首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The S1 subunit of pertussis toxin catalyses the hydrolysis of NAD+ (NAD+ glycohydrolysis) and the NAD(+)-dependent ADP-ribosylation of guanine-nucleotide-binding proteins. Recently, the S1 subunit of pertussis toxin was shown to be photolabelled by using radiolabelled NAD+ and u.v.; the primary labelled residue was Glu-129, thereby implicating this residue in the binding of NAD+. Studies from various laboratories have shown that the N-terminal portion of the S1 subunit, which shows sequence similarity to cholera toxin and Escherichia coli heat-labile toxin, is important to the maintenance of both glycohydrolase and transferase activity. In the present study the photolabelling technique was applied to the analysis of a series of recombinant-derived S1 molecules that possessed deletions or substitutions near the N-terminus of the S1 molecule. The results revealed a positive correlation between the extent of photolabelling with NAD+ and the magnitude of specific NAD+ glycohydrolase activity exhibited by the mutants. Enzyme kinetic analyses of the N-terminal mutants also identified a mutant with substantially reduced activity, a depressed photolabelling efficiency and a markedly increased Km for NAD+. The results support a direct role for the N-terminal region of the S1 subunit in the binding of NAD+, thereby providing a rationale for the effect of mutations in this region on enzymic activity.  相似文献   

2.
Cholera toxin stimulates adenylate cyclase in rat liver after intravenous injection. The stimulation follows a short latent period of 10min, and maximum stimulation was attained at 120min. Half-maximal stimulation was achieved at 35min. In contrast with this lengthy time course in the intact cell, adenylate cyclase in broken-cell preparations of rat liver in vitro were maximally stimulated by cholera toxin (in the presence of NAD+) in 20min with half-maximal stimulation in 8min. Binding of cholera toxin to cell membranes by the B subunits is followed by translocation of the A subunit into the cell or cell membrane, and separation of the A1 polypeptide chain from the A2 chain by disulphide-bond reduction, and finally activation of adenylate cyclase by the A1 chain and NAD+. As the binding of cholera toxin is rapid, two possible rate-limiting steps could be the determinants of the long time course of action. These are translocation of the A1 chain from the outside of the cell membrane to its site of action (this includes the time required for separation from the whole toxin) or the availability of NAD+ for activation. When NAD+ concentrations in rat liver were elevated 4-fold, by the administration of nicotinamide, no change in the rate of activation of adenylate cyclase by cholera toxin was observed. Thus the intracellular concentration of NAD+ is not rate-limiting and the major rate-limiting determinant in intact cells must be between the time of toxin binding to the cell membrane and the appearance of subunit A1 at the enzyme site.  相似文献   

3.
Binding of NAD+ by cholera toxin.   总被引:5,自引:0,他引:5       下载免费PDF全文
1. The Km for NAD+ of cholera toxin working as an NAD+ glycohydrolase is 4 mM, and this is increased to about 50 mM in the presence of low-Mr ADP-ribose acceptors. Only molecules having both the adenine and nicotinamide moieties of NAD+ with minor alterations in the nicotinamide ring can be competitive inhibitors of this reaction. 2. This high Km for NAD+ is also reflected in the dissociation constant, Kd, which was determined by a variety of methods. 3. Results from equilibrium dialysis were subject to high error, but showed one binding site and a Kd of about 3 mM. 4. The A1 peptide of the toxin is digested by trypsin, and this digestion is completely prevented by concentrations of NAD+ above 50 mM. Measurement (by densitometric scanning of polyacrylamide-gel electrophoretograms) of the rate of tryptic digestion at different concentrations of NAD+ allowed a more accurate determination of Kd = 4.0 +/- 0.4 mM. Some analogues of NAD+ that are competitive inhibitors of the glycohydrolase reaction also prevented digestion.  相似文献   

