首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
In connection with our discovery of the adenylyl cyclase signaling mechanism (ACSM) of action of some peptides belonging to the insulin superfamily, a possibility of its involvement in action of another insulin superfamily peptide, relaxin, was studied. It was shown for the first time that human relaxin-2 (10–12–10–8 M) activated adenylyl cyclase (AC) in a dose-dependent manner. The maximal peptide effect was revealed at a concentration of 10–8 M. Under condition of the hormonal action the basal enzyme activity increased by +310% in human myometrium, by +117%, in rat skeletal muscles, and by +49%, in foot smooth muscles of the bivalve mollusc Anodonta cygnea. Insulin and mammalian insulin-like growth factor-I (IGF-I) also produced the AC activating effect in these muscles. The order of efficiency of these peptides, based on their ability to induce the maximal AC stimulating effect, was as follows: relaxin > IGF-I > insulin (human myometrium); IGF-I > relaxin > insulin (rat skeletal muscle); insulin-like peptide of Anodonta (ILPA) > IGF-I > insulin > relaxin (molluscan muscle). The relaxin activating effect on AC was potentiated by a guanine nucleotide, the non-hydrolyzed analog of GTP, guanylylimidodiphosphate (Gpp[NH]p), which indicates participation of Gs-protein in realization of this effect. This effect was inhibited by a tyrosine kinase selective blocker, tyrphostin 47, and a phosphatidylinositol-3-kinase (PI-3-K) selective blocker, wortmannin. Thus, for the first time, participation of ACSM in the relaxin action has been established. This mechanism, as suggested at the present time state of its study, includes the following signal pathway: receptor-tyrosine kinase PI-3-K Gs-protein AC.  相似文献   

2.
The adenylyl cyclase signaling mechanism (ACSM) of relaxin H2 action was discovered and deciphered in mammalian muscles. A study of signaling blocks involved in ACSM of relaxin in comparison with that of insulin previously detected showed a close similarity throughout the post-receptor signaling chain of both hormones. The inhibitory action of tyrosine kinase blockers on the hormone AC activating effect indicates that the relaxin receptor involved in ACSM is likely to be of the tyrosine kinase type. However, a recent discovery of a relaxin receptor with serpentine architecture leaves open the question concerning the existence of receptor of the tyrosine kinase type. The structural-functional organization of the ACSM due to the action of relaxin-shown here for the first time-can be presented as the following signaling sequence: relaxin receptor ==>G(i) protein (betagamma-dimer) ==>phosphatidylinositol 3-kinase ==>protein kinase Czeta ==>G(s) protein ==>adenylyl cyclase. According to our hypothesis, the regulatory action of the insulin superfamily peptides on cell processes (proliferation, apoptosis, and metabolism) is mediated via ACSM.  相似文献   

3.
A new signaling mechanism common to mammalian insulin, insulin-like growth factor I, relaxin and mollusc insulin-like peptide, and involving receptor-tyrosine kinase==>G(i) protein (betagamma)==>phosphatidylinositol-3-kinase==>protein kinase Czeta==>adenylyl cyclase==>protein kinase A was discovered in the muscles and some other tissues of vertebrates and invertebrates. The authors' data were used to reconsider the problem of participation of the adenylyl cyclase-cAMP system in the regulatory effects of insulin superfamily peptides. A hypothesis has been put forward according to which the adenylyl cyclase signaling mechanism producing cAMP has a triple co-ordinating role in the regulatory action of insulin superfamily peptides on the main cell processes, inducing the mitogenic and antiapoptotic effects and inhibitory influence on some metabolic effects of the peptides. It is suggested that cAMP is a key regulator responsible for choosing the transduction pathway by concerted launching of one (proliferative) program and switching off (suppression) of two others, which lead to cell death and to the predomination of anabolic processes in a cell. The original data obtained give grounds to conclude that the adenylyl cyclase signaling system is a mechanism of signal transduction not only of hormones with serpentine receptors, but also of those with receptors of the tyrosine kinase type (insulin superfamily peptides and some growth factors).  相似文献   

