首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An acid α-galactosidase from the seeds of the jack fruit seed (Artocarpus integrifolia) has been purified to homogeneity by affinity chromatography on a matrix formed by cross-linking the soluble α-galactose-bearing guar seed galactomannan. The 35kDa enzyme was a homotetramer of 9.5kDa subunits. Its carbohydrate part (5.5%) was composed of galactose and arabinose. TheK m withp-nitrophenyl α-D-galactoside as substrate was 0.35 mM. TheK i values indicated inhibition by galactose, 1-O-methyl α-galactose and melibiose in the decreasing order. Among α-galactosides, the enzyme liberated galactose from melibiose, but not from raffinose or stachyose at its pH optimum (5.2). The guar seed galactomannan was however efficiently degalactosidated; limited enzyme treatment abolished the precipitability of the polysaccharide by the α-galactose-specific jack fruit seed lectin, and complete hydrolysis yielded insoluble polysaccharide. Though similar in sugar specificity and subunit assembly, α-galactosidase and the lectin coexisting in the jack fruit seed gave no indication of immunological identity.  相似文献   

2.
Summary In this study, the variety of sugar residues in the gut glycoconjugates of Triturus carnifex (Amphibia, Caudata) are investigated by carbohydrate conventional histochemistry and lectin histochemistry. The oesophageal surface mucous cells contained acidic glycoconjugates, with residues of GalNAc, Gal β1,3 GalNAc and (GlcNAc β1,4) n oligomers. The gastric surface cells mainly produced neutral glycoproteins with residues of fucose, Gal β1-3 GalNAc, Gal-αGal, and (GlcNAc β1,4) n oligomers in N- and O-linked glycans, as the glandular mucous neck cells, with residues of mannose/glucose, GalNAc, Gal β1,3 GalNAc, (GlcNAc β1,4) n oligomers and fucose linked α1,6 or terminal α1,3 or α1,4 in O-linked glycans. The oxynticopeptic tubulo-vesicular system contained neutral glycoproteins with N- and O-linked glycans with residues of Gal-αGal, Gal β1-3 GalNAc and (GlcNAc β1,4) n oligomers; Fuc linked α1,2 to Gal, α1,3 to GlcNAc in (poly)lactosamine chains and α1,6 to GlcNAc in N-linked glycans. Most of these glycoproteins probably corresponds to the H+K+-ATPase β-subunit. The intestinal goblet cells contained acidic glycoconjugates, with residues of GalNAc, mannose/ glucose, (GlcNAc β1,4) n oligomers and fucose linked α1,2 to Gal in O-linked oligosaccharides. The different composition of the mucus in the digestive tracts may be correlated with its different functions. In fact the presence of abundant sulphation of glycoconjugates, mainly in the oesophagus and intestine, probably confers resistance to bacterial enzymatic degradation of the mucus barrier.  相似文献   

3.
Cell surface carbohydrates present on BG01 human embryonic stem cells after 28 days of differentiation were examined using two classes of carbohydrate binding proteins: lectins and antibodies specific for carbohydrate epitopes. Specificity of lectin staining was verified using carbohydrate ligands to block lectin interaction, glycohydrolases to cleave specific sugar residues that are receptors for these proteins, and periodate oxidation to destroy susceptible sugar residues. Specific antibodies were used to identify various tissue types and germ layers present in the 12- and 28-day differentiating embryoid bodies. Results from 12 and 28-day differentiated embryoid bodies were compared to determine changes over time. A slight increase in the sialylation of α-GalNAc was seen between 12 and 28 days of differentiation due to the presence of sialyl Tn and/or other sialylated α-GalNAc residues. Increases were also observed in GalNAc, the T antigen (Gal β1,3 GalNAc), and difucosylated LacNAc residues during this time interval. Additionally, some distinct differences in the pattern of lectin staining between 12 and 28 days were observed. Not unexpectedly, the presence of most differentiated cell-types increased during this time period with the exception of neural progenitors, which decreased. Undifferentiated cells, which were prevalent in the 12-day EBs, were undetectable after 28 days. We conclude that several changes in glycosylation occurred during the differentiation of embryonic stem cells, and that these changes may play a role in embryonic development. Lectin abbreviations can be found in Table 1.  相似文献   