4.
Five ADP-ribosylating bacterial toxins, pertussis toxin, cholera toxin, diphtheria toxin, Escherichia LT toxin and Pseudomonas exotoxin A, show significant homology in selected segments of their sequence. Site-directed mutagenesis and chemical modification of residues within these regions cause loss of catalytic activity and of NAD binding. On the basis of these results and of molecular modelling based on the three-dimensional structure of exotoxin A, the geometry of an NAD binding site common to all the toxins is deduced and described in the paper. For diphtheria toxin, sequence similarity with exotoxin A is such that its preliminary structure can be computed by molecular modelling, whereas for the other toxins similarity appears to be restricted to the NAD binding site. Moreover, an analysis of molecular fitting of the NAD molecule into its binding cavity suggests a new model for the conformation of the bound NAD that better accounts for all available experimental information.  相似文献   

5.
We tested various methods of assaying the ADP-ribosyltransferase activity of cholera toxin using artificial acceptors of the ADP-ribosyl group. Any of several proteins or poly(L-arginine) could be used with [adenine-14C]NAD+ as ADP-ribosyl donor, but this method was not ideal because of the heterogeneity of potential acceptor groups and the necessity of using costly labeled NAD+. We, therefore, developed an alternative assay using a synthetic low molecular weight acceptor, 125I-N-guanyltyramine (125I-GT). 125I-GT was specifically ADP-ribosylated by thiol-treated cholera toxin or its A1 peptide in the presence of beta-NAD. ADP-ribosyl-125I-GT was quantified after separation from unreacted 125I-GT by batch absorption of the latter to cation exchange resins. Analysis of the kinetics of ADP-ribosylation of 125I-GT indicated that the reaction proceeds by a sequential rather than a ping-pong mechanism. The Km values for NAD+ and 125I-GT were 3.6 mM and 44 microM, respectively. L-Arginine was a competitive inhibitor of 125I-GT (KI = 75 mM), but was at least 1000-fold less active than 125I-GT as an ADP-ribose acceptor.  相似文献   

6.
A 20-kilodalton adenosine nucleotide-binding protein (A-protein) extracted from rod outer segments is shown to catalyze the cholera toxin-mediated ADP-ribosylation of GTP-binding protein (G-protein) from the outer segment. Radiolabel from [adenylate-32P] NAD+ was associated specifically with both the alpha-subunit of G-protein and with A-protein in the presence of activated cholera toxin. In the absence of added A-protein, G-protein appears to undergo ADP-ribosylation at a slower rate. In the absence of G-protein, A-protein was found to be labeled following incubation with [adenylate-32P]NAD+ and cholera toxin. In the presence of G-protein, a light-dependent component of A-protein labeling was observed. A-protein is a labile component of rod outer segments and has an affinity for ADP. The findings suggest that A-protein may act as an ADP-ribosyltransferase in the cholera toxin-mediated ADP-ribosylation of G-protein.  相似文献   

7.
Guanine nucleotide binding proteins (G-proteins) can be identified by their ability to be ADP-ribosylated using [32P]NAD as the substrate and bacterial toxins as catalysts. This labelling, when performed in liver and sarcolemma membrane preparations, can be complicated by competing enzymes which degrade NAD, making it unavailable to participate in the desired reaction. The addition of NADP in reaction mixtures markedly slows the degradation of NAD, but does not compete with NAD in cholera toxin labelling of stimulatory G-protein. The efficiency of cholera toxin labelling is improved to the extent that saturation curves may be constructed, allowing the quantitation of ADP-ribosylation sites in membranes.  相似文献   

8.
Incubation of pea thylakoid membranes with [32P]-NAD+ in the presence of cholera toxin resulted in the [32P]-ADP-ribosylation of a 60 kDa thylakoid membrane polypeptide. When ATP was included in the incubation mixture, a 29 kDa polypeptide was also labelled. In the absence of electron transfer cofactors or inhibitors, the extent of labelling depended on whether the membranes were preincubated in the light or dark and also on the developmental stage of the leaves used for thylakoid isolation. Irrespective of the latter, the strongest labelling was observed when DCMU was present in the light. After pretreatment of the thylakoid membranes with cholera toxin plus NAD+ under the same conditions, light-stimulated GTPase activity and protein phosphorylation were inhibited. The extent of inhibition for both processes appeared to be correlated with the amount of [32P]-ADP-ribosylation found when [32P]-NAD+ was included in the pretreatment mixture. The data presented are fully consistent with the 60 and 29 kDa polypeptides functioning as thylakoid membrane associated guanine nucleotide binding regulatory proteins.  相似文献   