4.
Participation of adenylyl cyclase signaling mechanisms of relaxin and insulin action in their regulating influence on the process of relaxation of the rat uterine and tracheal smooth muscles and human myometrium was shown. The study was based on the discovery of novel adenylyl cyclase signaling mechanisms of relaxin and insulin action in the muscle of vertebrates which involve: receptor --> Gi protein (betagamma dimer) --> phosphatidylinositol-3-kinase --> protein kinase Csigma (zeta) --> Gs protein --> adenylyl cyclase --> cAMP. In the rat uterus, trachea and human myometrium, relaxin, insulin and isoproterenol induced relaxation of KCl-contraction. The order of efficiency of the agents based upon their ability to induce the inhibiting effect on the KCl-contraction was as follows: relaxin = insulin > isoproterenol. The hormones induce activating effect on adenylyl cyclase leading to production of cAMP in the rat uterine and tracheal smooth muscles and human myometrium. It is shown that cAMP reproduces relaxing effect of the hormones under study. Thus, the involvement of novel adenylyl cyclase signaling mechanisms of relaxin and insulin action in realization of their relaxation effect on rat uterus, trachea and human myometrium was revealed for the first time.  相似文献   

5.
The regulatory effect of peptides of the insulin hyperfamily--insulin, insulin-like growth factor (IGF-1), and relaxin, as well as of epidermal growth factor (EGF) on activity of glycogen synthase (GS) in rat skeletal muscles was studied in norm and in experimental diabetes mellitus of the 1st and 2nd types (DM1, DM2). In norm, peptides in vitro stimulated maximally the GS activity at a concentration of 10-8 M. The row of efficiency of the peptide action was as follows: insulin > IGF-1 > relaxin. In DM1 the basal GS activity did not change, while effect of insulin in vitro was decreased more sharply as compared with action of IGF-1 and relaxin at the 30th day of development of diabetes, i. e., the efficiency row was as follows: IGF-1 = relaxin > insulin. Administration of insulin in vivo did not restore sensitivity of the enzyme to the action of hormone in DM1. In DM2, the GS activity (both the total and active form) decreased. while the stimulatory effect ofpeptides and EGF on the enzyme was absent. Insulin introduced in vitro did not lead to restoration of the enzyme reaction. The conclusion has been made that the insulin resistance affects the basal GS activity in rat skeletal muscles as well as the regulation of the enzyme by peptides of the insulin nature and by EGF, which is more obvious in DM2, than in DM1.  相似文献   

6.
The regulatory effects of insulin, insulin-like growth factor 1 (IGF-1), and relaxin on glucose-6-phosphate dehydrogenase (G6PDH) and glycogen synthase (GS) activities have been studied in myometrium of pregnant women of control group and with diabetes mellitus of different etiology. In patients with type 1 diabetes G6PDH activity did not differ from the control group, but the enzyme activity was sharply decreased in pregnant women with type 2 diabetes and gestational diabetes. In the control group maximal stimulation of G6PDH activity was observed at 10?9 M of peptides and their stimulating effect decreased in the following order: insulin > relaxin > IGF-1. In pregnant women with types 1 diabetes insulin effect on the enzyme activity was lower than in the control, and the effects of IGF-1 and relaxin were absent. In the group of pregnant women with type 2 diabetes and gestational diabetes the effects of insulin and IGF-1 were decreased, but the effect of relaxin was somewhat higher thus giving the following order in their efficiency relaxin > IGF-1 = insulin. At 10?9 M peptides exhibited similar stimulating effects on the active form of GS-I, but had no influence on the total enzyme activity in the control group of pregnant women. In patients with type 1 diabetes GS activity remained unchanged (versus control), and peptides did not stimulate the enzyme activity. In patients with type 2 diabetes a significant decrease in GS activity was accompanied by the decrease in the effect of peptides, giving the following order of their efficiency: insulin = IGF-1 > relaxin. In myometrium of pregnant women with gestational (treated and untreated) diabetes GS activity decreased, the effect of insulin was weaker, whereas the effects of relaxin and IGF-1 increased thus giving the following order of their efficiency: relaxin > IGF-1 > insulin. Insulin therapy of type 1 diabetes incompletely restored sensitivity of the enzymes to the peptide actions. At the same time, in women with gestational diabetes and subjected to insulin therapy the stimulating effect of relaxin on the enzyme activities increased. This fact suggests that relaxin exhibits replacement functions under conditions of attenuated insulin action.  相似文献   

