首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most freshwater mussel (Bivalvia: Unionoida) larvae (glochidia in Margaritiferidae, Hyriidae and Unionidae) are fish parasites. Knowledge of the larval morphology and the mechanism of release in freshwater mussels is useful in species systematics and ecology. Westralunio carteri is the only unionoid from south-western Australia. Little information is available on its biology and its glochidia have never been described. The aim of this study was to describe the glochidia of W. carteri and method of their release. Glochidia within vitelline membranes were embedded in mucus which extruded from exhalent siphons of females during spring/summer; they then hatched from vitelline membranes but remained tethered by a larval thread and began characteristically “winking”. Shells (n=120) were subtriangular, 308 μm long (±0.83 SE), 251 μm high (±0.73 SE) and had a hinge length of 212 μm (±0.78 SE). Larval teeth were singular with interlocking cusps and convex or concave basal protuberances on opposing valves.  相似文献   

2.
Over 70% of North American freshwater mussel species (families Unionidae and Margaritiferidae) are listed as threatened or endangered. Knowledge of the genetic structure of target species is essential for the development of effective conservation plans. Because Ambelma plicata is a common species, its population genetic structure is likely to be relatively intact, making it a logical model species for investigations of freshwater mussel population genetics. Using mtDNA and allozymes, we determined the genotypes of 170+ individuals in each of three distinct drainages: Lake Erie, Ohio River, and the Lower Mississippi River. Overall, within-population variation increased significantly from north to south, with unique haplotypes and allele frequencies in the Kiamichi River (Lower Mississippi River drainage). Genetic diversity was relatively low in the Strawberry River (Lower Mississippi River drainage), and in the Lake Erie drainage. We calculated significant among-population structure using both molecular markers (A.p. Φst = 0.15, θst = 0.12). Using a hierarchical approach, we found low genetic structure among rivers and drainages separated by large geographic distances, indicating high effective population size and/or highly vagile fish hosts for this species. Genetic structure in the Lake Erie drainage was similar to that in the Ohio River, and indicates that northern populations were founded from at least two glacial refugia following the Pleistocene. Conservation of genetic diversity in Amblema plicata and other mussel species with similar genetic structure should focus on protection of a number of individual populations, especially those in southern rivers.  相似文献   

3.
Doubly uniparental inheritance (DUI) is a mode of inheriting mitochondrial DNA that is distinct from strictly maternal inheritance. It has been described in nine and three families of marine and freshwater mussels, respectively, including the European margaritiferids and unionids. Among the 16 freshwater species of Unionida inhabiting Europe, DUI has been described in 9 species of dioecious mussels and was absent from a single hermaphroditic species and from secondary hermaphroditic specimens. The DUI freshwater mussels include two vastly genetically different mitochondrial genomes: maternal (F genome) and paternal (M genome), which coexist within the same specimen but in different tissues. The F genome is present in all female tissues and somatic male tissues. It is inherited in the typical, maternal, manner. Conversely, the M genome is located primarily in the male gonads and generative cells, and is inherited paternally. Dioecious Unionidae display unique characteristics that have been interrelated for over 200 million years: a high fidelity of the transmission of the F and M genomes in DUI and two paths of spermatogenesis–the typical path that produces sperm cells containing mitochondria with the F genome and the atypical path that produces sperm cells with the M genome. The mitogenomes of freshwater mussels display unique features that are not present in any other animal, that is, an additional, gender-specific gene and an elongated cox2 gene occurring exclusively in the M genome. These features mean that the mitochondria, in addition to their basic function of producing energy, also may take part in determining sex in these dioecious organisms.  相似文献   