9.
We report herein a simple and effective way to photochemically immobilize biomolecules onto a fibre-optic silica surface. The system is based on a photoreactive benzophenone derivative that is bound to SiO2 surfaces of the optical fibre via a silane anchor. The benzophenone derivative was 4-allyloxybenzophenone, synthesized by standard procedures that were later used to synthesize the 4-(3'-chlorodimethylsilyl) propyloxybenzophenone and 4-(3'-dichloromethylsilyl) propyloxybenzophenone by regular hydrosilation procedures. After silanization with the benzophenone derivatives, the fibres were immersed in a cholera toxin B subunit solution and illuminated with UV light (wavelength > 345 nm). As a result of the photochemical reaction, a thin layer of the antigen was covalently bound to the benzophenone-modified surface. The photochemically modified fibre-optics were then tested as immunosensors in the detection of cholera anti-toxin antibody and revealed through chemiluminescence measurements. A secondary antibody labelled with horseradish peroxidase acted as the marker for the cholera toxin antibody. A photo-electronic set-up was designed specifically to monitor the signal. The immunosensor system was shown to be both specific and sensitive. The lowest rabbit serum titre detected was 1:1 700,000.  相似文献   

10.
Cholera toxin catalyzes transfer of radiolabel from [32P]NAD+ to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of Mr = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (Mr = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and [32P]NAD+ caused radiolabeling of purified microtubule and intermediate filament proteins.  相似文献   