7.
The regulatory effect of peptides of the insulin superfamily—insulin, insulin-like growth factor (IGF-1), and relaxin, as well as of epidermal growth factor (EGF) on activity of glycogen synthase (GS) in rat skeletal muscles was studied in normal state and in experimental diabetes mellitus types 1 and 2 (DM1, DM2). Normally, the peptides stimulated GS activity to the maximum at a concentration of 10−8 M in vitro. The efficiency ranking of the peptide action was as follows: insulin > IGF-1 > relaxin. In DM1 the basal GS activity did not change, while the effect of insulin in vitro decreased more sharply on the 30th day of diabetes as compared to IGF-1 and relaxin, i.e. the efficiency ranking was as follows: IGF-1 = relaxin > insulin. Administration of insulin in vivo did not recover the sensitivity of the enzyme to the action of the hormone in DM1. In DM2, GS activity (both in total and in the active form) decreased while the stimulatory effect of the peptides and EGF on the enzyme was absent. Insulin administered in vivo did not lead to the recovery of the enzyme activity. We conclude that it is insulin resistance pronounced in DM2 that mostly affects the basal GS activity as well as the enzyme regulation by peptides of insulin type and EGF in rat skeletal muscles, while insulin deficiency in DM1 is of lesser importance.  相似文献   

8.
Based on the earlier discovered by the authors adenylyl cyclase signaling mechanisms (ACSM) of action of insulin and relaxin, a study was performed of the existence of a similar action mechanism of another representative of the insulin superfamily-the insulin—like growth factor 1 (IGF-1) in the muscle tissue of vertebrates (rat) and invertebrates (mollusc). For the first time there was detected participation of ACSM in the IGF-1 action, including the six-component signaling cascade: receptor tyrosine kinase → Gi-protein (βγ-dimer) → phosphatidylinositol-3-kinase (PI-3K) → protein kinase Cζ (PKCζ) → Gs-protein → adenylyl cyclase. By structural-functional organization at postreceptor stages, it coincides completely with that of insulin and relaxin, which we revealed in rat skeletal muscle. In smooth muscle of the mollusc Anodonta cygnea this ACSM of action of IGF-1 has only one difference-the protein kinase C included in this mechanism is represented not by the PKCζ isoform, but by another isoform close to PKCε of the vertebrate brain. Earlier we revealed the same differences in muscles of this mollusc in the ACSM of action of insulin and relaxin.  相似文献   

9.
Based on the earlier discovered by the authors adenylyl cyclase signaling mechanisms (ACSM) of action of insulin and relaxin, the study was performed of the presence a similar action mechanism of another representative of the insulin superfamily--the insulin-like growth factor 1 (IGF-1) in the muscle tissues of vertebrates (rat) and invertebrates (mollusc). For the first time there was detected participation of ACSM in the IGF-1 action, including the six component signaling cascade: receptor tyrosine kinase --> G(i)-protein (betagamma-dimer) --> phosphatidylinositol-3-kinase (PI-3-K) --> protein kinase Czeta (PKCzeta) --> G(-)protein --> adenylyl cyclase. By this mechanism structural-functional organization at postreceptor stages, in coincides completely with the mechanism of insulin and relaxin, which we revealed in rat skeletal muscle. In smooth muscle of the mollusc Anodonta cygnea this ACSM of action of IGF-1 has only one difference--the protein kinase C included in this mechanism is represented not by PKCzeta isoform, but by another isoform close to PKCepsilon of the vertabrate brain. Earlier we revealed the same differences in muscle of this mollusc in the ACSM of action of insulin and relaxin.  相似文献   

