首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Circadian Rhythmicity is present in the sleeping and breeding patterns of animals, including human beings and also related with brain wave activity, hormone production, cell regeneration and other biological activities. Melatonin is thought to play important roles in regulating circadian rhytmicity of the animals. Arylalkylamine-N-acetyltransferase (AANAT) is an enzyme which is responsible for the melatonin metabolism. In this study AANAT enzyme is targeted for the control of sleeping sickness and other irregular circadian rhythmicity by regulating the melatonin formation. AANAT protein 3D-structure was modeled, followed by loop modeling, refinement through energy minimization processes by molecular dynamics simulation and validation. Analysis of the Ramachandran plot shows 90.9% amino acids falls in the allowed region. The modeled protein was docked with N-Acetyl Serotonin. Combinatorial library was generated by using N-Acetyl Serotonin as a reference molecule and molecules having 80% similarity to N-Acetyl Serotonin was selected from Zinc database. These molecules were virtually screened by MOLEGRO virtual docker and top 5 molecules were selected and docked by using AutoDock. The AutoDock result shows that the ZINC01587152 molecule is having best interactions with the receptor protein. On the basis of this study we can suggest that the ZINC01587152 molecule is the best ligand against AANAT enzyme. It may be further synthesized and tested for sleep related disorders.  相似文献   

3.
The chick pineal organ is recognized to contain an endogenous circadian oscillator as well as having direct photic input pathways and the capability of synthesizing melatonin. Despite its interesting circadian cell biology, far less is known about the chick pineal as compared to mammalian pineal glands. The goals of our research were to identify and characterize novel components of the circadian system in this photoneuroendocrine organ. Using a subtractive screening strategy of a nocturnal chick pineal cDNA library, we identified numerous genes whose expression in the chick pineal has never been reported. Among these, we focused our attention on a homologue to the regulatory subunit of the mammalian serine/threonine protein phosphatase (STPP) 2A. The expression of this gene in the chick pineal is highly circadian both in vivo and in vitro. Analysis of the PP2A enzyme in this tissue revealed that it is predominantly cytosolic in localization, sensitive to classical PP2A inhibitors, and far more active during the subjective night. Interestingly, the acute pharmacological inhibition of PP2A leads to elevated phosphoCREB levels and concomitant melatonin secretion, indicating that this enzyme participates at some level in the control of nocturnal pineal melatonin synthesis. In a second aspect of our research, we examined the mechanisms underlying the circadian rhythmicity of cyclic GMP in the chick pineal. This signaling molecule is poorly understood, despite its well‐known, high‐amplitude circadian rhythms and the presence of many cGMP‐dependent targets in this tissue. Our work has shown that although both soluble (sGC) and membrane‐bound (mGC) forms of guanylyl cyclase are present, the primary contributor to the circadian rhythms of cGMP is the mGC‐B enzyme, which is activated only by the natriuretic peptide CNP. As pharmacological blockade of mGC‐B (but not sGC) suppresses nocturnal cGMP levels, we conclude that CNP‐dependent mechanisms are involved. Hence, the circadian clock in the chick pineal appears to drive either CNP secretion or mGC‐B expression (or synthetic efficiency) in order to elevate nocturnal cGMP. Conversely, light may inhibit cGMP by uncoupling this drive. These data provide new strategies for understanding both photic input pathways (presumed to depend on cGMP) and cGMP‐dependent cellular function in the chick pineal organ.  相似文献   

4.
The chick pineal organ is recognized to contain an endogenous circadian oscillator as well as having direct photic input pathways and the capability of synthesizing melatonin. Despite its interesting circadian cell biology, far less is known about the chick pineal as compared to mammalian pineal glands. The goals of our research were to identify and characterize novel components of the circadian system in this photoneuroendocrine organ. Using a subtractive screening strategy of a nocturnal chick pineal cDNA library, we identified numerous genes whose expression in the chick pineal has never been reported. Among these, we focused our attention on a homologue to the regulatory subunit of the mammalian serine/threonine protein phosphatase (STPP) 2A. The expression of this gene in the chick pineal is highly circadian both in vivo and in vitro. Analysis of the PP2A enzyme in this tissue revealed that it is predominantly cytosolic in localization, sensitive to classical PP2A inhibitors, and far more active during the subjective night. Interestingly, the acute pharmacological inhibition of PP2A leads to elevated phosphoCREB levels and concomitant melatonin secretion, indicating that this enzyme participates at some level in the control of nocturnal pineal melatonin synthesis. In a second aspect of our research, we examined the mechanisms underlying the circadian rhythmicity of cyclic GMP in the chick pineal. This signaling molecule is poorly understood, despite its well-known, high-amplitude circadian rhythms and the presence of many cGMP-dependent targets in this tissue. Our work has shown that although both soluble (sGC) and membrane-bound (mGC) forms of guanylyl cyclase are present, the primary contributor to the circadian rhythms of cGMP is the mGC-B enzyme, which is activated only by the natriuretic peptide CNP. As pharmacological blockade of mGC-B (but not sGC) suppresses nocturnal cGMP levels, we conclude that CNP-dependent mechanisms are involved. Hence, the circadian clock in the chick pineal appears to drive either CNP secretion or mGC-B expression (or synthetic efficiency) in order to elevate nocturnal cGMP. Conversely, light may inhibit cGMP by uncoupling this drive. These data provide new strategies for understanding both photic input pathways (presumed to depend on cGMP) and cGMP-dependent cellular function in the chick pineal organ.  相似文献   