11.
CHOLERA TOXIN   总被引:2,自引:0,他引:2  
1. Death in several infectious diseases is caused by protein toxins secreted by invading bacteria. Cholera toxin is a simple protein secreted by Vibrio cholerae colonizing the gut; it is responsible for the massive diarrhoea that is cholera. 2. The primary action of cholera toxin is an activation of adenylate cyclase, an enzyme found on the inner membrane of eukaryotic cells that catalyses the conversion of ATP to cyclic AMP. Consequent increases in the intracellular concentration of cyclic AMP are responsible for other manifestations of cholera toxin including the diarrhoea. The toxin is active on almost all eukaryotic cells. 3. The toxin can be purified from culture filtrates of V. cholera. It has a molecular weight of 82000; and is composed of one subunit A (itself two polypeptide chains joined by a disulphide bond: AI (22000) and A2 (5000)) and five subunits B (11500). These can be separated in dissociating solvents such as detergents or 6 M guanidine hydrochloride. An amino-acid sequence of subunit B has been published. The five B subunits (sometimes found by themselves in the filtrate and known as ‘choleragenoid’) are probably arranged in a ring with the subunit A in the middle joined to them non-covalently by peptide A2. 4. The first action of cholera toxin on a cell is to bind to the membrane strongly and irreversibly. Several thousand molecules of toxin bind to each cell and the binding constants are of the order of 10-10 M. The binding is rapid, but is followed by a lag phase of about an hour before the intracellular cyclic AMP concentration begins to increase. 5. Ganglioside GM1, a complex amphiphilic lipid found in cell membranes, binds tightly to the toxin which shows an enzyme-like specificity for this particular ganglioside. Toxin that has already bound ganglioside can no longer bind to cells and is therefore inactive. This and other experiments using cells depleted of endogenous ganglioside suggest that ganglioside GM1 is the natural receptor of the toxin on the cell surface. The binding is followed by a lateral movement of the toxin-ganglioside complex in the cell surface forming a ‘cap’ at one pole of the cell. 6. The binding of ganglioside by toxin is a function exclusively of subunit B; Subunit A does not bind and can be eluted with 8 M urea from an insolubilized toxin-ganglioside complex. Subunit B is not by itself active, and so preincubation with B can protect cells or even whole gut from the action of toxin by occupying all the ganglioside binding sites. 7. Subunit A is responsible for activation of adenylate cyclase. Purified subunit A or just peptide AI is active by itself and this activity is not inhibited by ganglioside or by antisera to subunit B. In intact cells the activity is low and shows the characteristic lag phase but in lysed cells the subunit (or the whole toxin) is much more active and there is no lag phase. This suggests that the lag phase represents the time that subunit A takes to cross the cell membrane and get to its target. 8. Several cofactors are needed for toxin activity in lysed cells: NAD+, ATP, sulphydryl compounds and another unidentified cytoplasmic component. The activity of the cyclase is altered in a complex way generally rather similarly to the action of hormones such as adrenalin, but it is difficult to draw any general conclusions. 9. There are two chief theories of how cholera toxin acts. The first is that subunit A (or just peptide AI) enters the cell and there catalyses some reaction leading to activation of the cyclase. The cleavage of NAD+ into nicotinamide and adenosine diphosphoribose could be such a reaction; it is catalysed by high concentrations of cholera toxin. 10. The other theory is that part of the toxin binds directly to the adenylate cyclase or to some other molecule that can then interact with the cyclase, perhaps after the lateral movement of the toxin-ganglioside complex in the cell surface. This binding may be related to the known action of guanyl nucleotides on the cell surface. 11. The entry of peptide AI into the cell and its transport through the membrane is mediated by the binding of subunits B to the cell surface, perhaps just because the binding increases the local concentration of subunit A, or perhaps following specific conformational changes in the subunits and the formation of a tunnel of B subunits through the membrane. An experiment showing that the toxin remains active when the subunits are covalently bonded together suggests that peptide AI does not separate completely from the rest of the molecule. 12. There are several other proteins that resemble cholera toxin in structure and function. For example, glycoprotein hormones such as thyrotrophin also activate adenylate cyclase and have an apparently similar subunit structure with one type of subunit that binds to a ganglioside. There may also be analogies between the amino-acid sequences of toxin and hormones. 13. The enterotoxin made by some strains of Escherichia coli produces a similar diarrhoea to that of cholera. Several different toxic proteins have been prepared but they all seem to activate adenylate cyclase in the same sort of way as cholera toxin does and also to cross-react immunologically with it. The E. coli toxin also reacts with ganglioside G, but the reaction is weak and probably physiologically insignificant. Salmonella typhimurium secretes a similar toxin. 14. Tetanus toxin also reacts with a ganglioside receptor. This protein has two polypeptide chains of which only one reacts with the ganglioside; but the molecular activity is not yet known. 15. Diphtheria toxin has an A fragment that is directly responsible for the toxicity (by catalysing an NAD+ cleavage reaction leading to the total inhibition of protein synthesis) and a B fragment that gets the A fragment into the cells. This structure of active and binding components therefore seems to be common to many toxins. 16. The ability to produce toxin may confer some selective advantage on V. cholerae. The toxin may originate from accidental incorporation of DNA from an eukaryotic host, or alternatively from some material involved with the cyclic AMP metabolism of the bacterium.  相似文献   

12.
Incubation of a crude rat liver plasma membrane preparation with [gamma-32P]ATP resulted in a rapid Mg2+-dependent incorporation of 32P into phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Preincubation of the membranes with cholera toxin under ADP-ribosylating conditions reduced the labeling of the polyphosphoinositides. This action of cholera toxin required NAD+ and guanine nucleotides, was dose-dependent with respect to cholera toxin, and could not be mimicked by cAMP. It therefore appears that ADP-ribosylation of the stimulatory guanine nucleotide-binding regulatory protein of adenylate cyclase, or another G-protein, in rat liver plasma membranes affects the activity of enzymes in the polyphosphoinositide pathway.  相似文献   

