首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N Osheroff 《Biochemistry》1989,28(15):6157-6160
Beyond its essential physiological functions, topoisomerase II is the primary cellular target for a number of clinically relevant antineoplastic drugs. Although the chemotherapeutic efficacies of these drugs correlate with their abilities to stabilize the covalent topoisomerase II-DNA cleavage complex, their molecular mechanism of action has yet to be described. In order to characterize the drug-induced stabilization of this enzyme-DNA complex, the effect of etoposide on the DNA cleavage/religation reaction of Drosophila melanogaster topoisomerase II was studied. Under the conditions employed, etoposide increased levels of enzyme-mediated double-stranded DNA cleavage 5-6-fold and single-stranded cleavage approximately 4-fold. Maximal stimulation was observed at 80-100 microM etoposide with 50% of the maximal effect at approximately 15 microM drug. By employing a topoisomerase II mediated DNA religation assay [Osheroff, N. & Zechiedrich, E.L. (1987) Biochemistry 26, 4303-4309], etoposide was found to stabilize the enzyme-DNA cleavage complex (at least in part) by inhibiting the enzyme's ability to religate cleaved DNA. Moreover, in order for the drug to affect religation, it has to be present at the time of DNA cleavage.  相似文献   

2.
K C Gale  N Osheroff 《Biochemistry》1990,29(41):9538-9545
Following its cleavage of double-stranded DNA, topoisomerase II is covalently bound to the 5'-termini of both nucleic acid strands. However, in order to isolate this enzyme-cleaved DNA complex in the presence of magnesium (the enzyme's physiological divalent cation), reactions must be terminated by the addition of a strong protein denaturant such as sodium dodecyl sulfate (SDS). Because of the requirement for a protein denaturant, it is unclear whether DNA cleavage in this in vitro system takes place prior to or is induced by the addition of SDS. To distinguish between these two possibilities, experiments were carried out to determine whether topoisomerase II bound DNA contains 3'-OH termini prior to denaturation. This was accomplished by using circular single-stranded phi X174 DNA as a model substrate for the enzyme. As found previously for topoisomerase II mediated cleavage of double-stranded DNA, the enzyme was covalently linked to the 5'-termini of cleaved phi X174 molecules. Moreover, optimal reaction pH as well as optimal salt and magnesium concentrations was similar for the two substrates. In contrast to results with double-stranded molecules, single-stranded DNA cleavage increased with time, was not salt reversible, and did not require the presence of SDS. Furthermore, cleavage products generated in the absence of protein denaturant could be labeled at their 3'-OH DNA termini by incubation with terminal deoxynucleotidyltransferase and [alpha-32P]ddATP. Finally, cleaved phi X174 molecules could be joined to a radioactively labeled double-stranded oligonucleotide by a topoisomerase II mediated intermolecular ligation reaction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We investigated the mode of action of the antitumor drug, camptothecin, by use of a partly double-stranded suicide DNA substrate which enables uncoupling of the cleavage and religation half-reactions of topoisomerase I. The suicide DNA substrate contains a single topoisomerase I site at which SDS cleavage is strongly enhanced by camptothecin on normal double-stranded DNA. The results show that the religation reaction of topoisomerase I per se is strongly inhibited at this site compared to site that is only marginally affected by camptothecin on double-stranded DNA. This study hereby directly demonstrates that camptothecin-mediated stability of a topoisomerase I-DNA complex is sequence-dependent. The influence of camptothecin on the suicide cleavage reaction of topoisomerase I was also investigated. Surprisingly, the cleavage reaction per se is strongly inhibited by the drug. However, reformation of a cleavable suicide DNA substrate, which is fully double-stranded downstream from the cleavage position except for a nick, completely reverses the inhibitory effect of the drug on the cleavage reaction. The results suggest that the inhibitory effect of camptothecin on cleavage is due to a general decrease in the noncovalent interaction of topoisomerase I with partly double-stranded suicide DNA substrates. Based on the findings, a plausible model for camptothecin action is discussed.  相似文献   