4.
As part of a strategy to determine the precise role of pea (Pisum sativum) lectin, Psl, in nodulation of pea by Rhizobium leguminosarum, mutations were introduced into the genetic determinant for pea lectin by site-directed mutagenesis using PCR. Introduction of a specific mutation, N125D, into a central area of the sugar-binding site resulted in complete loss of binding of Psl to dextran as well as of mannose/glucose-sensitive haemagglutination activity. As a control, substitution of an adjacent residue, A126V, did not have any detectable influence on sugar-binding activity. Both mutants appeared to represent normal Psl dimers with a molecular mass of about 55 kDa, in which binding of Ca2+ and Mn2+ ions was not affected. These results demonstrate that the NHD2 group of Asn125 is essential in sugar binding by Psl. To our knowledge, Psl N125D is the first mutant legume lectin which is unable to bind sugar residues. This mutant could be useful in the identification of the potential role of the lectin in the recognition of homologous symbionts.  相似文献   

5.
On binding toVicia faba lectin, the fluorescence of 4-methylumbelliferyl-α-D-glucoPyranoside was quantitatively quenched showing that the interaction of 4-methylumbelliferyl-α-D-glucoPyranoside took Place in a binding environment. The binding of the fluorescent sugar was saccharide sPecific as evidenced by the reversal of 4-methylumbelliferyl-α-D-glucoPyranoside fluorescence quenching by D-fructose. The association constant,K a, values for the 4-methylumbelliferyl-α-D-glucoPyranoside was determined by comPetition study emPloying reversal of fluorescence quenching of 4-methylumbelliferyl-α-D-glucoPyranoside by D-fructose. TheK a value obtained for D-fructose was 1.07 ±0.03 X 104 M-1 and for 4-methylumbelliferyl-α-D-glucoPyranoside was 1.60 ±0.05 X 104 M-1 at 15°C. TheK a values of 2.51 ±0.06 X 104M-1, l.26 ±0.02 X 104 M-1 and 0.56 ±0.01 X 104M-1, resPectively at 10°, 20° and 30°C were obtained from the ChiPman equation. The relative fluorescence quenching, ΔF a, at infinite concentration of the free saccharide sites ofVicia faba lectin [P′] was 93.5% at 30°C and the binding constant for 4-methylumbelliferyl-α-D-glucoPyranoside lectin interaction as derived by Yank and Hanaguchi equation was 0.63 ±0.01 X 104M-1.  相似文献   

6.
In a previous report (Cebo et al. J Biol Chem 276 (2001) 5685–5691), it was established that biologically active recombinant human IL-1α and IL-1β had different carbohydrate-binding properties. IL-1α recognized a di-antennary N-glycan with two α2-3-linked sialic acid residues, whereas IL-1β recognized the GM4, a α2-3-linked sialylated glycosphingolipid. These different carbohydrate-binding properties of two interleukins binding to the same receptor (IL-1R) could explain why these molecules had different biological effects and cell specificities. Molecular modeling of the ligands and in silico docking experiments defined putative carbohydrate-recognition domains localized in the same area of the two molecules, a domain different from that defined as the type I IL-1R binding domain. The calculated pattern of hydrogen bonding and of van der Waals interactions fulfilled the essential features observed for calcium-independent lectins (mammalian, viral or bacterial). The analysis of the same domain of the third members of this family of molecules, the IL-1R-antagonist, indicated it did not fulfill the criteria for carbohydrate-recognition domains. It is proposed that its role as a pure antagonist is due to the absence of lectin activity and consequently explained its inability to associate IL-1R with other surface molecular complexes necessary for signaling.  相似文献   