13.
Human platelets are defective in processing of cholera toxin.   总被引:1,自引:0,他引:1       下载免费PDF全文
Cholera toxin is unable to elevate cyclic AMP levels in intact human platelets despite being very efficacious in this respect in other mammalian cells; in the presence of 0.5 mM-isobutylmethylxanthine, we found that 3-6nM-cholera toxin over 3h at 37 degrees C elevated platelet cyclic AMP from 33 +/- 13 to 39 +/- 12pmol/mg of protein (means +/- S.D.; n = 12). We have investigated the basis for this lack of response. 125I-labelled cholera toxin bound to platelets both saturably and with high affinity (Kd congruent to 60pM; Bmax. congruent to 50fmol/mg of protein). Incubation of platelets with the putative cholera toxin receptor monosialoganglioside GM1 enhanced 125I-labelled cholera toxin binding at least 40-fold but facilitated only a minimal (less than or equal to 3-fold) elevation of platelet cyclic AMP levels. In contrast, dithiothreitol-activated cholera toxin markedly stimulated adenylate cyclase activity in platelet membranes. Platelet cytosol both enhanced stimulation of adenylate cyclase activity by activated cholera toxin (A1 subunit) and supported stimulation by the A1-A2 subunit of cholera toxin. Neither GTP nor NAD+, both necessary for response to cholera toxin, was lacking in intact platelets. However, we found that platelets were unable to cleave cholera toxin to the active A1 subunit (as assessed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis). By contrast, murine S49 lymphoma cells were able to generate the A1 subunit with a time course that closely resembled the kinetics of toxin-mediated cyclic AMP accumulation in these cells. Thus we conclude that human platelets are defective in their ability to process surface-bound cholera toxin. These results indicate that binding of cholera toxin to surface receptors is necessary, but not sufficient, for expression of the toxin effect and the generation of the A1 subunit of the toxin may be rate-limiting for expression of cholera toxin response.  相似文献   

14.
Phytomonas sp. membranes have an adenylyl cyclase activity which is greater in the presence of Mn2+ than with Mg2+. The Mg2+ and Mn2+ activity ratio varies from one membrane preparation to another, suggesting that the adenylyl cyclase has a variable activation state. A[35S]GTP-gamma-S-binding activity with a Kd of 171 nM was detected in Phytomonas membranes. Incubation of these membranes with activated cholera or pertussis toxin and [adenylate 23P]NAD+ led to incorporation of radioactivity into bands of about 40-44 kDa. Crude membranes were electrophoresed on SDS-polyacrylamide gels and analyzed, by Western blotting, with the 9188 anti-alpha[s] antibody and the AS/7 antibody (anti-alpha[i], anti-alpha[i1], and anti-alpha[i2]. These procedures resulted in the identification of polypeptides of approximately 40-44 kDa. Phytomonas adenylyl cyclase could be activated by treatment of membrane preparations with cholera toxin, in the presence of NAD+, while similar treatment with pertussis toxin did not affect this enzyme activity. These studies indicate that in Phytomonas, adenylyl cyclase activity is coupled to an unknown receptor entity through G alpha[s] proteins.  相似文献   

