首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The spatial arrangement of tight junctions in choroid plexus and ciliary body rabbit epithelia has been determined by studying freeze-fracture complementary replicas. In the choroid plexus epithelium, the interruptions of the junctional P-face fibrils were measured to be 14% of their total length. In the ciliary body epithelium, where the fibrils were found to be more fragmented than in the choroid plexus, the P-face fibril interruptions accounted for 12 % of the total length of the zonulae occludentes sealing the non-pigmented cells and 30% in the focal linear tight junctions connecting the non-pigmented and pigmented cells at their apices. In both epithelia, the interruptions of the ridges are precisely complemented by particles or short bars of similar length found in the E-face furrows. Consequently, it is possible to conclude that the junctional fibrils are continuous in these two epithelia. For the zonulae occludentes, this continuity appears to be inconsistent with the ‘leaky’ properties of these epithelia shown by some physiological investigations.  相似文献   

2.
Junctional complexes between the epithelial cells in the four distinct regions of the glow-worm Malpighian tubule were investigated by electron microscopy using thin sectioning, freeze-fracturing, osmotic disruption and tracer techniques. The lateral plasma membranes of all four cell types are joined by smooth septate junctions but the extent of the complex across the cell depth varies in the four different regions. The width of the septa, the interseptal spacing and the separation between the outer leaflets of the adjacent plasma membranes are different for each cell type. Gap junctions were identified only in the junctional complex between Type IV cells and were intercalated amongst large lateral sinuses. In oblique sections of lanthanum infiltrated tissue, the electron-lucent septa at the basal side of the junction are outlined by the tracer as it penetrates. In the Junctional complexes of all four regions the septa appear as short, distinct, linear bars. In tangential sections of gap junctions between Type IV cells, the junctions appear as a hexagonal array of intermembrane particles with a centre to centre spacing of 18 nm. Horseradish peroxidase did not penetrate the junctional complexes very far but readily passed through the basal lamina into the spaces between extracellular invaginations of the basement membrane of the cells. Junctional complexes in all four areas of the tubule have similar freeze-fracture faces. In freeze-fracture replicas of fixed tissue continuous ridges of fused particles are seen on the P face and complementary furrows are found on the E face. Junctional response to osmotically adjusted Ringer solutions was similar in all four cell types. Distortion or ‘blistering’ of the intercellular space between the septa of the junction occurred when the tissue was bathed in or injected with a hypertonic Ringer solution. The structure of these junctions, visualized by the different techniques, and the role of the septate junction in a transporting epithelium, are discussed.  相似文献   

3.
Extensive and unequivocal tight junctions are here reported between the lateral borders of the cellular layer that circumscribes the arachnid (spider) central nervous system. This account details the features of these structures, which form a beltlike reticulum that is more complex than the simple linear tight junctions hitherto found in invertebrate tissues and which bear many of the characteristics of vertebrate zonulae occludentes. We also provide evidence that these junctions form the basis of a permeability barrier to exogenous compounds. In thin sections, the tight junctions are identifiable as punctate points of membrane apposition; they are seen to exclude the stain and appear as election- lucent moniliform strands along the lines of membrane fusion in en face views of uranyl-calcium-treated tissues. In freeze-fracture replicas, the regions of close membrane apposition exhibit P-face (PF) ridges and complementary E-face (EF) furrows that are coincident across face transitions, although slightly offset with respect to one another. The free inward diffusion of both ionic and colloidal lanthanum is inhibited by these punctate tight junctions so that they appear to form the basis of a circumferential blood-brain barrier. These results support the contention that tight junctions exist in the tissues of the invertebrata in spite of earlier suggestions that (a) they are unique to vertebrates and (b) septate junctions are the equivalent invertebrate occluding structure. The component tight junctional 8- to 10-nm-particulate PF ridges are intimately intercalated with, but clearly distinct from, inverted gap junctions possessing the 13-nm EF particles typical of arthropods. Hence, no confusion can occur as to which particles belong to each of the two junctional types, as commonly happens with vertebrate tissues, especially in the analysis of developing junctions. Indeed, their coexistance in this way supports the idea, over which there has been some controversy, that the intramembrane particles making up these two junctional types must be quite distinct entities rather than products of a common precursor.  相似文献   