4.
M J Robinson  N Osheroff 《Biochemistry》1991,30(7):1807-1813
The post-strand-passage DNA cleavage/religation equilibrium of Drosophila melanogaster topoisomerase II was examined. This was accomplished by including adenyl-5'-yl imidodiphosphate, a nonhydrolyzable ATP analogue which supports strand passage but not enzyme turnover, in assays. Levels of post-strand-passage enzyme-mediated DNA breakage were 3-5 times higher than those generated by topoisomerase II prior to the strand-passage event. This finding correlated with a decrease in the apparent first-order rate of topoisomerase II mediated DNA religation in the post-strand-passage cleavage complex. Since previous studies demonstrated that antineoplastic drugs stabilize the pre-strand-passage cleavage complex of topoisomerase II by impairing the enzyme's ability to religate cleaved DNA [Osheroff, N. (1989) Biochemistry 28, 6157-6160; Robinson, M.J., & Osheroff, N. (1990) Biochemistry 29, 2511-2515], the effects of 4'-(9-acridinylamino)methanesulfon-m-anisidide (m-AMSA) and etoposide on the enzyme's post-strand-passage DNA cleavage complex were characterized. Both drugs stimulated the ability of topoisomerase II to break double-stranded DNA after strand passage. As determined by two independent assay systems, m-AMSA and etoposide stabilized the enzyme's post-strand-passage DNA cleavage complex primarily by inhibiting DNA religation. These results strongly suggest that both the pre- and post-strand-passage DNA cleavage complexes of topoisomerase II serve as physiological targets for these structurally disparate antineoplastic drugs.  相似文献   

5.
K D Bromberg  N Osheroff 《Biochemistry》2001,40(28):8410-8418
A common DNA religation assay for topoisomerase II takes advantage of the fact that the enzyme can rejoin cleaved nucleic acids but cannot mediate DNA scission at suboptimal temperatures (either high or low). Although temperature-induced DNA religation assays have provided valuable mechanistic information for several type II enzymes, high-temperature shifts have not been examined for human topoisomerase IIalpha. Therefore, the effects of temperature on the DNA cleavage/religation activity of the enzyme were characterized. Human topoisomerase IIalpha undergoes two distinct transitions at high temperatures. The first transition occurs between 45 and 55 degrees C and is accompanied by a 6-fold increase in the level of DNA cleavage at 60 degrees C. It also leads to a loss of DNA strand passage activity, due primarily to an inability of ATP to convert the enzyme to a protein clamp. The enzyme alterations that accompany the first transition appear to be stable and do not revert at lower temperature. The second transition in human topoisomerase IIalpha occurs between 65 and 70 degrees C and correlates with a precipitous drop in the level of DNA scission. At 75 degrees C, cleavage falls well below amounts seen at 37 degrees C. This loss of DNA scission appears to result from a decrease in the forward rate of DNA cleavage rather than an increase in the religation rate. Finally, similar high-temperature alterations were observed for yeast topoisomerase II and human topoisomerase IIbeta, suggesting that parallel heat-induced transitions may be widespread among type II topoisomerases.  相似文献   

6.
Sensitive sites for covalent trapping of eukaryotic topoisomerase I at DNA structural anomalies were mapped by a new method using purified enzyme and defined DNA substrates. To insure that the obtained topoisomerase I trapping patterns were not influenced by DNA sequence variations, a single DNA imperfection was placed centrally within a homonucleotide track. Mapping of topoisomerase I-mediated irreversible cleavage sites on homopolymeric DNA substrates containing mismatches showed trapping of the enzyme in several positions in close vicinity of the DNA imperfection, with a strong preference for the 5' junction between the duplex DNA and the base-pairing anomaly. On homopolymeric DNA substrates containing a nick, sites of topoisomerase I-mediated cleavage on the intact strand were located just opposite to the nick and from one to ten nucleotides 5' to the nick. Sites of enzyme-mediated cleavage next to a nick and an immobile single-stranded branch were located 5' to the strand interruption in distances of two to six nucleotides and two to ten nucleotides, respectively. Taken together these findings suggest that covalent trapping of topoisomerase I proceeds at positions adjacent to mismatches, nicks and single-stranded branches, where the cleavage reaction is allowed and the ensuing ligation reaction prevented. In principle, the developed interference method might be of general utility to define topoisomerase-DNA interactions relative to different types of structural anomalies.  相似文献   