7.
Bryohealin is a lectin involved in the wound-healing process of the marine green alga Bryopsis plumosa. In the previous purification study, it has been shown that lectin was composed of two identical subunits of 27 kDa, cross-linked by disulfide bond, and showed binding specificity to N-acetyl-d-glucosamine and N-acetyl-d-galactosamine (GlcNAc and GalNAc, respectively). To determine if the lectin recognize the two different sugars at the same binding domain, the carbohydrate binding sites of Bryohealin was analyzed using chromatography and chemical modification methods. Results showed that the same binding site of the lectin was responsible for the recognition of two sugars, GalNAc as well as GlcNAc. Chemical modification studies showed that hemagglutinating activities of Bryohealin were not affected by modification of histidine, tryptophan, aspartic acid, and glutamic acid. When arginine residues were modified with 1,2-cyclohexanedione, the activity of Bryohealin rapidly decreased. The sugar binding sites remained intact when the lectin was treated with inhibitory sugars (0.2 M GalNAc and/or GlcNAc) prior to 1,2-cyclohexanedione treatment. The sugar binding domain of Bryohealin was predicted from the MALDI-TOF analysis and the full cDNA sequence of the lectin gene.  相似文献   

8.
Calreticulin (CRT) is a soluble, lectin chaperone found in the endoplasmic reticulum of eukaryotes. It binds the N-glycosylated polypeptides via the glycan intermediate Glc1Man5–9GlcNAc2, present on the target glycoproteins. Earlier we have studied interactions of substrate with CRT by isothermal titration calorimetry (ITC) and molecular modeling, to establish that CRT recognizes the Glcα1–3 linkage and forms contacts with each saccharide moiety of the oligosaccharide Glcα1–3Manα1–2Manα1–2Man. We also delineated the amino acid residues in the sugar binding pocket of CRT that play a crucial role in sugar–CRT binding. Here, we have used mono-deoxy analogues of the trisaccharide unit Glcα1–3Manα1–2Man to determine the role of various hydroxyl groups of the sugar substrate in sugar–CRT interactions. Using the thermodynamic data obtained by ITC with these analogues we demonstrate that the 3-OH group of Glc1 plays an important role in sugar–CRT binding, whereas the 6-OH group does not. Also, the 4-OH, 6-OH of Man2 and 3-OH, 4-OH of Man3 in the trisaccharide are involved in binding, of which 6-OH of Man2 and 4-OH of Man3 have a more significant role to play. This study sheds light further on the interactions between the substrate sugar of glycoproteins and the lectin chaperone CRT.  相似文献   

9.
Lectins are carbohydrate-binding proteins present in a wide variety of plants and animals, which serve various important physiological functions. A soluble β-galactoside binding lectin has been isolated and purified to homogeneity from buffalo brain using ammonium sulphate precipitation (40–70%) and gel permeation chromatography on Sephadex G50–80 column. The molecular weight of buffalo brain lectin (BBL) as determined by SDS-PAGE under reducing and non-reducing conditions was 14.2 kDa, however, with gel filtration it was 28.5 kDa, revealing the dimeric form of protein. The neutral sugar content of the soluble lectin was estimated to be 3.3%. The BBL showed highest affinity for lactose and other sugar moieties in glycosidic form, suggesting it to be a β-galactoside binding lectin. The association constant for lactose binding as evidenced by Scatchard analysis was 6.6 × 103 M−1 showing two carbohydrate binding sites per lectin molecule. A total inhibition of lectin activity was observed by denaturants like guanidine HCl, thiourea and urea at 6 M concentration. The treatment of BBL with oxidizing agent destroyed its agglutination activity, abolished its fluorescence, and shifted its UV absorption maxima from 282 to 250 nm. The effect of H2O2 was greatly prevented by lactose indicating that BBL is more stable in the presence of its specific ligand. The purified lectin was investigated for its brain cell aggregation properties by testing its ability to agglutinate cells isolated from buffalo and goat brains. Rate of aggregation of buffalo brain cells by purified protein was more than the goat brain cells. The data from above study suggests that the isolated lectin may belong to the galectin-1 family but is glycosylated unlike those purified till date.  相似文献   