4.
Host–parasite relationships are often characterized by the rapid evolution of parasite adaptations to exploit their host, and counteradaptations in the host to avoid the costs imposed by parasitism. Hence, the current coevolutionary state between a parasite and its hosts is predicted to vary according to the history of sympatry and local abundance of interacting species. We compared a unique reciprocal coevolutionary relationship of a fish, the European bitterling (Rhodeus amarus) and freshwater mussels (Unionidae) between areas of recent (Central Europe) and ancient (Turkey) sympatry. Bitterling parasitize freshwater mussels by laying their eggs in the gills of mussel and, in turn, mussel larvae (glochidia) parasitize the fish. We found that all bitterling from both regions avoided one mussel species. Preferences among other mussel species tended to be related to local mussel abundance rather than duration of sympatry. Individual fish were not consistent in their oviposition choices, precluding the evolution of host‐specific lineages. Mussels were demonstrated to have evolved strong defenses to bitterling parasitism in the area of ancient sympatry, but have no such defenses in the large areas of Europe where bitterling are currently invasive. Bitterling avoided glochidia infection irrespective of the duration of sympatry.  相似文献   

5.
In previous molecular phylogenetic analyses of the freshwater mussel family Unionidae (Bivalvia: Unionoida), the Afrotropical genus Coelatura had been recovered in various positions, generally indicating a paraphyletic Unionidae. However that result was typically poorly supported and in conflict with morphology-based analyses. We set out to test the phylogenetic position of Coelatura by sampling tropical lineages omitted from previous studies. Forty-one partial 28S nuclear rDNA and partial COI mtDNA sequences (1130 total aligned nucleotides) were analyzed separately and in combination under both maximum parsimony and likelihood, as well as Bayesian inference. There was significant phylogenetic incongruence between the character sets (partition homogeneity test, p < 0.01), but a novel heuristic for comparing bootstrap values among character sets analyzed separately and in combination illustrated that the observed conflict was due to homoplasy rather than separate gene histories. Phylogenetic analyses robustly supported a monophyletic Unionidae, with Coelatura recovered as part of a well-supported Africa–India clade (= Parreysiinae). The implications of this result are discussed in the context of Afrotropical freshwater mussel evolution and the classification of the family Unionidae.  相似文献   

6.
Multiple paternity is an important characteristic of the genetic mating system and common across a wide range of taxa. Multiple paternity can increase within‐population genotypic diversity, allowing selection to act on a wider spectre of genotypes, and potentially increasing effective population size. While the genetic mating system has been studied in many species with active mating behavior, little is known about multiple paternity in sessile species releasing gametes into the water. In freshwater mussels, males release sperm into the water, while eggs are retained and fertilized inside the female (spermcast mating). Mature parasitic glochidia are released into the water and attach to the gills of fish where they are encapsulated until settling in the bottom substrate. We used 15 microsatellite markers to detect multiple paternity in a wild population of the freshwater pearl mussel (Margaritifera margaritifera). We found multiple paternity in all clutches for which more than two offspring were genotyped, and numbers of sires were extremely high. Thirty‐two sires had contributed to the largest clutch (43 offspring sampled). This study provides the first evidence of multiple paternity in the freshwater pearl mussel, a species that has experienced dramatic declines across Europe. Previous studies on other species of freshwater mussels have detected much lower numbers of sires. Multiple paternity in freshwater pearl mussels may be central for maintaining genetic variability in small and fragmented populations and for their potential to recover after habitat restoration and may also be important in the evolutionary arms race with their fish host with a much shorter generation time.  相似文献   

7.
8.
9.
The global decline of freshwater mussels can be partially attributed to their complex life cycle. Their survival from glochidium to adulthood is like a long obstacle race, with juvenile mortality as a key critical point. Mass mortality shortly after entering into a juvenile state has been reported in both wild and captive populations, thus weakening the effective bivalve population. A similar phenomenon occurs during metamorphosis in natural and hatchery populations of juvenile marine bivalves. Based on a morphological analysis using scanning electron microscopy of newly formed juveniles of the freshwater species Margaritifera margaritifera (L.) (Margaritiferidae) and Unio mancus Lamarck (Unionidae), we show that a second metamorphosis, consisting of drastic morphological changes, occurs that leads to suspension feeding in place of deposit feeding by the ciliated foot. We hypothesize that suspension feeding in these two species improves due to a gradual development of several morphological features including the contact between cilia of the inner gill posterior filaments, the inner gill reflection, the appearance of the ctenidial ventral groove and the formation of the pedal palps. Regardless of the presence of available food, a suspension feeding mode replaces deposit feeding, and juveniles unable to successfully transition morphologically or adapt to the feeding changes likely perish.  相似文献   