10.
The peptide hormone relaxin in dose-dependent manner stimulates adenylyl cyclase activity in the rat tissues (brain striatum, heart and skeletal muscles) and the muscle tissues of invertebrates--bivalve mollusk Anodonta cygnea and earthworm Lumbricus terrestris. Adenylyl cyclase stimulating effect of the hormone is most expressed in striatum and heart muscles of rats. For identification of the type ofrelaxin receptors, participating in the realization of this effect of the hormone, the peptides 619-629, 619-629-Lys(Palm) and 615-629 derived from the primary structure of C-terminal region of the third intracellular loop of the relaxin receptor of type 1 (LGR7), were synthesized by us for the first time. It is shown that peptide: 619-629-Lys(Palm) and 615-629 in competitive manner inhibit the stimulation of the adenylyl cyclase by relaxin in brain striatum and heart muscle of rats. At the same time, these peptides do not change stimulating effect of the hormone in the skeletal muscles of rat and in the muscles of invertebrates. Thus, the peptide action on adenylyl cyclase effect of relaxin is tissue- and species-specific. These data, on the one hand, demonstrate participation of receptor LGR7 in realization of adenylyl cyclase stimulating effect of relaxin in striatum and heart muscle of rats and, on the other, give evidence for existence of another adenylyl cyclase signaling mechanisms of relaxin action in the skeletal muscles and the muscle of invertebrates, which do not involve LGR7 receptor. The adenylyl cyclase stimulating effect of relaxin in striatum and heart muscle was decreased in the presence of C-terminal peptides 385-394 of alpha(s)-subunit of mammalian G protein and was blocked by treatment of the membranes with cholera toxin. On the basis of data obtained the following conclusions were made: (i) in striatum and heart muscle the relaxin stimulates adenylyl cyclase through LGR7 receptors functionally coupled with Gs protein, and (ii) the coupling between hormoneactivated relaxin receptor LGR7 and Gs protein is realized via the interaction of C-terminal part of receptor third intracellular loop and C-terminal segment of Gs protein alpha-subunit.  相似文献   

11.
Insulin-like growth factor types 1 and 2 (IGF-1; IGF-2) and insulin-like peptides are all members of the insulin superfamily of peptide hormones but bind to several distinct classes of membrane receptor. Like the insulin receptor, the IGF-1 receptor is a heterotetrameric receptor tyrosine kinase, whereas the IGF-2/ mannose 6-phosphate receptor is a single transmembrane domain protein that is thought to function primarily as clearance receptors. We recently reported that IGF-1 and IGF-2 stimulate the ERK1/2 cascade by triggering sphingosine kinase-dependent "transactivation" of G protein-coupled sphingosine-1-phosphate receptors. To determine which IGF receptors mediate this effect, we tested seven insulin family peptides, IGF-1, IGF-2, insulin, and insulin-like peptides 3, 4, 6, and 7, for the ability to activate ERK1/2 in HEK293 cells. Only IGF-1 and IGF-2 potently activated ERK1/2. Although IGF-2 was predictably less potent than IGF-1 in activating the IGF-1 receptor, they were equipotent stimulators of ERK1/2. Knockdown of IGF-1 receptor expression by RNA interference reduced the IGF-1 response to a greater extent than the IGF-2 response, suggesting that IGF-2 did not signal exclusively via the IGF-1 receptor. In contrast, IGF-2 receptor knockdown markedly reduced IGF-2-stimulated ERK1/2 phosphorylation, with no effect on the IGF-1 response. As observed previously, both the IGF-1 and the IGF-2 responses were sensitive to pertussis toxin and the sphingosine kinase inhibitor, dimethylsphingosine. These data indicate that endogenous IGF-1 and IGF-2 receptors can independently initiate ERK1/2 signaling and point to a potential physiologic role for IGF-2 receptors in the cellular response to IGF-2.  相似文献   

12.
Possibility of the appearance of functional defects in the adenylyl cyclase (AC) signaling mechanism (ACSM) of insulin action, which was discovered by the authors earlier [1–3], is studied in skeletal muscles of rats with acute insulin insufficiency produced by streptozotocin diabetes (24 h). This ACSM includes the signaling chain: receptor-tyrosine kinase Gi-protein phosphatidylinositol 3-kinase protein kinase C-zeta Gs-protein adenylyl cyclase protein kinase A. At comparative evaluation of the functional state of individual molecular blocks of ACSM and the entire mechanism as a whole in skeletal muscles of diabetic rats in comparison with control animals, the following facts have been revealed: (1) an increase of the AC basal activity and a decrease of effects of non-hormonal activators of AC (guanine nucleotides, NaF, forskolin) ; (2) reduction of reactivity of the whole ACSM to insulin (10–8 M, in vitro) and to combined action of the hormone and GIDP (10–6 M) ; (3) a decrease of the activating action of insulin on key enzymes of carbohydrate metabolism—glycogen synthase and glucose-6-phosphate dehydrogenase (G6PDG). It is concluded that insulin insufficiency leads to several disturbances in the insulin ACSM: at the level of its catalytic component—AC, Gs protein and its coupling with AC, as well as to a decrease of regulatory metabolic effects of the hormone. These data indicate a decrease of sensitivity of skeletal muscles of diabetic rats to insulin and an involvement of this hormone in maintenance of functionally active status of the ACSM of insulin signal transduction.  相似文献   

