首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rotaviruses are the major cause of acute gastroenteritis in infants world-wide. The genome consists of eleven double stranded RNA segments. The major segment encodes the structural protein VP1, the viral RNA-dependent RNA polymerase (RdRp), which is a minor component of the viral inner core. This study is a detailed bioinformatic assessment of the VP1 sequence. Using various methods we have identified canonical motifs within the VP1 sequence which correspond to motifs previously identified within RdRps of other positive strand, double-strand RNA viruses. The study also predicts an overall structural conservation in the middle region that may correspond to the palm subdomain and part of the fingers and thumb subdomains, which comprise the polymerase core of the protein. Based on this analysis, we suggest that the rotavirus replicase has the minimal elements to function as an RNA-dependent RNA polymerase. VP1, besides having common RdRp features, also contains large unique regions that might be responsible for characteristic features observed in the Reoviridae family.  相似文献   

2.
3.
The evolutionary processes operating in the DNA regions that participate in the regulation of gene expression are poorly understood. In Escherichia coli, we have established a sequence pattern that distinguishes regulatory from nonregulatory regions. The density of promoter-like sequences, that could be recognizable by RNA polymerase and may function as potential promoters, is high within regulatory regions, in contrast to coding regions and regions located between convergently transcribed genes. Moreover, functional promoter sites identified experimentally are often found in the subregions of highest density of promoter-like signals, even when individual sites with higher binding affinity for RNA polymerase exist elsewhere within the regulatory region. In order to see the generality of this pattern, we have analyzed 43 additional genomes belonging to most established bacterial phyla. Differential densities between regulatory and nonregulatory regions are detectable in most of the analyzed genomes, with the exception of those that have evolved toward extreme genome reduction. Thus, presence of this pattern follows that of genes and other genomic features that require weak selection to be effective in order to persist. On this basis, we suggest that the loss of differential densities in the reduced genomes of host-restricted pathogens and symbionts is an outcome of the process of genome degradation resulting from the decreased efficiency of purifying selection in highly structured small populations. This implies that the differential distribution of promoter-like signals between regulatory and nonregulatory regions detected in large bacterial genomes confers a significant, although small, fitness advantage. This study paves the way for further identification of the specific types of selective constraints that affect the organization of regulatory regions and the overall distribution of promoter-like signals through more detailed comparative analyses among closely related bacterial genomes.  相似文献   

4.
Central to the replication of poliovirus and other positive-strand RNA viruses is the virally encoded RNA-dependent RNA polymerase. Previous biochemical studies have suggested that direct polymerase- polymerase interactions might be important for polymerase function, and the structure of poliovirus polymerase has revealed two regions of extensive polymerase-polymerase interaction. To explore potential functional roles for the structurally observed polymerase-polymerase interactions, we have performed RNA binding and extension studies of mutant polymerase proteins in solution, disulfide cross-linking studies, mutational analyses in cells, in vitro activity analyses and RNA substrate modeling studies. The results of these studies indicate that both regions of polymerase-polymerase interaction observed in the crystals are indeed functionally important and, furthermore, reveal specific functional roles for each. One of the two regions of interaction provides for efficient substrate RNA binding and the second is crucial for forming catalytic sites. These studies strongly support the hypothesis that the polymerase- polymerase interactions discovered in the crystal structure provide an exquisitely detailed structural context for poliovirus polymerase function and for poliovirus RNA replication in cells.  相似文献   

5.
The influenza virus PB1 protein functions as a catalytic subunit of the viral RNA-dependent RNA polymerase and contains the highly conserved motifs of RNA-dependent RNA polymerases together with putative nucleotide-binding sites. PB1 also binds to viral genomic RNAs and its replicative intermediates through the promoter regions. The detail function and interplay between functional domains are not clarified although a part of structures and functions of PB1 have been clarified. In this study, we analyzed the function of PB1 subunit in the sense of nucleotide recognition using ribavirin, which is a nucleoside analog and inhibits viral RNA synthesis of many RNA viruses including influenza virus. We screened ribavirin-resistant PB1 mutants from randomly mutated PB1 cDNA library using a mini-replicon assay, and we identified a single mutation at the amino acid position 27 of PB1 as an important residue for the nucleotide recognition.  相似文献   

6.
7.
We have previously cloned the human RNA polymerase II subunit 11, as a doxorubicin sensitive gene product. We suggested multiple tasks for this subunit, including structural and regulatory roles. With the aim to clarify the human RNA polymerase II subunit 11 function, we have identified its interacting protein partners using the yeast two-hybrid system. Here, we show that human RNA polymerase II subunit 11 specifically binds keratin 19, a component of the intermediate filament protein family, which is expressed in a tissue and differentiation-specific manner. In particular, keratin 19 is a part of the nuclear matrix intermediate filaments. We provide evidence that human RNA polymerase II subunit 11 interacts with keratin 19 via its N-terminal alpha motif, the same motif necessary for its interaction with the human RNA polymerase II core subunit 3. We found that keratin 19 contains two putative leucine zipper domains sharing peculiar homology with the alpha motif of human RNA polymerase II subunit 3. Finally, we demonstrate that keratin 19 can compete for binding human RNA polymerase II subunit 11/human RNA polymerase II subunit 3 in vitro, suggesting a possible regulatory role for this molecule in RNA polymerase II assembly/activity.  相似文献   