10.
1. Modification of potato (Solanum tuberosum) lectin with acetic anhydride blocked 5.1 amino and 2.7 tyrosyl groups per molecule of lectin and decreased the haemagglutinating activity of the lectin. De-O-acetylation regenerated 2.0 of the tyrosyl groups and resulted in a recovery of activity. 2. Modification with citraconic anhydride or cyclohexane-1,2-dione did not greatly affect activity, although modification of amino and arginyl groups could be demonstrated. 3. Treatment with tetranitromethane nitrated 3.7 tyrosine residues per molecule of lectin with concomitant loss of activity. The presence of 0.1m-NN′N″-triacetylchitotriose (a potent inhibitor of the lectin) in the reaction medium protected all the tyrosyl residues from nitration and the lectin was fully active. 4. Modification of tryptophyl groups with 2-hydroxy-5-nitrobenzyl bromide and 2,3-dioxoindoline-5-sulphonic acid modified 0.9 and 2.6 residues per molecule of lectin respectively with a loss of activity in each case. Reaction of potato lectin with 2,3-dioxoindoline-5-sulphonic acid in the presence of inhibitor protected 2.4 residues of tryptophan from the reagent. Loss of haemagglutination activity was prevented under these conditions. 5. Reaction of carboxy groups, activated with carbodi-imide, with α-aminobutyric acid methyl ester led to the incorporation of 5.3 residues of the ester per molecule of lectin. Presence of inhibitor in this case, although protecting activity, did not prevent modification of carboxy groups; in fact an increase in the number of modified residues was seen. This effect could be imitated by performing the reaction in 8m-urea. In both cases the number of carboxy groups modified was close to the total number of free carboxy groups as determined by the method of Hoare & Koshland [(1967) J. Biol. Chem. 242, 2447–2453]. Guanidination of lysine residues after carboxy-group modification gave less homoarginine than did the unmodified lectin under the same conditions, suggesting the formation of intramolecular cross-links during carbodi-imide activation. 6. It is suggested from the results presented that amino, arginyl, methionyl, histidyl and carboxyl groups are not involved in the activity of the lectin and that tyrosyl and tryptophyl groups are very closely involved. These findings are similar to those reported for other proteins that bind N-acetylglucosamine oligomers and also fit the general trend in other lectins.  相似文献   

11.
Polycystin-1 (Pc-1) is the 4303 amino acid multi-domain glycoprotein product of the polycystic kidney disease-1 (PKD1) gene. Mutations in this gene are implicated in 85% of cases of human autosomal dominant polycystic disease. Although the biochemistry of Pc-1 has been extensively studied its three dimensional structure has yet to be determined. We are combining bioinformatics, computational and biochemical data to model the 3D structure and function of individual domains of Pc-1. A three dimensional model of the C-type lectin domain (CLD) of Pc-1 (sequence region 405–534) complexed with galactose (Gal) and a calcium ion (Ca+2) has been developed (the coordinates are available on request, e-mail: pletnev@hwi.buffalo.edu). The model has α/β structural organization. It is composed of eight β strands and three α helices, and includes three disulfide bridges. It is consistent with the observed Ca+2 dependence of sugar binding to CLD and identifies the amino acid side chains (E499, H501, E506, N518, T519 and D520) that are likely to bind the ligand. The model provides a reliable basis upon which to map functionally important residues using mutagenic experiments and to refine our knowledge about a preferred sugar ligand and the functional role of the CLD in polycystin-1. Figure Carbohydrate binding site with bound galactose and calcium ion inC-lectin binding domain of polycystin-1  相似文献   