15.
1. An ADP-ribosyltransferase activity which appears to be capable of activating adenylyl cyclase was identified in a plasma membrane fraction from rabbit corpora lutea and partially characterized by comparing the properties of the luteal transferase with those of cholera toxin. 2. Incubation of luteal membranes in the presence of GTP and varying concentrations of NAD resulted in concentration-dependent increases in adenylyl cyclase activity. 3. Stimulation of adenylyl cyclase by NAD and cholera toxin plus NAD was observed in the presence of GTP but not in the presence of guanosine-5'-O-(2-thiodiphosphate) or guanyl-5'-yl imidodiphosphate. 4. NAD or cholera toxin plus NAD reduced the Kact values for luteinizing hormone to activate adenylyl cyclase 3- to 3.5-fold. 5. NAD or cholera toxin plus NAD increased the extent to which cholate extracts from luteal membranes were able to reconstitute adenylyl cyclase activity in S49 cyc- mouse lymphoma membranes. 6. It was necessary to add ADP-ribose and arginine to the incubation mixture in order to demonstrate cholera toxin-specific ADP-ribosylation of a protein corresponding to the alpha subunit of the stimulatory guanine nucleotide-binding regulatory component (alpha Gs). 7. Treatment of luteal membranes with NAD prior to incubation in the presence of [32P]NAD plus cholera toxin resulted in reduced labeling of alpha Gs. 8. Endogenous ADP-ribosylation of alpha Gs was enhanced by Mg but was not altered by guanine nucleotide, NaF or luteinizing hormone and was inhibited by cAMP. 9. Incubation of luteal membranes in the presence of [32P]ADP-ribose in the absence and presence of cholera toxin did not result in the labeling of any membrane proteins.  相似文献   

16.
A semiquantitative method to measure mono(adenosine diphosphate ribosyl) transferase activity [mADPRT] in tissue extracts is described. After electrophoretic separation in sodium dodecyl sulfate (SDS)--polyacrylamide gels, renatured enzymatic activity is demonstrated in situ by incubation of the slab gels with radiolabeled NAD+ and histones. Precipitation of the radiolabeled product in the gel allows localization of the enzyme by autoradiography. This method is suitable for two-dimensional gel electrophoresis, whereby proteins are electrofocused in the presence of 9 M urea and subsequently subjected to electrophoresis in SDS. A single major band showing mADPRT activity of Mr approximately 30 Kda was observed in all crude extracts of Xenopus tissues examined. Accumulation of acid-insoluble radiolabeled products was dependent on added histones and was specifically inhibited by agmatine. The ADPRT activity of cholera toxin A fragment could also be demonstrated by this technique. Reducing agents stimulated the activity of cholera toxin A fragment while depressing that of Xenopus mADPRT.  相似文献   

17.
A method is described for preparing a plasma-membrane fraction from hepatocytes by a rapid, gentle, Percoll fractionation procedure. Cholera toxin elicited the ribosylation of a number of proteins in these membranes, including the components of the stimulatory guanine nucleotide regulatory protein, Ns. Insulin, however, inhibited the ability of cholera toxin to ribosylate a protein of Mr 25 000. The action was decreased in membranes from cells that had been pre-treated with glucagon. Ribosylation of both the components of Ns and the Mr-25 000 species occurred in whole cells treated with cholera toxin, because membranes from such treated cells exhibited decreased labelling when incubated with [32P]NAD+ and activated cholera toxin. The labelling of proteins, including the Mr-25 000 species, with [32P]NAD+ and cholera toxin in the plasma membranes was decreased by an inhibitor of ribosylation. Azido-GTP photoaffinity labelling identified several high-affinity GTP-binding proteins, including one of Mr 25 000. Cholera toxin failed to ribosylate the Mr-25 000 protein in membranes from cells that had been pre-treated with the tumour-promoting agent 12-O-tetradecanoylphorbol 13-acetate (TPA). In membranes from such treated cells, insulin actually allowed cholera toxin to label this species. As TPA activates protein kinase C, it is possible that the Mr-25 000 protein, or a species that interacts with it, is a substrate for phosphorylation. These observations may offer an explanation for some of the perturbing effects that TPA exerts on insulin's action. It is suggested that the insulin receptor interacts with the guanine nucleotide regulatory protein system in the liver, and that the Mr-25 000 species may be a component of Nin, a specific guanine nucleotide regulatory protein that has been proposed to mediate certain of the actions of insulin on target cells [Houslay & Heyworth (1983) Trends Biochem. Sci. 8, 449-452].  相似文献   