10.
Freshwater pearl mussels (Margartifera margaritifera L.) are among the most critically threatened freshwater bivalves worldwide. The pearl mussel simultaneously fulfils criteria of indicator, flagship, keystone and umbrella species and can thus be considered an ideal target species for the process conservation of aquatic ecosystem functioning. The development of conservation strategies for freshwater pearl mussels and for other bivalve species faces many challenges, including the selection of priority populations for conservation and strategic decisions on habitat restoration and/or captive breeding. This article summarises the current information about the species’ systematics and phylogeny, its distribution and status as well as about its life history strategy and genetic population structure. Based on this information, integrative conservation strategies for freshwater mollusc species which combine genetic and ecological information are discussed. Holistic conservation strategies for pearl mussels require the integration of Conservation Genetics and Conservation Ecology actions at various spatial scales, from the individual and population level to global biodiversity conservation strategies. The availability of high resolution genetic markers for the species and the knowledge of the critical stages in the life cycle, particularly of the most sensitive post-parasitic phase, are important prerequisites for conservation. Effective adaptive conservation management also requires an evaluation of previous actions and management decisions. As with other freshwater bivalves, an integrative conservation approach that identifies and sustains ecological processes and evolutionary lineages is urgently needed to protect and manage freshwater pearl mussel diversity. Such research is important for the conservation of free-living populations, as well as for artificial culturing and breeding techniques, which have recently been or which are currently being established for freshwater pearl mussels in several countries.  相似文献   

11.
Freshwater mussels (Unionidae) are among North America's most imperilled organisms. Mussels produce small larvae (glochidia) that parasitize aquatic vertebrates. We modified the Epicentre QuickExtract protocol to extract DNA from a single glochidium, collected directly from the marsupium of a female mussel, to use as template in polymerase chain reactions (PCRs). Yield per glochidium in a 40 µL extraction volume provided enough DNA for ≥ 15 PCRs per individual. We were successful in using this DNA for microsatellite analysis of up to three loci per individual. Offspring from one female showed evidence for multiple paternity within her brood. Our results are the first documentation of this phenomenon in freshwater mussels.  相似文献   

12.
We quantitatively assessed the ability of the gills, caudal fin and scales of the floating goby Gymnogobius urotaenia (Hilgendorf, 1879) (Perciformes: Gobiidae) to serve as substrates for the larvae (glochidia) of the freshwater mussel Sinanodonta japonica (Clessin, 1874) (Unionida: Unionidae) by comparing parasitism success and metamorphosis success. We established three experimental treatments with 10 fish per treatment. Twenty glochidia were introduced onto one of the three body parts of each test fish by direct pipette infestation. Glochidia in the gill group had higher parasitism success than those in the fin and scale groups. Juvenile mussels were obtained only in the gill group. We quantitatively assessed the appropriateness of the three body parts as substrates for glochidia on the basis of three indicators: parasitism success; metamorphosis success; and parasitism and metamorphosis success. We conclude from our laboratory experiment that the artificial introduction of S. japonica glochidia onto G. urotaenia gills is a better procedure for obtaining juvenile mussels than the introduction onto fin or scales.  相似文献   