12.
This contribution illustrates the advantages of some chromophoric and fluorophoric carbohydrate derivatives such asp-nitrophenyl (pNO2Phe) or 4-methylumbelliferyl (MeUmb) glycosides andN-dansylgalactosamine in studies of the binding equilibrium and kinetics with some plant lectins. The methods used involve continuous titrations of changes in ligand or protein absorption and ligand fluorescence, including substitution titrations as well as stopped-flow, temperature-jump or pressure-jump relaxation kinetics. When monitored by temperature-jump relaxation, binding of MeUmbαGal to the bloodgroup A specific lectin GSAI-A4 fromGriffonia simplicifolia is a simple bimolecular association with parametersk + = 9.4 × 104 M-1 s-1 andk -1 = 5.3 s-1 at 23°C, but binding to the GSAI-B4 lectin is biphasic. The complementarity of the peanut agglutinin binding site with Galβ1 → 3GalNAc that occurs in manyO-glycoproteins follows from enthalpic considerations and also from the value of the dissociation-rate parameterk -1 = 0.24 s-1 of the MeUmbβGalβl → 3GalNAc.lectin complex. This value, obtained by stopped-flow kinetics is 100 times smaller than for other mono-and disaccharides investigated. The binding mechanism is simple and the derivatisation of Galβ1 → 3GalNAc does not affect the affinity to a considerable degree. The binding preference of tetravalentsoybean agglutinin for MeαGalNAc over MeαGal by a factor of 25 is mainly of enthalpic origin with an additional 7 kJ mol-1; the NAc group causes perturbation of a tryptophanyl residue, evidenced by protein difference absorption spectrometry. In the glycosides, a large aglycon likeβpNO2 Phe orβMeUmb hardly affects the affinity of SBA but a largeN-dansyl group increases the affinity by a factor 20 as compared to GalNAc. The 10-fold increase in carbohydrate-specificN-dansylgalactosamine fluorescence, together with a very favourable entropic contribution point at the presence of a hydrophobic region in the vicinity of the carbohydrate-binding site. The dissociation-rate parameter of the MeUmbβGalNAc SBA complex is slower than for any reported monosaccharide-lectin complex: 0.4 s-1. The divalent lectin fromErythrina cristagalli preferentially binds the Galβ1 → 4GlcNAc structure that occurs in manyN-glycoproteins. The combining site was mapped thermodynamically with carbohydrates ranging from mono-to pentasaccharides as derived fromN-glycoproteins. Here, N-dansylgalactosamine was used as a fluorescent indicator ligand in substitution titrations. When Galβ1 → 4GlcNAc was linkedα1 → 2 orα1 → 6 to Man, the binding enthalpy and entropy remained practically constant. Application of stopped flow kinetics and pressure-jump relaxation withN-dansylgalactosamine gave mono-exponential signal changes with a concentration dependence corresponding tok + = 4.8 x 104 M-1 s-1 k - = 0.4 to 0.66 s-1 and a change in reaction volume of+7ml/mol.  相似文献   

13.
A carbohydrate-binding module from family 13 (CBM13), appended to the catalytic domain of endo-1,3-β-glucanase from Cellulosimicrobium cellulans, was overexpressed in E. coli, and its interactions with β-glucans, laminarin and laminarioligosaccharides, were analyzed using surface plasmon resonance biosensor and isothermal titration calorimetry. The association constants for laminarin and laminarioligosaccharides were determined to be approximately 106 M−1 and 104 M−1, respectively, indicating that 2 or 3 binding sites in the α-, β-, and γ-repeats of CBM13 are involved in laminarin binding in a cooperative manner. The binding avidity is approximately 2-orders higher than the monovalent binding affinity. Mutational analysis of the conserved Asp residues in the respective repeats showed that the α-repeat primarily contributes to β-glucan binding. A Trp residue is predicted to be exposed to the solvent only in the α-repeat and would contribute to β-glucan binding. The α-repeat bound β-glucan with an affinity of approximately 104 M−1, and the other repeats additionally bound laminarin, resulting in the increased binding avidity. This binding is unique compared to the recognition mode of another CBM13 from Streptomyces lividans xylanase.  相似文献   

14.
α-Galactosidase I from Vicia faba seeds binds to potato starch and sheep erythrocytes. With the aid of fluorescence microscopy and using 4-methylumbelliferyl α-D-galactoside as the substrate it has been demonstrated that the binding is via the lectin sites of the enzyme leaving catalytic sites free and detectable. The lectin site is specific for D-glucose/D-mannose residues.  相似文献   