18.
A high performance liquid chromatographic method has been developed for the assay of arginine-specific ADP-ribosyl transferases. The assay utilizes L-arginine methyl ester (LAME) as the acceptor substrate. ADP-ribosylated-LAME is separated from the reaction mixture using a C-8 reversed-phase column. Before injection, the assay mixture is derivatized with an orthophthaldialdehyde/2-mercaptoethanol reagent. Fluorescence detection of the orthophthaldialdehyde-derivatized product provides excellent sensitivity and a limit of detection of less than 100 fmol. The kinetic mechanism of two arginine-specific ADP-ribosyltransferases, cholera toxin A subunit and an endogenous transferase from rabbit skeletal muscle, were both determined to be random sequential. The kinetic studies utilized 3-aminobenzamide and NG-monomethylarginine as competitive inhibitors for NAD and LAME, respectively. Cholera toxin was reported to have Km values of 5.6 and 39 mM for NAD and LAME, respectively. Km values of 0.56 and 1.2 mM were determined for NAD and LAME, respectively, using the transferase from rabbit skeletal muscle.  相似文献   

19.
Cholera toxin elicited 5- to 7-fold stimulation of adenylyl cyclase activity. Half-maximal activation was at 4.42 micrograms/ml cholera toxin. Cholera toxin-mediated activation was time dependent. At 0.1 mM ATP, both guanosine triphosphate (GTP) and nicotinamide adenine dinucleotide (NAD+) were required for cholera toxin activation of luteal adenylyl cyclase. The concentrations of GTP and NAD+ required for half-maximal activation were 1 and 200 microM, respectively. The GTP requirement could be eliminated by increasing the ATP concentration to 1.0 mM. Guanosine-5'-O-(2-thiodiphosphate) [GDP beta S] did not support cholera toxin activation of the luteal enzyme. Cholera toxin treatment increased GTP-stimulated activity, did not significantly alter guanyl-5'-yl imidodiphosphate [GMP-P(NH)P]-stimulated activity, and depressed NaF-stimulated activity. Furthermore, toxin treatment resulted in a 3.4-fold reduction in the Kact values for ovine luteinizing hormone (oLH) to activate adenylyl cyclase. A similar reduction in Kact values for oLH was obtained when concentration-effect curves performed in the presence of GMP-P(NH)P were compared to those performed in the presence of GTP. In addition, luteal membranes treated with cholera toxin and [32P]NAD+ were subjected to autoradiographic analysis following sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This treatment resulted in the [32P] adenosine diphospho (ADP)-ribosylation of a 45,000-dalton protein doublet, corresponding to the alpha subunit of the stimulatory guanine nucleotide-binding regulatory component (Ns). As with activation of adenylyl cyclase activity, cholera toxin-specific [32P] ADP-ribosylation was time dependent and increased with increasing concentrations of cholera toxin. GTP, GMP-P(NH)P, and NaF, but not GDP beta S, were capable of supporting [32P] ADP-ribosylation of the protein doublet. oLH did not alter the ability of cholera toxin to ADP-ribosylate the protein activation of luteal adenylyl cyclase activity is due to the ADP-ribosylation of the alpha subunit of Ns and the concomitant inhibition of a GTPase associated with adenylyl cyclase.  相似文献   

20.
Cholera toxin was found to stimulate adenylate cyclase activity in washed membrane of pigeon erythrocytes in the presence of dithiothreitol and NAD. When tested with isolated cholera toxin components, the stimulatory activity was found with subunit A or polypeptide A1 derived from this subunit, but not with A2 or subunit B. On a molar basis, polypeptide A1 was approximately four times more active than cholera toxin. Dithiothreitol was not required in the action of polypeptide A1, suggesting that the reagent was needed only to release A1 from subunit A or the holotoxin for their action on adenylate cyclase. The single SH group in polypeptide A1 was not involved in the activity of the peptide, since chemical modification of the thiol group did not alter the stimulatory activity of the peptide. The presence of NAD was, however, essential for the activation of adenylate cyclase with cholera toxin, subunit A, or polypeptide A1. Elevation of the adenylate cyclase activity was also observed when the intact pigeon erythrocytes were incubated with polypeptide A1, although a 30-fold molar excess of A1 over that of holotoxin was required for the same level of activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号