13.
We investigate population genetic structuring in Margaritifera falcata, a freshwater mussel native to western North America, across the majority of its geographical range. We find shallow rangewide genetic structure, strong population‐level structuring and very low population diversity in this species, using both mitochondrial sequence and nuclear microsatellite data. We contrast these patterns with previous findings in another freshwater mussel species group (Anodonta californiensis/A. nuttalliana) occupying the same continental region and many of the same watersheds. We conclude that differences are likely caused by contrasting life history attributes between genera, particularly host fish requirements and hermaphroditism. Further, we demonstrate the occurrence of a ‘hotspot’ for genetic diversity in both groups of mussels, occurring in the vicinity of the lower Columbia River drainage. We suggest that stream hierarchy may be responsible for this pattern and may produce similar patterns in other widespread freshwater species.  相似文献   

14.
15.
Since bivalve mussels are able to graze heavily on bacteria, in this paper it is hypothesized that when mussels are cultured with fish, the filtering efficiency of the mussels will keep the bacterial population below a certain threshold and thus assist in reducing the risk of bacterial disease outbreaks. The ability of the filter‐feeding bivalve mussel Pilsbryoconcha exilis to control Streptococcus agalactiae was tested in a laboratory‐scale tilapia culture system. Juvenile Nile tilapia (Oreochromis niloticus), the bivalve mussel as well as the bacteria were cultured at different combinations using four treatments: treatment‐1: mussel and bacteria but no fish, treatment‐2: tilapia and mussel but no bacteria, treatment‐3: tilapia and bacteria but no mussel, and treatment‐4: tilapia, mussels, and bacteria. All treatments were run in three replicates; stocking rates were 10 tilapia juveniles; five mussels; and about 3.5 × 105 colony forming units (CFU) ml?1 of bacteria in 50‐L aquaria with 40‐L volume. The mussel reduced the bacterial population by 83.6–87.1% in a 3‐week period whereas in the absence of the mussel, the bacterial counts increased by 31.5%. Oresence of the mussel also resulted in significantly higher growth and lower mortality of tilapia juveniles than when the mussel was absent. The results of this experiment suggest that the freshwater mussel P. exilis could control the population of S. agalactiae in a laboratory‐scale tilapia culture system. Future studies should focus on the dynamic interactions among fish, mussels, and bacteria as well as on how input such as feed and other organic materials affect these interactions.  相似文献   

16.
ABSTRACT

The objective of this paper is to draw attention to a previously unrecognised habitat for Unio crassus Philipsson, 1788 (Bivalvia: Unionidae), namely beaver dam-and-pond complexes. The construction of beaver ponds will allow the colonisation of high energy streams by providing flow refuges during periods of high near-bed shear stress. The absence of freshwater mussels (Unionidae) in mountain streams may result from steep slopes, shear stress during floods, lack of food suspended in the water column (seston), and unfavourable conditions for the settlement and growth of juvenile mussels. Transportation of parasitic larvae on host fish is the main dispersal mechanism for the mussels. A possible constraint on the colonisation of beaver complexes by freshwater mussels is that beaver dams may hinder the upstream movement of their minnow hosts. In the surveyed beaver ponds, the first specimens of U. crassus were found in 2008. Single mussels were also found in subsequent years. It is uncertain whether the occurrence of U. crassus depends on the periodic support of the population from the main river, but the presence of beaver ponds is certain to have given it the opportunity of colonising new areas.  相似文献   

17.
1. Sediment selection was investigated under controlled conditions in two common lake-dwelling species of freshwater mussels (Bivalvia: Unionidae), Elliptio complanata and Pyganodon grandis grandis .
2. Sediment choice was determined in six independent experiments under controlled conditions by distributing mussels randomly or evenly in tanks containing patches of sand and mud, and following their movement among sediment patches in experiments lasting between 30 and 45 days.
3. In all experiments, both species were found most frequently in muddy sediment patches. Movement toward muddy patches occurred rapidly: an average of nearly 80% of Pyganodon grandis grandis were found in mud after 30 days. Elliptio complanata moved rapidly to patches of mud at the start of experiments, but occupation of muddy sediments appeared to decrease after about 30 days.
4. Our results contrast with many field studies that suggest populations of lake-dwelling freshwater mussels infrequently inhabit mud and silt. We therefore postulate that large-scale mussel distribution in lakes is influenced most strongly by factors other than sediment composition.  相似文献   