15.
Sclerotium rolfsii lectin (SRL), a secretory protein from the soil borne phytopathogenic fungus Sclerotium rolfsii, has shown in our previous studies to bind strongly to the oncofetal Thomson-Friedenreich carbohydrate (Galβ1-3GalNAc-ser/thr, T or TF) antigen. TF antigen is widely expressed in many types of human cancers and the strong binding of SRL toward such a cancer-associated carbohydrate structure led us to characterize the carbohydrate binding specificity of SRL. Glycan array analysis, which included 285 glycans, shows exclusive binding of SRL to the O-linked mucin type but not N-linked glycans and amongst the mucin type O-glycans, lectin recognizes only mucin core 1, core 2 and weakly core 8 but not to other mucin core structures. It binds with high specificity to “α-anomers” but not the “β-anomers” of the TF structure. The axial C4-OH group of GalNAc and C2-OH group of Gal is both essential for SRL interaction with TF disaccharide, and substitution on C3 of galactose by sulfate or sialic acid or N-acetylglucosamine, significantly enhances the avidity of the lectin. SRL differs in its binding to TF structures compared to other known TF-binding lectins such as the Arachis hypogea (peanut) agglutinin, Agaricus bisporus (mushroom) lectin, Jackfruit, Artocarpus integrifolia (jacalin) and Amaranthus caudatus (Amaranthin) lectin. Thus, SRL has unique carbohydrate-binding specificity toward TF-related O-linked carbohydrate structures. Such a binding specificity will make this lectin a very useful tool in future structural as well as functional analysis of the cellular glycans in cancer studies.  相似文献   

16.
Isolation and purification of a α-methyl-mannoside specific lectin (SL-I) of peanut was reported earlier [Singh and Das (1994) Glycoconj J 11:282–285]. Native SL-I is a glycoprotein having ∼31 kDa subunit molecular mass and forms dimer. The gene encoding this lectin is identified from a 6-day old peanut root cDNA library by anti-SL-I antibody and N-terminal amino acid sequence homology to the native lectin. Nucleotide sequence derived amino acid sequence of the re-SL-I shows amino acid sequence homology with the N-terminal and tryptic digests’ amino acid sequence of the native SL-I (nSL-I). Presence of a putative glycosylation (QNPS) site and a hydrophobic adenine-binding (VLVSYDANS) site is also identified in SL-I. Homology modeling of the lectin suggests it to be an archetype of legume lectins. It is expressed as a ~30 kDa apoprotein in E. coli and has the carbohydrate specificity and secondary structure identical to its natural counterpart. The lectin SL-I inhibits cytokinin 6-benzylaminopurine (BA)-induced “delayed leaf senescence” and “cotyledon expansion”. Equilibrium dialysis revealed a single high-affinity binding site for adenine (7.6 × 10−6 M) and BA (1.09 × 10−5 M) in the SL-I dimer and thus suggesting that the cytokinin antagonist effect of SL-I is mediated by the direct interaction of SL-I with BA.The nucleotide sequence data reported here are available in the DDBJ/EMBL/GenBank databases under the Accession No. AJ585523  相似文献   

17.
Post-translational modification of histones and other chromosomal proteins regulates chromatin conformation and gene activity. Methylation and acetylation of lysyl residues are among the most frequently described modifications in these proteins. Whereas these modifications have been studied in detail, very little is known about a recently discovered chemical modification, the Nε-lysine formylation, in histones and other nuclear proteins. Here we mapped, for the first time, the sites of lysine formylation in histones and several other nuclear proteins. We found that core and linker histones are formylated at multiple lysyl residues located both in the tails and globular domains of histones. In core histones, formylation was found at lysyl residues known to be involved in organization of nucleosomal particles that are frequently acetylated and methylated. In linker histones and high mobility group proteins, multiple formylation sites were mapped to residues with important role in DNA binding. Nε-lysine formylation in chromosomal proteins is relatively abundant, suggesting that it may interfere with epigenetic mechanisms governing chromatin function, which could lead to deregulation of the cell and disease.  相似文献   

