首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Brain membranes contain several protein kinases, all of which appear to play a role in the regulation of neuronal functioning. These membranes also contain numerous (phospho) proteins. It has been proposed that the degree of phosphorylation of some of these proteins may affect neuronal membrane properties. In a series of previous reports we showed that ACTH1-24 inhibits the endogenous phosphorylation of several synaptosomal plasmamembrane (SPM) proteins including the B-50 protein. Although we have speculated that the degree of phosphorylation of B-50 may be important in regulating the turnover of membrane (poly)-phosphoinositides, the exact nature of the interaction between ACTH1-24 and B-50/B-50 protein kinase is unknown. The purpose of the present study was to determine whether treatment of SPM with ACTH1-24 will lead to a specific release of proteins from SPM. We found that ACTH1-24 specifically releases a 41,000 Mr protein from rat brain SPM. Although we are not certain about the biological significance of the release of this polypeptide, it is of sufficient interest for further research in view of the lack of success of finding binding of labeled ACTH to brain membranes.  相似文献   

2.
3.
The control of ion concentration in the cytosol and the accumulation of ions in vacuoles are thought to be key factors in salt tolerance. These processes depend on the establishment in vacuolar membranes of an electrochemical H+ gradient generated by two distinct H+-translocating enzymes: a H+-PPase and a H+-ATPase. H+-lrans locating activities were characterized in tonoplast-enriched membrane fractions isolated by sucrose gradient centrifugation from sunflower ( Helianthus annuus L.) roots exposed for 3 days to different NaCl regimes. The 15/32% sucrose interface was enriched in membrane vesicles possessing a vacuolar-type H+-ATPase and a H+-PPase, as indicated by inhibitor sensitivity, pH optimum, substrate specificity, ion effects kinetic data and immunolabelling with specific antibodies. Mild and severe stress did not alter the pH profile, ion dependence, apparent Km nor the amount of antigenic protein of either enzyme. Saline treatments slightly increased K+-stimulaied PPase activity with no change in ATPase activity, while both PPi-dependent and NO3-sensitive ATP-dependent H+ transport activities were strongly stimulated. These results are discussed in terms of an adaptative mechanism of the moderately tolerant sunflower plants to salt stress.  相似文献   

4.
Few studies have investigated the interaction of ultraviolet (UV)-B radiation and CO2 concentration on plants. We studied the combined effects of UV-B radiation and CO2 concentration on canola ( Brassica napus cv. 46A65) under four growth conditions – ambient CO2 with UV-B (control), elevated CO2 with UV-B, ambient CO2 without UV-B, and elevated CO2 without UV-B – to determine whether the adverse effects of UV-B are mitigated by elevated CO2. Elevated CO2 significantly increased plant height and seed yield, whereas UV-B decreased them. Elevated CO2 ameliorated the adverse effects of UV-B in plant height. UV-B did not affect the physical characteristics of leaf but CO2 did. Certain flower and fruit characteristics were affected negatively by UV-B and positively by CO2. UV-B did not affect net photosynthesis, transpiration and stomatal conductance but decreased water use efficiency (WUE). Elevated CO2 significantly increased net photosynthesis and WUE. Neither UV-B nor CO2 affected chlorophyll (Chl) fluorescence. UV-B significantly decreased Chl b and increased the ratio of Chl a / b . Elevated CO2 decreased only the ratio of Chl a / b . UV-B significantly increased UV-absorbing compounds while CO2 had no effect on them. Both UV-B and CO2 significantly increased epicuticular wax content. Many significant relationships were found between morphological, physiological, and chemical parameters. This study showed that elevated CO2 can partially ameliorate some of the adverse effects of UV-B radiation in B . napus .  相似文献   

5.
6.
The possibility to induce nitrate reductase (NR; EC 1.6.6.2) in needles of Scots pine ( Pinus sylvestris L.) seedlings was studied. The NR activity was measured by an in vivo assay. Although increased NR activities were found in the roots after application of NO3, no such increase could be detected in the needles. Detached seedlings placed in NO3 solution showed increasing NR activities with increasing NO3 concentrations. Exposure of seedlings to NOx (70–80 ppb NO2 and 8–12ppb NO) resulted in an increase of the NR activity from 10–20 nmol NO2 (g fresh weight)−1 h−1 to about 400 nmol NO2 (g fresh weight)−1 h−1. This level was reached after 2–4 days of exposure, thereafter the NR activity decreased to about 200 nmol NO2 (g fresh weight)−1 h−1. Analyses of free amino acids showed low concentrations of arginine and glutamine in NOx-fumigated seedlings compared to corresponding controls.  相似文献   