7.
Chen S  Zhang Y  Hecht SM 《Biochemistry》2011,50(43):9340-9351
Vaccinia DNA topoisomerase IB is the smallest of the type IB topoisomerases. Because of its small size (314 amino acids) and target site specificity (5'(C/T)CCTTp(↓) sites), it constitutes an excellent model for studying the interaction of type IB enzymes with duplex DNA. In this study, p-thiophenylalanine was incorporated into the enzyme active site (position 274) by in vitro translation in the presence of a chemically misacylated tRNA. The modification, which resulted in replacement of the nucleophilic tyrosine OH group with SH, retained DNA topoisomerase activity and did not alter the DNA cleavage site. However, the modified topoisomerase effected relaxation of supercoiled plasmid DNA at a rate about 16-fold slower than the wild-type enzyme. The thiophenylalanine-induced DNA cleavage rate (k(cl) = 1 × 10(-4) s(-1)) was 30 times lower than for the wild-type enzyme (k(cl) = 3 × 10(-3) s(-1)). In contrast, thiophenylalanine-induced DNA religation was faster than that of the wild-type enzyme. We propose that the change in kinetics reflects the difference in bond energies between the O-P and S-P bonds being formed and broken in the reactions catalyzed by the wild-type and modified enzymes. We also studied the effect of adding Mg(2+) and Mn(2+) to the wild-type and modified topoisomerases I. Divalent metal ions such as Mg(2+) and Mn(2+) increased DNA relaxation activity of the wild-type and modified enzymes. However, the pattern of increases failed to support the possibility that metal ion-heteroatom interaction is required for catalysis.  相似文献   

8.
The uncoupling of the calf thymus Topoisomerase I-mediated forward DNA cleavage reaction from the religation event by a rapid shift of cleavage temperature either from 37 °C to 0 °C or from 37 °C to 56 °C has been studied and utilized to elucidate the molecular mechanism by which camptothecin, a clinically relevant antineoplastic agent, influences the half reactions of the enzyme. Results of heating and cooling religation-inducing treatments have been compared: both temperature extremes reduce the amount of protein-linked DNA breaks to background levels, thereby affecting cleavage reversal. Camptothecin is found to stabilize the enzyme-DNA intermediate, by inhibition of the Topoisomerase I-mediated rejoining of cleaved DNA, even when the drug is added after formation of the complex. We conclude that:
  1. Heating and cooling treatments show a pronounced effect on the DNA cleavage-religation equilibrium. The efficacy of cold is more pronounced than that of heat.
  2. Reversal of the enzyme-DNA intermediate favors the DNA resealing versus the closed relaxed form.
  3. Camptothecin affects the heat or cold induced religation: in fact in both cases the drug delays the religation step.
  相似文献   

9.
DNA topoisomerase II regulates the three-dimensional organisation of DNA and is the principal target of many important anticancer and antimicrobial agents. These drugs usually act on the DNA cleavage/religation steps of the catalytic cycle resulting in accumulation of covalent DNA-topoisomerase II complexes. We have studied the different steps of the catalytic cycle as a function of salt concentration, which is a classical way to evaluate the biochemical properties of proteins. The results show that the catalytic activity of topoisomerase II follows a bell-shaped curve with optimum between 100 and 225 mM KCl. No straight-forward correlation exists between DNA binding and catalytic activity. The highest levels of drug-induced covalent DNA-topoisomerase II complexes are observed between 100 and 150 mM KCl. Remarkably, at salt concentrations between 150 mM and 225 mM KCl, topoisomerase II is converted into a drug-resistant form with greatly reduced levels of drug-induced DNA-topoisomerase II complexes. This is due to efficient religation rather than to absence of DNA cleavage as witnessed by relaxation of the supercoiled DNA substrate. In the absence of DNA, ATP hydrolysis is strongest at low salt concentrations. Unexpectedly, the addition of DNA stimulates ATP hydrolysis at 100 and 150 mM KCl, but has little or no effect below 100 mM KCl in spite of strong non-covalent DNA binding at these salt concentrations. Therefore, DNA-stimulated ATP hydrolysis appears to be associated with covalent rather than non-covalent binding of DNA to topoisomerase II. Taken together, the results suggest that it is the DNA cleavage/religation steps that are most closely associated with the catalytic activities of topoisomerase II providing a unifying theme for the biological and pharmacological modulation of this enzyme.  相似文献   

