 h exposure did not produce any positive effect regardless of incubation time. These results indicated that the main target cell of T3 is the C-cell, while that of EGF is the S-cell. Furthermore, it is suggested that the interaction between T3 and its receptor facilitated functional cell differentiation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The influence of islet-activating protein (IAP), a Bordetella pertussis toxin, was studied on adenylate cyclase and GTPase activities in rat adipocyte membranes. Pretreatment of rats or intact rat adipocytes with IAP did not affect adenylate cyclase inhibition by the stable GTP analog, GTP gamma S, whereas inhibition by GTP was abolished. Concomitantly, activation of the adipocyte enzyme by sodium and its inhibition by nicotinic acid were prevented. Furthermore, IAP treatment of adipocyte membranes prevented nicotinic acid-induced stimulation of a high affinity GTPase. The data suggest that a GTP-hydrolyzing system involved in the inhibitory regulation of adenylate cyclase is the target of IAP's action.  相似文献   

13.
Specific, high affinity, saturable receptors for epidermal growth factor (EGF) have been demonstrated both on porcine and on human thyroid membranes. The binding affinities of porcine (Ka 3.0 X 10(-9) M) and human thyroid EGF receptors (Ka 1.75 X 10(-9) M) are very similar. TSH does not inhibit the binding of 125I-EGF to either membrane. These results suggest the possibility that EGF may be involved in the regulation of human as well as porcine thyroid follicular cell growth and function.  相似文献   

14.
The biosynthesis of phosphatidylcholine (PC) in HEL-37 cells was followed by measuring the incorporation of [32P]Pi into PC. Incorporation was stimulated by 12-O-tetradecanoylphorbol 13-acetate (TPA) and by the synthetic diacylglycerol, sn-1,2-dioctanoylglycerol (diC8), but not by sn-1-oleoyl-2-acetylglycerol or sn-1,2-dihexanoylglycerol (diC6). DiC8 was rapidly metabolised by HEL-37 cells to the corresponding PC and phosphatidic acid derivatives. diC8, diC6 and oleoylacetylglycerol effectively displaced [3H]phorbol-12,13-dibutyrate bound to a soluble cell extract from HEL-37 cells, but only diC8 was able to displace the labelled phorbol ester from prelabelled cells. TPA, diC8, diC6 and oleoylacetylglycerol were all effective inhibitors of 125I-labelled epidermal growth factor binding to, and gap junctional communication between, HEL-37 cells. It is concluded that only cell-permeable diacylglycerols stimulate PC biosynthesis which may therefore require interaction with membranes other than the plasma membrane.  相似文献   

15.
Cholecystokinin-octapeptide (CCK8) inhibits 125I-labeled epidermal growth factor (EGF) cell-associated radioactivity in pancreatic acini, ostensibly as a result of its ability to mobilize cellular Ca2+. The phorbol ester tetradecanoyl phorbol acetate (TPA), a compound that activates protein kinase C, mimics the inhibitory action of CCK8. In the present study we examined the relationship between occupancy of the cholecystokinin (CCK) receptor, the subsequent inhibition of EGF binding, and the potential role of C-kinase activation in mediating this inhibition. Proglumide and dibutyryl cyclic GMP (dbGMP), two distinct competitive antagonists of CCK8, reversed the inhibitory actions of CCK8. Analysis of steady-state saturation kinetics of 125I-EGF binding indicated that CCK8 decreased the apparent affinity of the EGF receptor, mainly as a result of a marked decrease in the amount of internalized ligand. TPA also inhibited 125I-EGF internalization. Removal of CCK8 and TPA from incubation medium did not abolish their inhibitory actions. Carbachol, but not bombesin, exerted a similar residual inhibitory effect. It is suggested that in addition to acting via Ca2+, certain pancreatic secretagogues may also act through C-kinase to regulate EGF binding.  相似文献   

16.
We demonstrate measurement of cytoplasmic pH (pHi), using 2',7'-bis(2-carboxyethyl)-5 (and 6-) carboxyfluorescein (BCECF), and internalized fluorescent pHi indicator, in thyroid cells. Using cultured porcine thyroid cells, we studied the effects of epidermal growth factor (EGF) on pHi and [3H] thymidine incorporation; 10 nM EGF alkalinizes thyroid cells and stimulates thymidine incorporation. The results indicate that Na+/H+ exchange or cell alkalinization may function as a transmembrane signal transducer in the action of EGF in the thyroid cells.  相似文献   

17.
18.
Primary cultures of neonatal cardiac myocytes were used to determine the effects of tumor-promoting phorbol esters on ribosomal RNA (rRNA) synthesis during myocyte growth. Treatment of myocytes with phorbol-12,13-dibutyrate (PDBu) increased protein accumulation by 25% and RNA content by 20%. Rates of rRNA synthesis were measured to assess the mechanism by which rRNA accumulated during myocyte growth. Rates of rRNA synthesis were determined from the incorporation of [3H]uridine into UMP of purified rRNA and the specific radioactivity of the cellular UTP pool. After 24h of PDBu treatment, cellular rates of 18S and 28S rRNA synthesis were accelerated by 67% and 64%, respectively. The increased rate of rRNA synthesis accounted for the net increase in myocyte rRNA content after PDBu treatment.  相似文献   

19.
20.
TPA (12-O-tetradecanoylphorbol 13-acetate) is one of a class of compounds known as tumor promoters which perturb the inositol phosphate pathway in a number of cells. We have used TPA in a dispersed rat adenohypophysial cell system to probe the characteristics of growth hormone (GH) release. In this system we have found that the cells release GH in response to low concentrations of TPA: the EC50 was 0.23 +/- 0.05 nM (n = 6) and the maximal concentration was 5 nM. However, the maximal TPA-induced GH release was only 34 +/- 5% (n = 7) of the GH released by maximal growth hormone releasing factor (GRF) suggesting TPA releases a subpool of stored GH. Both somatostatin and insulin-like growth factor I inhibit GH release stimulated by TPA to the same extent as that stimulated by GRF, showing that the normal inhibitory control mechanism of release is not altered. Incubation in a low calcium medium that totally blocks GRF-stimulated GH release also inhibits TPA-stimulated GH release. The calcium channel blockers nifedipine and diltiazem both partly inhibit GRF- and TPA-stimulated GH release, showing some component of the calcium necessary for GH release arises from influx across the cell membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号