7.
Abstract— The incorporation in vivo of 32P1 was significantly increased in all glycerophosphatide of preparations of denervated muscle membrane in frogs. There was no increase in incorporation of 32P1 into sphingomyelin. Disuse induced by tenotomy did not significantly increase incorporation of 32P1 into phospholipids of the muscle membrane. The phospholipid content of muscle membranes remained unchanged as a result of denervation or tenotomy. Denervation produced an increase in the incorporation of [2-3H]glycerol into all glycerophosphatides in parallel with the increase in 32P1 incorporation. Although the stimulated incorporation of 32P1 was increased in the regions of the muscle membrane rich in endplates, the most marked effect was in the endplate-poor region where activity in phosphatidylserine was most markedly increased.  相似文献   

8.
The hydrogen peroxide (H2O2) stress response in Enterococcus faecalis ATCC19433 was investigated. A 2·4 mmol l−1 H2O2 pretreatment conferred protection against a lethal concentration (45 mmol l−1) of this agent. The relatively high concentrations of H2O2 used for adaptation and challenge treatments in Ent. faecalis emphasised the strong resistance towards oxidative stress in this species. Various stresses (NaCl, heat, ethanol, acidity and alkalinity) induced weak or strong H2O2 cross-protection. This paper describes the involvement of protein synthesis in the active response to lethal dose of H2O2, in addition to the impressive enhancement of synthesis of five H2O2 stress proteins. Combined results suggest that these proteins might play an important role in the H2O2 tolerance response.  相似文献   

9.
Abstract— Essential fatty acid deficiency was induced in mice after feeding a fatty acid deficient diet for 6 months. Activity of the (Na++ K+)-ATPase in the total brain homogenates and in isolated synaptosomal plasma membranes was significantly higher ( P & lt; 0 05) in the deficient mice than the controls. Analysis of the acyl group composition of phosphoglycerides in brain as well as in the synaptosomal plasma membranes showed that mice fed the deficient diet had increased levels of 20:3(n-9) and 22:3(n-9) and decreased levels of 20:4(n-6) and 22:4(n-6). However, acyl group changes varied among individual phosphoglycerides and were most obvious in the two species of ethanolamine phosphoglycerides. A decrease in 22:6(n-3) level was also observed in some phosphoglycerides of the synaptosomal plasma membranes especially the diacyl- sn -glycerophosphorylserine. In this experiment, a new solvent system for chromatographic separation of the diacyl- sn -glycerophosphorylserine and diacyl- sn -glycerophosphorylinositol was reported. The separation technique was suitable for analysis of acyl group composition of individual phosphoglycerides by gas-liquid chromatography. The results were consislent with a positive correlation of the non-polar acyl groups of brain membranes with the active ion transport activity. The increase in enzymic activity during deficient state may be the result of a biological adaptation due to structural alteration of the brain membranes.  相似文献   

10.
Abstract: Rats were injected with saline or the γ-aminobutyric acid (GABA) transaminase inhibitor γ-vinyl-GABA for 7 days and the effects on GABA content and glutamic acid decarboxylase (GAD) activity, and the protein and mRNA levels of the two forms of GAD (GAD67 and GAD65) in the cerebral cortex were studied. γ-Vinyl-GABA induced a 2.3-fold increase in GABA content, whereas total GAD activity decreased by 30%. Quantitative immunoblotting showed that the decline in GAD activity was attributable to a 75–80% decrease in GAD67 levels, whereas the levels of GAD65 remained unchanged. RNA slot-blotting with a 32P-labeled GAD67 cDNA probe demonstrated that the change in GAD67 protein content was not associated with a change in GAD67 mRNA levels. Our results suggest that GABA specifically controls the level of GAD67 protein. This effect may be mediated by a decreased translation of the GAD67 mRNA and/or a change in the stability of the GAD67 protein.  相似文献   