18.
Spence, R. and Smith, C. 2011. Rose bitterling (Rhodeus ocellatus) embryos parasitize freshwater mussels by competing for nutrients and oxygen. —Acta Zoologica (Stockholm) 00 : 1–6. Understanding how parasites inflict fitness costs on their hosts is a key question in host–parasite biology. Rose bitterling (Rhodeus ocellatus) are small cyprinid fish that place their eggs in the gills of living freshwater mussels. The embryos complete their development inside the mussel gill and emerge as free‐swimming larvae after approximately 4 weeks. Bitterling show a range of specialized adaptations for using mussels as a spawning substrate, and the presence of bitterling embryos has been shown to retard the growth of mussels. We compared the development and survival of embryos incubated in either mussels or Petri dishes and exposed to either nutrient‐rich or nutrient‐poor pond water. Embryonic development rate was significantly faster in Petri dishes, probably as a result of oxygen limitation in mussel gills. Embryo survival rate was significantly higher in nutrient‐rich than filtered water, suggesting that the embryos obtained a nutritional benefit prior to emergence from the host. The results imply that bitterling embryos compete for oxygen and nutrients with their host mussel, as well as each other, and in this way, impose a growth cost on mussels.  相似文献   

19.
Population genetic analyses of species inhabiting fragmented landscapes are essential tools for conservation. Occasionally, analyses of fragmented populations find no evidence of isolation, even though a barrier to dispersal is apparent. In some cases, not enough time may have passed to observe divergence due to genetic drift, a problem particularly relevant for long‐lived species with overlapping generations. Failing to consider this quality during population structure analyses could result in incorrect conclusions about the impact of fragmentation on the species. We designed a model to explore how lifespan and population size influence perceived population structure of isolated populations over time. This iterative model tracked how simulated populations of variable lifespan and population size were affected by drift alone, using a freshwater mussel, Quadrula quadrula (mapleleaf), as a model system. In addition to exhibiting dramatic lifespan variability among species, mussels are also highly imperiled and exhibit fragmentation by dams throughout the range of many species. Results indicated that, unless population size was small (<50 individuals) or lifespan short (<22 years), observing genetic divergence among populations was unlikely. Even if wild populations are isolated, observing population structure in long‐lived mussels from modern damming practices is unlikely because it takes longer for population structure to develop in these species than most North American dams have existed. Larger population sizes and longer lifespans increase the time needed for significant divergence to occur. This study helps illuminate the factors that influence genetic responses by populations to isolation and provides a useful model for conservation‐oriented research.  相似文献   

20.
The freshwater zebra mussel (Dreissena polymorpha) owes a large part of its success as an invasive species to its ability to attach to a wide variety of substrates. As in marine mussels, this attachment is achieved by a proteinaceous byssus, a series of threads joined at a stem that connect the mussel to adhesive plaques secreted onto the substrate. Although the zebra mussel byssus is superficially similar to marine mussels, significant structural and compositional differences suggest that further investigation of the adhesion mechanisms in this freshwater species is warranted. Here we present an ultrastructural examination of the zebra mussel byssus, with emphasis on interfaces that are critical to its adhesive function. By examining the attached plaques, we show that adhesion is mediated by a uniform electron dense layer on the underside of the plaque. This layer is only 10-20 nm thick and makes direct and continuous contact with the substrate. The plaque itself is fibrous, and curiously can exhibit either a dense or porous morphology. In zebra mussels, a graded interface between the animal and the substrate mussels is achieved by interdigitation of uniform threads with the stem, in contrast to marine mussels, where the threads themselves are non-uniform. Our observations of several novel aspects of zebra mussel byssal ultrastructure may have important implications not only for preventing biofouling by the zebra mussel, but for the development of new bioadhesives as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号