13.
In terms of development of evolutionary biomedicine using invertebrate animals as models for study of molecular grounds of various human diseases, for the first time the streptozocin (ST) model of insulin-dependent diabetes in the mollusc Anodonta cygnea has been developed. This model is based on the following authors' data: (1) redetection of insulin-related peptides (IRP) in mollusk tissues: (2) discovery of the adenylyl cyclase signal mechanism (ACSM) of action of insulin and other peptides of the insulin superfamily in tissues of mammals, human, and mollusc. A. cygnea; (3) concept of molecular defects in hormonal signal systems as causes of endocrine diseases. Studies on the ST model have revealed in mollusc smooth muscle on the background of hyperglycemia at the 2nd, 4th, and 8th day after the ST administration a decrease of the ACSM response to activating action of insulin, IGF-1, and relaxin. These functional disturbances were the most pronounced at the 2nd day of development and rather less marked at the 4th and 8th day. Analysis of data on effect of hormonal and non-hormonal (NaF, GIDP, and forskolin) ACSM activators has shown that the causes of impair of signal-transducing function of this mechanism are (1) a hyperglycemia-induced increase of the basal AC activity and as a consequence--a decrease of the enzyme catalytic potentials in response to hormone; (2) a decrease of functions of Gs-protein and of its coupling with AC. Besides, administration of ST produced in the mollusc muscles an attenuation of regulation by insulin of carbohydrate metabolism enzyme (glucose-6-phosphate dehydrogenase, glycogensynthase). The pattern of disturbances in the studied parameters in the mollusc is very similar to that revealed by the authors in rat and human muscle tissues in type 1 diabetes.  相似文献   

14.
Functional disturbance in the novel adenylyl cyclase signaling mechanism (ACSM) of insulin and relaxin action in rat streptozotocin (STZ) type I diabetes was studied on the basis of the authors’ conception of molecular defects in hormonal signaling systems as the main causes of endocrine diseases. Studying the functional state of molecular components of the ACSM and the mechanism as a whole, the following changes were found in the skeletal muscles of diabetic rats compared with control animals: 1) increase of insulin receptor binding due to an increase in the number of insulin binding sites with high and low affinity; 2) increase of the basal adenylyl cyclase (AC) activity and the reduction of AC-activating effect of non-hormonal agents (guanine nucleotides, sodium fluoride, forskolin); 3) reduction of ACSM response to stimulatory action of insulin and relaxin; 4) decrease of the insulin-activating effect on the key enzymes of carbohydrate metabolism, glycogen synthase and glucose-6-phosphate dehydrogenase. Hence, the functional activity of GTP-binding protein of stimulatory type, AC and their functional coupling are decreased during experimental type 1 diabetes that leads to the impairment of the transduction of insulin and relaxin signals via ACSM.  相似文献   

15.
In terms of development of evolutionary biomedicine using invertebrate animals as models for study of molecular grounds of various human diseases, for the first time the streptozotocin (ST) model of insulin-dependent diabetes in the mollusc Anodonta cygnea has been developed. This model is based on the following authors’ data: (1) redetection of insulin-related peptides (IRP) in mollusc tissues: (2) discovery of the adenylyl cyclase signal mechanism (ACSM) of action of insulin and other peptides of the insulin superfamily in tissues of mammals, human, and mollusc A. cygnea; (3) concept of molecular defects in hormonal signal systems as causes of endocrine diseases. Studies on the ST model have revealed in mollusc smooth muscle on the background of hyperglycemia at the 2nd, 4th, and 8th day after the ST administration a decrease of the ACSM response to activating action of insulin, IGF-1, and relaxin. These functional disturbances were the most pronounced at the 2nd day of development and rather less marked at the 4th and 8th day. Analysis of data on effect of hormonal and non-hormonal (NaF, GIDP, and forskolin) ACSM activators has shown that the causes of impair of signal-transducing function of this mechanism are (1) a hyperglycemia-induced increase of the basal AC activity and as a consequence—a decrease of the enzyme catalytic potentials in response to hormone; (2) a decrease of functions of Gs-protein and of its coupling with AC. Besides, administration of ST produced in the mollusc muscle an attenuation of regulation by insulin of carbohydrate metabolism enzyme (glucose-6-phosphate dehydrogenase, glycogensynthase). The pattern of disturbances in the studied parameters in the mollusc is very similar to that revealed by the authors in rat and human muscle tissues in type 1 diabetes.  相似文献   