11.
Abstract: The cellular localization of two Ca2+-dependent protein phosphorylation systems was investigated using the kainic acid lesioning technique for the selective destruction of neurons. In one of these systems, a crude synaptosomal (P2) fraction was preincubated with 32Pj for 30 min; the phosphorylation of several proteins was increased during a short subsequent incubation with veratridine plus Ca2+. In the second system, crude synaptosomal membranes isolated from the P2 fraction were incubated with [γ-32P]ATP; in this system, the phosphorylation of several proteins was increased in the presence of a "calcium-dependent regulator" plus Ca2+. Kainic acid lesioning greatly reduced the amount of Ca-+-dependent protein phosphorylation in both systems. The results indicate a predominantly neuronal localization for both Ca2+-dependent protein phosphorylation systems.  相似文献   

12.
Abstract: A B2 bradykinin (BK) receptor was solubilised and partially purified from rat uterine membranes by a combination of ammonium sulphate precipitation, desalting on Sephadex G-50, and hydroxyapatite and wheat germ agglutinin affinity chromatography. The partially purified BK receptor, enriched 1,500-fold, was then cross-linked to 125l-Tyr0-BK using disuccinimidyl suberate and purified to homogeneity as a single protein species on two-dimensional gel electrophoresis with a molecular mass of 81 kDa. This molecular size was in agreement with the value of 80–120 kDa estimated from Sephacryl 300 size exclusion column chromatography of the B2 receptor. The partially purified and the crude solubilised B2 BK receptor from rat uterus showed similar affinities for BK and the BK analogues iodo-Tyr0-BK, D-Phe7-BK, and des-Arg9-BK, indicating that the ligand binding specificity of the receptor had been retained during the purification procedures. The biochemical properties of the solubilised B2 BK receptor correspond to those of a hydrophobic acidic glycoprotein (isoelectric focusing gave a value of 4.5–4.7) that binds specifically to wheat germ agglutinin but has no affinity for either concanavalin A or lentil lectin, suggesting the absence of terminal mannose or glucose residues.  相似文献   

13.
Abstract: To expand on the nature of regional cerebral vulnerability to ischemia, the release of dopamine (DA) and dopaminergic (D1 and D2) receptors were investigated in Mongolian gerbils subjected to bilateral carotid artery occlusion (15 min) alone or with reflow (1–2 h). Extracellular cortical and striatal content of DA and its metabolites was measured by microdialysis using HPLC with electrochemical detection. The kinetic properties of D1 and/or D2 receptor binding sites were determined in cortical and striatal membranes with the use of radiolabeled ligands (125I-SCH23982 and [3H]YM-09151-2, respectively). The ischemic release of DA from the striatum was greater (400-fold over preischemic level) than that from the cortex (12-fold over preischemic content). The affinity for the D1-receptor ligand was lower ( K D= 1.248 ± 0.047 n M ) after ischemia than that for sham controls ( K D= 0.928 ± 0.032 n M, p < 0.001). The number of binding sites for D2 receptors decreased in striatum ( B max= 428 ± 18.4 fmol/mg of protein) after ischemia compared with sham controls ( B max= 510 ± 25.2 fmol/mg of protein, p < 0.05). D1 or D2 binding sites were not changed either in the ischemic cortex or postischemic striatum and cortex. The findings strongly suggest that the ischemic release of DA from striatum is associated with early transient changes in D1- and D2-mediated DA neurotransmission.  相似文献   

14.
Abstract: 125I-α-Bungarotoxin (α-BGT) was used to characterize the binding sites for cholinergic ligands in lobster walking leg nerve membranes. The toxin binding component has been visualized histochemically on the external surfaces of intact axons and isolated axonal membrane fragments. Binding of α-BGT to nerve membrane preparations was demonstrated to be saturable and highly reversible ( K Dapp± 1.7 ± 0.32 × 10-7 M; B max± 249 ± 46 pmol/mg protein) at pH 7.8, 10 mM-Tris buffer. Binding showed a marked sensitivity to ionic strength that was attributable to the competitive effects of inorganic cations (particularly Ca2+ and Mg2+) in the medium. 125I-α-BGT binding could be inhibited by cholinergic drugs (atropine ≅ d -tubocurarine > nicotine > carbamylcholine ≅ choline) and local anesthetics (procaine > tetracaine = lidocaine), but was unaffected by other neuroactive compounds tested (e.g., tetrodotoxin, 4-aminopyridine, quinuclidinyl benzilate, octopamine, bicuculline, haloperidol, ouabain). The pharmacological sensitivity of toxin binding resembles that of nicotine binding to axonal membranes, but differs significantly from nicotinic cholinergic receptors described in neuromuscular junctions, fish electric organs, sympathetic ganglia, and the CNS. The possible physiological relevance of the axonal cholinergic binding component and its relationship to α-BGT binding sites in other tissues are discussed.  相似文献   