5.
The neurobiological substratum of circadian rhythmicity encompasses three levels of integration: firstly, generation of time signals by circadian pacemakers; secondly, entrainment of pacemakers by environmental influences; thirdly, coupling of circadian pacemakers among themselves and with target systems responsible for the expression of overt rhythms. From recent contributions, the notion that circadian organization results from the interaction of independent oscillators and pathways has been strengthened. In addition, recent evidence supports the existence of circadian rhythmicity in single isolated neurons. New information was produced on the gene control of circadian rhythm generation in Drosophila, as well as interesting advances in the understanding of neuronal mechanisms involved in the generation, entrainment and coupling of circadian rhythms in various species.  相似文献   

6.
7.
Overt 24-h rhythmicity is composed of both exogenous and endogenous components, reflecting the product of multiple (periodic) feedback loops with a core pacemaker at their center. Researchers attempting to reveal the endogenous circadian (near 24-h) component of rhythms commonly conduct their experiments under constant environmental conditions. However, even under constant environmental conditions, rhythmic changes in behavior, such as food intake or the sleep-wake cycle, can contribute to observed rhythmicity in many physiological and endocrine variables. Assessment of characteristics of the core circadian pacemaker and its direct contribution to rhythmicity in different variables, including rhythmicity in gene expression, may be more reliable when such periodic behaviors are eliminated or kept constant across all circadian phases. This is relevant for the assessment of the status of the circadian pacemaker in situations in which the sleep-wake cycle or food intake regimes are altered because of external conditions, such as in shift work or jet lag. It is also relevant for situations in which differences in overt rhythmicity could be due to changes in either sleep oscillatory processes or circadian rhythmicity, such as advanced or delayed sleep phase syndromes, in aging, or in particular clinical conditions. Researchers studying human circadian rhythms have developed constant routine protocols to assess the status of the circadian pacemaker in constant behavioral and environmental conditions, whereas this technique is often thought to be unnecessary in the study of animal rhythms. In this short review, the authors summarize constant routine methodology and what has been learned from constant routines and argue that animal and human circadian rhythm researchers should (continue to) use constant routines as a step on the road to getting through to central and peripheral circadian oscillators in the intact organism.  相似文献   

8.
The Neurospora circadian clock: simple or complex?   总被引:2,自引:0,他引:2  
The fungus Neurospora crassa is being used by a number of research groups as a model organism to investigate circadian (daily) rhythmicity. In this review we concentrate on recent work relating to the complexity of the circadian system in this organism. We discuss: the advantages of Neurospora as a model system for clock studies; the frequency (frq), white collar-1 and white collar-2 genes and their roles in rhythmicity; the phenomenon of rhythmicity in null frq mutants and its implications for clock mechanisms; the study of output pathways using clock-controlled genes; other rhythms in fungi; mathematical modelling of the Neurospora circadian system; and the application of new technologies to the study of Neurospora rhythmicity. We conclude that there may be many gene products involved in the clock mechanism, there may be multiple interacting oscillators comprising the clock mechanism, there may be feedback from output pathways onto the oscillator(s) and from the oscillator(s) onto input pathways, and there may be several independent clocks coexisting in one organism. Thus even a relatively simple lower eukaryote can be used to address questions about a complex, networked circadian system.  相似文献   

9.

Background

Many physiological processes in our body are controlled by the biological clock and show circadian rhythmicity. It is generally accepted that a robust rhythm is a prerequisite for optimal functioning and that a lack of rhythmicity can contribute to the pathogenesis of various diseases. Here, we tested in a heterogeneous laboratory zebrafish population whether and how variation in the rhythmicity of the biological clock is associated with the coping styles of individual animals, as assessed in a behavioural assay to reliably measure this along a continuum between proactive and reactive extremes.