18.
1H-3-Hydroxy-4-oxoquinaldine 2,4-dioxygenase (Hod), catalyzing cleavage of its heteroaromatic substrate to form carbon monoxide and N-acetylanthranilate, belongs to the α/β hydrolase fold family of enzymes. Analysis of protein variants suggested that Hod has adapted active-site residues of the α/β hydrolase fold for the dioxygenolytic reaction. H251 was recently shown to act as a general base to abstract a proton from the organic substrate. Residue S101, which corresponds to the nucleophile of the catalytic triad of α/β-hydrolases, presumably participates in binding the heteroaromatic substrate. H102 and residues located in the topological region of the triad’s acidic residue appear to influence O2 binding and reactivity. A tyrosine residue might be involved in the turnover of the ternary complex [HodH+–3,4-dioxyquinaldine dianion–O2]. Absence of viscosity effects and kinetic solvent isotope effects suggests that turnover of the ternary complex, rather than substrate binding, product release, or proton movements, involves the rate-determining step in the reaction catalyzed by Hod.  相似文献   

19.
 We compared the peptide binding specificity of three HLA-DQ molecules; HLA-DQ(α1*0501, β1*0201), HLA-DQ(α1*0201, β1*0202), and HLA-DQ(α1*0501, β1*0301). The first of these molecules confers susceptibility to celiac disease and insulin-dependent diabetes mellitus, while the two latter molecules, which share either the α chain or the nearly identical β chain with HLA-DQ(α1*0501, β1*0201), do not predispose to these disorders. The binding of peptides was detected in biochemical binding assays as inhibition of binding of radiolabeled indicator peptides to affinity-purified HLA-DQ molecules. Binding experiments with several peptides demonstrated a clear difference in peptide binding specificity between the three HLA-DQ molecules. Further, single amino acid substitution analyses indicated that the HLA-DQ molecules have different peptide binding motifs. The experimental data were corroborated by computer modelling analysis. Our data suggest that the three HLA-DQ molecules prefer large hydrophobic residues in P1 of peptides with subtle differences in side-chain preferences. HLA-DQ(α1*0501, β1*0201) and HLA-DQ(α1*0201, β1*0202) both prefer large hydrophobic residues in P9, whereas HLA-DQ(α1*0501, β1*0301) prefers much smaller residues in this position. HLA-DQ(α1*0501, β1*0201) and HLA-DQ(α1*0201, β1*0202), in contrast to HLA-DQ(α1*0501, β1*0301), prefer negatively charged residues in P4 and P7. A less prominent P6 pocket also appears to differ between the three HLA-DQ molecules. Our results indicate that polymorphic residues of both the α and the β chain determine the peptide binding specificity of HLA-DQ(α1*0501, β1*0201), but that the β chain polymorphisms appears to play the most important role. The information on peptide residues which are advantageous and deleterious for binding to these HLA-DQ molecules may make possible the prediction of characteristic features of peptide that bind to HLA-DQ(α1*0501, β1*0201) and precipitate celiac disease. Received: 2 July 1996 / Revised: 7 August 1995  相似文献   

20.
A lectin present in seeds of Clitoria ternatea agglutinated trypsin-treated human B erythrocytes. The sugar specificity assay indicated that lectin belongs to Gal/Gal NAc-specific group. Hence the lectin, designated C. ternatea agglutinin (CTA), was purified by the combination of acetic acid precipitation, salt fractionation and affinity chromatography. HPLC gel filtration, SDS-polyacrylamide gel electrophoresis and mass spectrometry indicated that the native lectin is composed of two identical subunits of molecular weight 34.7 kDa associated by non covalent bonds. The N-terminal sequence of CTA shared homology with Glycine max and Pisum sativum. Complete sequence was also found to be homologous to S-64 protein of Glycine max, suggesting that CTA probably exhibits both hemagglutination and probably sugar uptake activity. The carbohydrate binding specificity of the lectin was investigated by quantitative turbidity measurements, and percent inhibition assays. Based on these assays, we conclude that CTA binds β-d-galactosides, and also may has an extended specificity towards non-reducing terminal Neu5Acα2,6Gal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号