15.
Abstract: Arg0-Met5-enkephalin (Arg0-MEK) was isolated from bovine striatum and purified to homogeneity. The peptide was extracted with trichloroacetic acid, followed by column chromatography successively on Bio-Sil C8, semipreparative HPLC Radial-Pak C18, fast protein liquid chromatography (FPLC) Mono S, HPLC Ultrasphere-ODS, Supelco C18, Lichromsorb C18, and μBondapak C18. The peptide content was followed by radioimmunoassay with an antibody against synthetic Met-enkephalin. For each of the six HPLC and FPLC systems, the elution time of the immunoreactive fractions coincided exactly with that of synthetic Arg0-MEK. The purified peptide showed a highly homogeneous profile in three different analytical HPLC systems. Its retention time and three-dimensional UV spectrum were identical to those of the synthetic Arg0-MEK. The structure of the purified material was identified by microsequencing as the hexapeptide Arg-Tyr-Gly-Gly-Phe-Met. Ninety percent of the purified peptide was in oxidized form containing equimolar amounts of Met-( R )- and Met-( S )-sulfoxide. The reduced Arg0-MEK inhibited aminoenkephalinase with a K i of 2.2 µ M , and its sulfoxide analogue inhibited it with a K i of 8.9 µ M . The reduced or oxidized peptide suppressed the electrically induced contraction of rat vas deferens with an ED50 of 5 µ M , and the effect could be reversed by equimolar naloxone. Our data indicate that Arg0-MEK is an immediate Met-enkephalin precursor and an endogenous inhibitor.  相似文献   

16.
A purification procedure is presented which differs in three respects from other procedures for the purification of plant plasma membrane H+-pumping ATPase (EC 3.6.1.35) from various plants. Soybean ( Glycine max L. cv. Williams) hypocotyls were homogenized in the presence of physiological ionic strength and plasma membrane vesicles were purified by aqueous polymer two-phase partitioning. Plasma membrane vesicles were then solubilized in one step by using non-ionic detergent (either Triton X-100 or C12E8). The Mg-ATPase was separated by ion exchange chromatography from other solubilized membrane proteins. ATPase molecules bound to phosphocellulose fibers were eluted by a 0–1 M gradient of NaCl. The NaCl-eluted fractions contained a Mg-ATPase which showed the characteristics of Mg-ATPase present in the plasma membranes. The specific activity of the partially purified enzyme was 2–5 μmol mg−1 min−1 when it was reconstituted into proteoliposomes. This value is in good agreement with data obtained by other purification methods in the literature.  相似文献   

17.
Dry weight (DW) and nitrogen (N) accumulation and allocation were measured in isolated plants of Danthonia richardsonii (Wallaby Grass) for 37 d following seed imbibition. Plants were grown at ≈ 365 or 735 μ L L–1 CO2 with N supply of 0·05, 0·2 or 0·5 mg N plant–1 d–1. Elevated CO2 increased DW accumulation by 28% (low-N) to 103% (high-N), following an initial stimulation of relative growth rate. Net assimilation rate and leaf nitrogen productivity were increased by elevated CO2, while N concentration was reduced. N uptake per unit root surface area was unaffected by CO2 enrichment. The ratio of leaf area to root surface area was decreased by CO2 enrichment. Allometric analysis revealed a decrease in the shoot-N to root-N ratio at elevated CO2, while the shoot-DW to root-DW ratio was unchanged. Allometric analysis showed leaf area was reduced, while root surface area was unchanged by elevated CO2, indicating a down-regulation of total plant capacity for carbon gain rather than a stimulation of mineral nutrient acquisition capacity. Overall, growth in elevated CO2 resulted in changes in plant morphology and nitrogen use, other than those associated simply with changing plant size and non-structural carbohydrate content.  相似文献   