8.
9.
10.
A number of cyclins have been described, most of which act together with their catalytic partners, the cyclin-dependent kinases (Cdks), to regulate events in the eukaryotic cell cycle. Cyclin C was originally identified by a genetic screen for human and Drosophila cDNAs that complement a triple knock-out of the CLN genes in Saccharomyces cerevisiae. Unlike other cyclins identified in this complementation screen, there has been no evidence that cyclin C has a cell-cycle role in the cognate organism. Here we report that cyclin C is a nuclear protein present in a multiprotein complex. It interacts both in vitro and in vivo with Cdk8, a novel protein-kinase of the Cdk family, structurally related to the yeast Srb10 kinase. We also show that Cdk8 can interact in vivo with the large subunit of RNA polymerase II and that a kinase activity that phosphorylates the RNA polymerase II large subunit is present in Cdk8 immunoprecipitates. Based on these observations and sequence similarity to the kinase/cyclin pair Srb10/Srb11 in S. cerevisiae, we suggest that cyclin C and Cdk8 control RNA polymerase II function.  相似文献   

11.
Rhodobacter sphaeroides sigma(E) is a member of the extra cytoplasmic function sigma factor (ECF) family, whose members have been shown to regulate gene expression in response to a variety of signals. The functions of ECF family members are commonly regulated by a specific, reversible interaction with a cognate anti-sigma factor. In R.sphaeroides, sigma(E) activity is inhibited by ChrR, a member of a newly discovered family of zinc containing anti-sigma factors. We used gel filtration chromatography to gain insight into the mechanism by which ChrR inhibits sigma(E) activity. We found that formation of the sigma(E):ChrR complex inhibits the ability of sigma(E) to form a stable complex with core RNA polymerase. Since the sigma(E):ChrR complex inhibits the ability of the sigma factor to bind RNA polymerase, we sought to identify amino acid substitutions in sigma(E) that altered the sensitivity of this sigma factor to inhibition by ChrR. This analysis identified single amino acid changes in conserved region 2.1 of sigma(E) that either increased or decreased the sensitivity of sigma(E) for inhibition by ChrR. Many of the amino acid residues that alter the sensitivity of sigma(E) to ChrR are located within regions known to be important for interacting with core RNA polymerase in other members of the sigma(70) superfamily. Our results suggest a model where solvent-exposed residues with region 2.1 of sigma(E) interact with ChrR to sterically occlude this sigma factor from binding core RNA polymerase and to inhibit target gene expression.  相似文献   

12.
13.
The evolutionary processes operating in the DNA regions that participate in the regulation of gene expression are poorly understood. In Escherichia coli, we have established a sequence pattern that distinguishes regulatory from nonregulatory regions. The density of promoter-like sequences, that could be recognizable by RNA polymerase and may function as potential promoters, is high within regulatory regions, in contrast to coding regions and regions located between convergently transcribed genes. Moreover, functional promoter sites identified experimentally are often found in the subregions of highest density of promoter-like signals, even when individual sites with higher binding affinity for RNA polymerase exist elsewhere within the regulatory region. In order to see the generality of this pattern, we have analyzed 43 additional genomes belonging to most established bacterial phyla. Differential densities between regulatory and nonregulatory regions are detectable in most of the analyzed genomes, with the exception of those that have evolved toward extreme genome reduction. Thus, presence of this pattern follows that of genes and other genomic features that require weak selection to be effective in order to persist. On this basis, we suggest that the loss of differential densities in the reduced genomes of host-restricted pathogens and symbionts is an outcome of the process of genome degradation resulting from the decreased efficiency of purifying selection in highly structured small populations. This implies that the differential distribution of promoter-like signals between regulatory and nonregulatory regions detected in large bacterial genomes confers a significant, although small, fitness advantage. This study paves the way for further identification of the specific types of selective constraints that affect the organization of regulatory regions and the overall distribution of promoter-like signals through more detailed comparative analyses among closely related bacterial genomes.  相似文献   

14.
15.
16.
17.
18.
19.
张大鹏  王进  杨洁  华子春 《病毒学报》2004,20(4):371-377
严重急性呼吸综合片冠状病毒(SARS病毒)的高危害性,使得研究其分子机制并开发有效的治疗药物成为当前生物学家面临的紧迫任务.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号