16.
Involvement of the adenylyl cyclase signaling system in the mechanism of action of the mammalian insulin and epidermal growth factor as well as of insulin-like peptide isolated from the bivalve mollusk Anodonta cygnea has been studied. It was shown for the first time that insulin and insulin-like peptide exert in vitro the GTP-dependent stimulating action on the adenylyl cyclase activity. Epidermal growth factor has an analogous effect. Effectiveness of the peptides decreased in the order insulin-like peptide > epidermal growth factor > insulin in the foot smooth muscles of A. cygnea and insulin > epidermal growth factor > insulin-like peptide in the skeletal muscles of rat.  相似文献   

17.
Protein-tyrosine phosphatases and the regulation of insulin action.   总被引:3,自引:0,他引:3  
Protein-tyrosine phosphatases (PTPases) play an important role in the regulation of insulin action by dephosphorylating the active (autophosphorylated) form of the insulin receptor and attenuating its tyrosine kinase activity. PTPases can also modulate post-receptor signalling by catalyzing the dephosphorylation of cellular substrates of the insulin receptor kinase. Dramatic advances have recently been made in our understanding of PTPases as an extensive family of transmembrane and intracellular proteins that are involved in a number of pathways of cellular signal transduction. Identification of the PTPase(s) which act on various components of the insulin action cascade will not only enhance our understanding of insulin signalling but will also clarify the potential involvement of PTPases in the pathophysiology of insulin-resistant disease states. This brief review provides a summary of reversible tyrosine phosphorylation events in insulin action and available data on candidate PTPases in liver and skeletal muscle that may be involved in the regulation of insulin action.  相似文献   

18.
胰岛素受体家族的结构与功能研究   总被引:2,自引:0,他引:2  
胰岛素(insulin)与胰岛素样生长因子-1(IGF-1)分别是由胰岛β细胞和肝细胞分泌的 多肽类激素.它们通过结合并激活位于细胞膜上的受体酪氨酸激酶(RTKs),发挥重要的生理作用. 作为起始信号传导的第一步,胰岛素与IGF-1是如何与各自受体的膜外区域(ectodomain) 结合并进一步激活受体的细胞膜内酪氨酸激酶活性一直属于科学研究的关键基础问题.本文 概述了胰岛素受体家族(IR和IGF-1R)及其配体的结构与功能的特点和关系,并重点介绍 了近年来国内外在胰岛素受体家族复合体结构和功能上的研究手段和取得的突破性进展.  相似文献   

19.
20.
In the smooth muscles of mollusc Anodonta cygnea the regulatory action of hormones on adenylyl cyclase signaling system (ACSS) are realized through the receptors of serpentine type (biogenic amines, isoproterenol, glucagon) and receptor tyrosine kinase (insulin) type. Intracellular mechanisms of their interaction are interconnected. Application of hormones, their antagonists and pertussis toxin in combination with insulin and biogenic amines or glucagon on adenylyl cyclase (AC) activity allows revealing the possible sites of cross-linking in the mechanisms of their action. Combined influence of insulin and serotonin or glucagon leads to decreased stimulation of adenylyl cyclase (AC) by these hormones, whereas combined application of insulin and isoproterenol suppresses AC-stimulating effect of insulin, but AC-inhibiting effect of isoproterenol is maintained in the presence and absence of non-hydrolysable analog of GTP—guanylyl imido diphosphate (GIDP). The specific blockage of AC-stimulating effect of serotonin by cyproheptadine—antagonist of serotonin receptors, did not change AC stimulation by insulin. Beta-adrenoblockers (propranolol and alprenolol) prevent inhibition of AC activity by isoproterenol, but did not change AC stimulation by insulin. Pertussis toxin blocked AC-inhibiting effect of isoproterenol and weakened AC-stimulating action of insulin. Thus, in the muscles of Anodonta cygnea negative interaction between ACS have been revealed, which are realized under combined influence of insulin and serotonin or glucagon, most probably, at the level of receptor of serpentine type (serotonin, glucagon), whereas under action of insulin and isoproterenol at the level of Gi protein and AC interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号