10.
The DNA religation reaction of yeast type II topoisomerase (topo II) was investigated to elucidate its metal-dependent general acid/base catalysis. Quantum mechanical/molecular mechanical calculations were performed for the topo II religation reaction, and the proton transfer pathway was examined. We found a substrate-mediated proton transfer of the topo II religation reaction, which involves the 3′ OH nucleophile, the reactive phosphate, water, Arg781, and Tyr782. Metal A stabilizes the transition states, which is consistent with a two-metal mechanism in topo II. This pathway may be required for the cleavage/religation reaction of topo IA and II and will provide a general explanation for the catalytic mechanism in the topo IA and II.  相似文献   

11.
Eukaryotic topoisomerase II is capable of binding two separate nucleic acid helices prior to its DNA cleavage and strand passage events (Zechiedrich, E. L., and Osheroff, N (1990) EMBO J. 9, 4555-4562). Presumably, one of these helices represents the helix that the enzyme cleaves (i.e. cleavage helix), and the other represents the helix that it passes (i.e. passage helix) through the break in the nucleic acid backbone. To determine whether the passage helix is required for reaction steps that precede the enzyme's DNA strand passage event, interactions between Drosophila melanogaster topoisomerase II and a short double-stranded oligonucleotide were assessed. These studies employed a 40-mer that contained a specific recognition/cleavage site for the enzyme. The sigmoidal DNA concentration dependence that was observed for cleavage of the 40-mer indicated that topoisomerase II had to interact with more than a single oligonucleotide in order for cleavage to take place. Despite this requirement, results of enzyme DNA binding experiments indicated no binding cooperativity for the 40-mer. These findings strongly suggest a two-site model for topoisomerase II action in which the passage and the cleavage helices bind to the enzyme independently, but the passage helix must be present for efficient topoisomerase II-mediated DNA cleavage to occur.  相似文献   

12.
Topoisomerase II is an essential enzyme that is required for virtually every process that requires movement of DNA within the nucleus or the opening of the double helix. This enzyme helps to regulate DNA under- and overwinding and removes knots and tangles from the genetic material. In order to carry out its critical physiological functions, topoisomerase II generates transient double-stranded breaks in DNA. Consequently, while necessary for cell survival, the enzyme also has the capacity to fragment the genome. The DNA cleavage/ligation reaction of topoisomerase II is the target for some of the most successful anticancer drugs currently in clinical use. However, this same reaction also is believed to trigger chromosomal translocations that are associated with specific types of leukemia. This article will familiarize the reader with the DNA cleavage/ligation reaction of topoisomerase II and other aspects of its catalytic cycle. In addition, it will discuss the interaction of the enzyme with anticancer drugs and the mechanisms by which these agents increase levels of topoisomerase II-generated DNA strand breaks. Finally, it will describe dietary and environmental agents that enhance DNA cleavage mediated by the enzyme.  相似文献   

13.
A unique reaction for type II DNA topoisomerase is its cleavage of a pair of DNA strands in concert. We show however, that in a reaction mixture containing a molar excess of EDTA over Mg2+, or when Mg2+ is substituted by Ca2+, Mn2+, or Co2+, the enzyme cleaves only one rather than both strands. These results suggest that the divalent cations may play an important role in coordinating the two subunits of DNA topoisomerase II during the strand cleavage reaction. The single strand and the double strand cleavage reactions are similar in the following aspects: both require the addition of a protein denaturant, can be reversed by low temperature or high salt, and a topoisomerase II molecule is attached covalently to the 5' phosphoryl end of each broken DNA strand. Furthermore, the single strand cleavage sites share a similar sequence preference with double strand cleavage sites. There is, however, a strand bias for the single strand cleavage reaction. We show also that under single strand cleavage conditions, topoisomerase II still possesses a low level of double strand passage activity: it can introduce topological knots into both covalently closed or nicked DNA rings, and change the linking number of a plasmid DNA by steps of two. The implication of this observation on the sequential cleavage of the two strands of the DNA duplex during the normal DNA double strand passage process catalyzed by type II DNA topoisomerases is discussed.  相似文献   