Results

Using RNA sequencing on brain samples, we demonstrated a prominent difference in the expression level of genes involved in the biological clock between proactive and reactive individuals. Subsequently, we tested whether this correlation between gene expression and coping style was due to a consistent change in the level of clock gene expression or to a phase shift or to altered amplitude of the circadian rhythm of gene expression. Our data show a remarkable individual variation in amplitude of the clock gene expression rhythms, which was also reflected in the fluctuating concentrations of melatonin and cortisol, and locomotor activity. This variation in rhythmicity showed a strong correlation with the coping style of the individual, ranging from robust rhythms with large amplitudes in proactive fish to a complete absence of rhythmicity in reactive fish. The rhythmicity of the proactive fish decreased when challenged with constant light conditions whereas the rhythmicity of reactive individuals was not altered.

Conclusion

These results shed new light on the role of the biological clock by demonstrating that large variation in circadian rhythmicity of individuals may occur within populations. The observed correlation between coping style and circadian rhythmicity suggests that the level of rhythmicity forms an integral part of proactive or reactive coping styles.
  相似文献   

10.
Plasminogen activator inhibitor type 1 (PAI-1) is a major physiologic regulator of the fibrinolytic system and has recently gained recognition as a modulator of inflammation and atherosclerosis. PAI-1 exhibits circadian rhythmicity in its expression, peaking in the early morning, which is associated with increased risk for cardiovascular events. However, the mechanisms that determine PAI-1 circadian rhythmicity remain poorly understood. We discovered that the orphan nuclear receptor Rev-erb alpha, a core component of the circadian loop, represses human PAI-1 gene expression through two Rev-erb alpha binding sites in the PAI-1 promoter. Mutations of these sites, as well as RNA interference targeting endogenous Rev-erb alpha and its corepressors, led to increased expression of the PAI-1 gene. Furthermore, glycogen synthase kinase 3beta (GSK3beta) contributes to pai-1 repression by phosphorylating and stabilizing Rev-erb alpha protein, which can be blocked by lithium. Interestingly, serum shock generated circadian oscillations in PAI-1 mRNA in NIH3T3 cells, suggesting that PAI-1 is a direct output gene of the circadian loop. Ectopic expression of a stabilized form of Rev-erb alpha that mimics GSK3beta phosphorylation dramatically dampened PAI-1 circadian oscillations. Thus, our results suggest that Rev-erb alpha is a major determinant of the circadian PAI-1 expression and a potential modulator of the morning susceptibility to myocardial infarction.  相似文献   

11.
12.
In chicken retinas, melatonin levels and the activity of serotonin N-acetyltransferase (NAT), a key regulatory enzyme of melatonin biosynthesis, are expressed as circadian rhythms with peaks of levels and activity occurring at night. In the present study, NAT activity was examined in retinas of embryonic and posthatch chicks to assess the ontogenic development of regulation of the enzyme by light, circadian oscillators, and the second messenger cyclic AMP. During embryonic development, NAT activity was consistently detectable by embryonic day 6 (E6). Significant light-dark differences were first observed on E20, and increased to a maximum amplitude of sixfold by posthatch day 3 (PH3). Circadian rhythmicity of NAT activity appears to develop at or prior to hatching, as evidenced by day-night differences of activity in constant darkness observed in PH1 chicks that had been exposed to a light-dark cycle in ovo only. NAT activity is regulated by a cyclic AMP-dependent mechanism. Activity was significantly increased by incubating retinas with forskolin or dibutyryl cyclic AMP as early as E7, and seven- to ninefold increases were observed following treatment with these agents on E14. Thus, development of the cyclic AMP-dependent mechanism for increasing NAT activity significantly precedes that of rhythmicity, suggesting that the onset of rhythmicity may be related to the onset of photoreception or development of the circadian oscillator in chick retina.  相似文献   

13.
14.
The pineal gland plays a cental role in the circadian organization of birds, although it is clearly only one component in a system with other components that have not yet been positively identified. The relative importance of the pineal and other components may vary from one group of birds to another. In the most thoroughly studied species, the house sparrow, pineal removal abolishes circadian rhythmicity; rhythmicity is restored by transplantation of a donor bird's pineal and the restored rhythm has the phase of the donor. This, and other evidence, argues convincingly that the pineal is a pacemaker in the sparrow circadian system. The pineal of the chicken has circadian rhythms in several biochemical parameters that result in the rhythmic synthesis of melatonin. The activity of one enzyme in this pathway is rhythmic for at least two cycles in organ culture. In view of this result it is interesting that pineal removal does not abolish circadian rhythmicity in chickens. The fact that lesions of the suprachiasmatic nuclei abolish circadian rhythms in sparrows, several mammalian species, and perhaps Japanese quail and reptiles, suggests that vertebrate circadian organization may be based on differentially weighted interactions between the pineal, the suprachiasmatic nuclei, and perhaps other brain regions.  相似文献   