18.
The effects of copper (CuCl2) on active and passive Rb+(86Rb+) influx in roots of winter wheat grown in water culture for 1 week were studied. External copper concentrations in the range of 10–500 μ M in the uptake nutrient solution reduced active Rb+ influx by 20–70%, while passive influx was unaffected (ca 10% of the Rb+ influx in the Cu-free solution). At external Rb+ concentrations of up to 1 m M , Cu exposure (50 μ M decreased Vmax to less than half and increased Km to twice the value of the control. Short Cu exposure reduced the K+ concentration in roots of low K+ status. Pretreatment for 5 min in 50 μ M CuCl2 prior to uptake experiments reduced Rb+ influx by 26%. After 60 min pretreatment with Cu, the corresponding reduction was 63%. Cu in the cultivation solution impeded growth, especially of the roots. The Cu concentration in the roots increased linearly with external Cu concentration (0–100 μ M ) while Cu concentration in the shoots was relatively unchanged. The K+ concentration in both roots and shoots decreased significantly with increased Cu in the cultivation solutions. Possible effects of Cu on membranes and ion transport mechanisms are discussed.  相似文献   

19.
Abstract: The peptide neurotransmitter Phe-Met-Arg-PheNH2 (FMRFamide) increases outward K+ currents and promotes dephosphorylation of many phosphoproteins in Aplysia sensory neurons. We examined FMRFamide-induced current responses in sensory neurons injected with thiophosphorylated protein phosphate inhibitor-1 and inhibitor-2 (I-1 and I-2), two structurally different vertebrate protein phosphatase-1 (PP1) inhibitors to define a role for PP1 in the physiological actions of FMRFamide. Thiophosphorylated I-1 and I-2 both reduced the amplitude of outward currents elicited by FMRFamide by 50–60% and were as effective as microcystin-LR, which inhibited both PP1 and protein phosphatase-2A in Aplysia neuronal extracts. These data suggested that of the two major neuronal protein serine/threonine phosphatases, FMRFamide utilized primarily PP1 to open serotonin-sensitive K+ (S-K+) channels. Earlier studies showed that a membrane-associated phosphatase regulated S-K+ channels in cell-free patches from sensory neurons. Utilizing its unique substrate specificity and inhibitor sensitivity, we have characterized PP1 as the principal protein phosphatase associated with neuronal plasma membranes. Two protein phosphatase activities (apparent Mr values of 170,000 and 38,000) extracted from crude membrane preparations from the Aplysia nervous system were shown to be isoforms of PP1. These biochemical and physiological studies suggest that PP1 is preferentially associated with neuronal membranes and that its activity may be required for the induction of outward K+ currents in the Aplysia sensory neurons by FMRFamide.  相似文献   

20.
Membrane lipids and steady-state CO2 fixation rates were studied in moss protonemata in order to evaluate separately the effects of growth temperature, freezing stress and the achievement of frost hardiness. Protonemata of Ceratodon purpureus (Hedw.) Brid, were grown at 20 and 4°C and parts of both materials were then hardened. The low growth temperature increased the content and unsaturation level of membrane lipids significantly. This did not, however, cause a noticeable increase in the frost hardiness. Nor was the achievement of frost hardiness in this material accompanied by further changes in the amount or unsaturtion level of any membrane lipid class. Cytoplasmic membranes were abundant in both unhardened and hardened materials grown at 4°C, which agreed with the high phospholipid content of these protonemata. The only significant difference in membrane lipids between unhardened and hardened materials was a 50% lower level of trans 16:1 fatty acid in the phosphatidylglycerol fraction of hardened protonemata.
In hardened protonemata monogalactosyldiacylglycerol (MGDG) was the membrane lipid most liable to decrease during the freeze-thaw cycle. The loss of MGDG was accompanied by partial inhibition of CO2 fixation. Provided the content of phospholipids remained unchanged (freeze-thaw cycle with – 10°C in hardened protonemata), this inhibition was mostly reversible. If loss of the phospholipids also had occurred during the freeze-thaw cycle, as was the case in unhardened material at or below -10°C, CO2 fixation was severely and nearly irreversibly inhibited after thawing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号