14.
The strand specificity of topoisomerase II mediated DNA cleavage was analyzed at the nucleotide level by characterizing the enzyme's interaction with a strong DNA recognition site. This site was isolated from the promoter region of the extrachromosomal rRNA genes of Tetrahymena thermophila and was recognized by type II topoisomerases from a variety of phylogenetically diverse eukaryotic organisms, including Drosophila, Tetrahymena, and calf thymus. When incubated with this site, topoisomerase II was found to introduce single-stranded breaks (i.e., nicks) in addition to double-stranded breaks in the nucleic acid backbone. Although the nucleotide position of cleavage on both the noncoding and coding strands of the rDNA remained unchanged, the relative ratios of single- and double-stranded DNA breaks could be varied by altering reaction conditions. Under all conditions which promoted topoisomerase II mediated DNA nicking, the enzyme displayed a 3-10-fold specificity for cleavage at the noncoding strand of its recognition site. To determine whether this specificity of topoisomerase II was due to a faster forward rate of cleavage of the noncoding strand or a slower rate of its religation, a DNA religation assay was performed. Results indicated that both the noncoding and coding strands were religated by the enzyme at approximately the same rate. Therefore, the DNA strand preference of topoisomerase II appears to be embodied in the enzyme's forward cleavage reaction.  相似文献   

15.
Type II topoisomerases resolve topological problems of DNA double helices by passing one duplex through the reversible double-stranded break they generated on another duplex. Despite the wealth of information in the cleaving operation, molecular understanding of the enzymatic DNA ligation remains elusive. Topoisomerase poisons are widely used in anti-cancer and anti-bacterial therapy and have been employed to entrap the intermediates of topoisomerase IIβ with religatable DNA substrate. We removed drug molecules from the structure and conducted molecular dynamics simulations to investigate the enzyme-mediated DNA religation. The drug-unbound intermediate displayed transitions toward the resealing-compliant configuration: closing distance between the cleaved DNA termini, B-to-A transformation of the double helix, and restoration of the metal-binding motif. By mapping the contact configurations and the correlated motions between enzyme and DNA, we identified the indispensable role of the linker preceding winged helix domain (WHD) in coordinating the movements of TOPRIM, the nucleotide-binding motifs, and the bound DNA substrate during gate closure. We observed a nearly vectorial transition in the recovery of the enzyme and identified the previously uncharacterized roles of Asn508 and Arg677 in DNA rejoining. Our findings delineate the dynamic mechanism of the DNA religation conducted by type II topoisomerases.  相似文献   

16.
The DNA strand passage activity of eukaryotic topoisomerase II relies on a cascade of conformational changes triggered by ATP binding to the N-terminal domain of the enzyme. To investigate the interdomain communication between the ATPase and cleavage/religation domains of human topoisomerase IIalpha, we characterized a mutant enzyme that contains a deletion at the interface between the two domains, covering amino acids 350-407. The ATPase domain retained full activity with a rate of ATP hydrolysis that was severalfold higher than normal, but the ATPase activity was unaffected by DNA. The cleavage and religation activities of the enzyme were comparable with those of the wild-type enzyme both in the absence and presence of cancer chemotherapeutic agents. However, neither ATP nor a nonhydrolyzable ATP analog stimulated cleavage complex formation. Although both conserved domains retained full activity, the mutant enzyme was unable to coordinate these activities into strand passage. Our findings suggest that the normal conformational transitions occurring in the enzyme upon ATP binding are hampered or lacking in the mutant enzyme. Consistent with this hypothesis, the enzyme displayed an abnormal clamp closing activity. In summary, the region covering amino acids 350-407 in human topoisomerase IIalpha seems to be essential for correct interdomain communication and probably is involved in signaling ATP binding to the rest of the enzyme.  相似文献   