15.
Renn SC  Park JH  Rosbash M  Hall JC  Taghert PH 《Cell》1999,99(7):791-802
The mechanisms by which circadian pacemaker systems transmit timing information to control behavior are largely unknown. Here, we define two critical features of that mechanism in Drosophila. We first describe animals mutant for the pdf neuropeptide gene, which is expressed by most of the candidate pacemakers (LNv neurons). Next, we describe animals in which pdf neurons were selectively ablated. Both sets of animals produced similar behavioral phenotypes. Both sets entrained to light, but both were largely arrhythmic under constant conditions. A minority of each pdf variant exhibited weak to moderate free-running rhythmicity. These results confirm the assignment of LNv neurons as the principal circadian pacemakers controlling daily locomotion in Drosophila. They also implicate PDF as the principal circadian transmitter.  相似文献   

16.
17.
Plasma renin activity (PRA) and aldosterone (PA) levels are characterized by a circadian rhythmicity (CR). The present study revealed that this rhythmicity is influenced by several factors including posture, sodium intake and age. Time-qualified PRA and PA reference intervals can reduce the incidence of false positives and false negatives in a diagnostic work-up. The circadian rhythmicity of PRA and PA have been quantified in relation to posture, sodium intake and age. The cosinor procedure has been applied to quantify the properties of the circadian rhythmicity under these conditions.

Chronograms and circadian parameters can be used to optimize the use of PRA and PA measurements in clinical practice. The chronobiological specification of reference values for PRA and PA is of valuable importance since the assessment of PRA and PA circadian rhythmicity has a diagnostic interest for a certain type of clinical disorder. It should be noted that several studies have described circannual variations for renin and aldosterone. The next step in the optimation of laboratory time-qualified reference values is the assessment of changes induced by the deterministic factors on a circannual domain.  相似文献   

18.
Genes and components of the circadian clock may represent relevant drug targets for diseases involving circadian dysfunctions. By exploiting an established cell line derived from human retinal pigment epithelium (HRPE), the cell constituting the blood-retinal barrier that is essential to maintain the visual functions of the sensorineural retina, we showed serum-shock induction of rhythmic changes in forskolin-evoked adenylyl cyclase (AC) activity. In the presence of Ca2+ and protein kinase A, the forskolin-induced AC activity is significantly, but not completely inhibited, suggesting the involvement of both Ca2+-sensitive and Ca2+-insensitive AC isoforms in the regulation of circadian rhythmicity in these cells. Semi-quantitative RT-PCR showed circadian profile in the expression of three AC isoforms, the Ca2+-inhibitable AC5 and AC6 and the Ca2+-insensitive AC7, and the clock genes hPer1 and hPer2. Our results demonstrate for the first time circadian rhythmicity in a human cell line, identifying the isoforms involved in the circadian profile of AC activity and showing a rhythmicity of the clock gene mRNA expression in these cells. Therefore, the results reported here provide evidence for an intertwine between AC/[Ca2+]i signalling pathways and Per genes in the HRPE circadian clockwork.  相似文献   

19.
Carbon monoxide (CO), generated in neurons by the enzyme heme oxygenase-2 (HO2), is postulated to be a gaseous signaling molecule in the mammalian brain. Because of the recent evidence suggesting an important role of another endogenously produced gas, nitric oxide (NO), in entrainment of circadian rhythms in mammals, we hypothesized that CO may also be involved in regulating these rhythms. Consistent with this idea, others have found a circadian rhythm of heme turnover and CO synthesis can be induced by bright light. Furthermore, HO2 is co-localized with guanylyl cyclase, the putative target of CO, throughout the brain, with high amounts of staining in the suprachiasmatic nucleus (SCN) of the hypothalamus. The goal of the present study was to evaluate the role of CO in photic entrainment in wild-type and HO2 deficient mice. HO2–/– mice did not display any abnormalities in circadian rhythmicity. Entrainment to a light–dark cycle, the ability to phase delay locomotor activity after a four hour phase shift in photoperiod, and the period of the free running rhythm (t) were similar between HO2–/– and wild-type mice. Taken together, these data suggest that CO does not play a major role in regulating circadian activity rhythms in mice.  相似文献   

20.
The effects of suprachiasmatic and control lesions on the circadian rhythms of locomotor activity and body temperature were studied in golden hamsters (Mesocricetus auratus) maintained in constant light as well as constant darkness. Large suprachiasmatic lesions, but not control lesions, eliminated circadian rhythmicity in locomotor activity as well as in body temperature. Analysis of the robustness of the rhythms of locomotor activity and body temperature in unlesioned and lesioned animals suggests that, because body temperature rhythmicity is more robust than locomotor rhythmicity, lesions that spare a small number of suprachiasmatic cells might abolish the latter but not the former. Our results do not support the hypothesis that the body temperature rhythm is controlled by a circadian pacemaker distinct from the main pacemaker located in the suprachiasmatic nuclei.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号