17.
Single-strand DNA cleavages by eukaryotic topoisomerase II   总被引:7,自引:0,他引:7  
A new purification method for eukaryotic type II DNA topoisomerase (EC 5.99.1.3) is described, and the avian enzyme has been purified and characterized. An analysis of the cleavage reaction has revealed that topoisomerase II can be trapped as a DNA-enzyme covalent complex containing DNA with double-stranded and single-stranded breaks. The data indicate that DNA cleavage by topoisomerase II proceeds by two asymmetric single-stranded cleavage and resealing steps on opposite strands (separated by 4 bp) with independent probabilities of being trapped upon addition of a protein denaturant. Single-strand cleavages were directly demonstrated at both strong and weak topoisomerase II sites. Thus, a match to the vertebrate topoisomerase II consensus sequence (sequence; see text) (N is any base, and cleavage occurs between -1 and +1) [Spitzner, J.R., & Muller, M.T. (1988) Nucleic Acids Res. 16, 5533-5556)] does not predict whether a cleavage site will be single stranded or double stranded; however, sites cleaved by topoisomerase II that contain two conserved consensus bases (G residue at +2 and T at +4) generally yield double-strand cleavage whereas recognition sites lacking these two consensus elements yield single-strand cleavages. Finally, single-strand cleavages with topoisomerase II do not appear to be an artifact caused by damaged enzyme molecules since topoisomerase II in freshly prepared, crude extracts also shows the property of single-strand cleavages.  相似文献   

18.
The cleavage and religation reactions of eukaryotic topoisomerase II were studied by use of a 5'-recessed DNA substrate containing a strong recognition sequence for the enzyme. Cleavage of the DNA substrate was suicidal, that is the enzyme was unable to religate the cleaved DNA due to a release of DNA 5' to the cleavage position. With this substrate cleavage products accumulated with time in the absence of protein-denaturing agents, and the cleavage reaction was not reversible with salt. The suicide cleavage complexes contained a kinetically competent topoisomerase II enzyme as determined by the enzyme's ability to perform intermolecular ligation of the cleaved DNA to a free 3'-hydroxyl end on another DNA strand. The efficiency of the religation reaction depended on the ability of the religation substrate to base pair to the DNA in the cleaved enzyme-DNA complex. Higher levels of religation were obtained with dinucleotides than with long DNA substrates. Mononucleotides also were efficiently religated, indicating an ability of the enzyme to mediate religation without making contacts to a long stretch of nucleotides 5' to the cleavage position.  相似文献   

19.
The effects of calcium ions on interactions between Drosophila melanogaster topoisomerase II and DNA were assessed. Although the divalent cation could not support DNA strand passage, it was able to promote high levels of enzyme-mediated DNA cleavage. Moreover, sites of cleavage on plasmid pBR322 generated in calcium-promoted reactions were similar to those obtained in the presence of magnesium. When calcium-containing enzyme-DNA mixtures were treated with ethylenediaminetetraacetic acid, cleaved nucleic acids could be generated in the absence of sodium dodecyl sulfate (SDS) or other denaturing detergents. The product of this SDS-independent calcium-promoted reaction was a covalent topoisomerase II-DNA complex. Enzyme molecules trapped in such complexes were found to be kinetically competent. Therefore, calcium should be a valuable tool for studying the enzymology of topoisomerase II mediated DNA cleavage.  相似文献   

20.
A DNA consensus sequence for topoisomerase II cleavage sites was derived previously based on a statistical analysis of the nucleotide sequences around 16 sites that can be efficiently cleaved by Drosophila topoisomerase II (Sander, M., and Hsieh, T. (1985) Nucleic Acids Res. 13, 1057-1072). A synthetic 21-mer DNA sequence containing this cleavage consensus sequence was cloned into a plasmid vector, and DNA topoisomerase II can cleave this sequence at the position predicted by the cleavage consensus sequence. DNase I footprint analysis showed that topoisomerase II can protect a region of approximately 25 nucleotides in both strands of the duplex DNA, with the cleavage site located near the center of the protected region. Similar correlation between the DNase I footprints and strong topoisomerase II cleavage sites has been observed in the intergenic region of the divergent HSP70 genes. This analysis therefore suggests that the strong DNA cleavage sites of Drosophila topoisomerase II likely correspond to specific DNA-binding sites of this enzyme. Furthermore, the extent of DNA contacts made by this enzyme suggests that eucaryotic topoisomerase II, in contrast to bacterial DNA bacterial DNA gyrase, cannot form a complex with extensive DNA wrapping around the enzyme. The absence of DNA wrapping is probably the mechanistic basis for the lack of DNA supercoiling action for eucaryotic topoisomerase II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号