4.
Freeze-cleave replicas of small capillaries of rat jejunum have revealed the presence of a new type of junction linking endothelial cells. This new junction reveals tight junctions (zonulae occludentes) in that the adjacent plasma membranes are held closely together along lines of attachment organized in the form of a loose, but frequently discontinuous network. In contrast to tight junctions, the A-face ridges possess a very low profile, and only at low shadowing angles can a repeating, particulate substructure occasionally be resolved. The shallow B-face furrows lack any particulate components. Images of cross-fractured focal points of attachment suggest that the external leaflets of adjacent membranes are closely apposed but not actually fused, as is the case with zonulae occludentes. It appears that this new type of endothelial junction is characteristic of small venules. Thus we propose that it be termed small venule endothelial junction.  相似文献   

5.
Human fetal primary tooth germs in the cap stage were fixed with a glutaraldehyde-formaldehyde mixture, and formative processes of tight and gap junctions of the inner enamel epithelium and preameloblasts were examined by means of freeze-fracture replication. Chains of small clusters of particles on the plasma membrane P-face of the inner enamel epithelium and preameloblasts were the initial sign of tight junction formation. After arranging themselves in discontinuous, linear arrays in association with preexisting or forming gap junctions, these particles later began revealing smooth, continuous tight junctional strands on the plasma membrane P-face and corresponding shallow grooves of a similar pattern on the E-face. Although they exhibited evident meshwork structures of various extents at both the proximal and distal ends of cell bodies, they formed no zonulae occludentes. Small assemblies of particles resembling gap junctions were noted at points of cross linkage of tight junctional strands; but large, mature gap junctions no longer continued into the tight junction meshwork structure. Gap junctions first appeared as very small particle clusters on the plasma membrane P-face of the inner enamel epithelium. Later two types of gap junctions were recognized: one consisted of quite densely aggregated particles with occasional particle-free areas, and the other consisted of relatively loosely aggregated particles with particle-free areas and aisles. Gap junction maturation seemed to consist in an increase of particle numbers. Fusion of gap junctions in the forming stage too was recognized. The results of this investigation suggest that, from an early stage in their development, human fetal ameloblasts possess highly differentiated cell-to-cell interrelations.  相似文献   

6.
Using thin sections and freeze-etch replicas the fine structure of the Sertoli cells of the rat testis was investigated after hypophysectomy, testosterone treatment and re-involution. 41 days after hypophysectomy the Sertoli cells contain numerous dense bodies and remnants of degenerating spermatocytes and spermatids. The Sertoli cell junctions are most prominent. The membranes of neighbouring cells are folded into several layers. Freeze-fracture replicas reveal a normal arrangement of Sertoli cell tight junctions with linear array of membrane particles preferentially on the B-face and complementary grooves on the A-face. The geometric pattern of the ridges is varying with respect to the basal, intermediate and apical portions of the lateral Sertoli cell membranes. Since no major changes of the size, distribution and localization of the Sertoli cell junctions were observed in the different experimental groups these junctions, once formed, are inferred to be independent from hypophyseal hormones.  相似文献   

7.
Summary In the pelagic larvacean Oikopleura dioica, the epithelium lining the alimentary tract consists of ciliated and unciliated cell types. The ciliated cells also exhibit an apical border of long microvilli. Between the microvilli, the cellular membrane often projects deeply down into the cytoplasm; the membranes of these invaginations and those of apicolateral interdigitations may be associated with one another by tight junctions. Some of these junctions may be autocellular. The tight junctions are seen by freeze-fracture to be very simple in construction, composed of a single row of intramembranous particles, which may be fused into a P-face ridge. There is a dense cytoplasmic fuzz associated with these tight junctions which may extend into adjoining zonula adhaerens-like regions. The invaginations of the apical membranes are, in addition, associated by gap junctions which may also be autocellular. More conventional homocellular and heterocellular tight and gap junctions occur along the lateral borders of ciliated cells and between ciliated and unciliated cells. These gap junctions possess a reduced intercellular cleft and typical P-face connexons arranged in macular plaques, with complementary E-face pits. Both cell types exhibit extensive stacks of basal and lateral interdigitations. The tight junctions found here are unusual in that they are associated with a dense cytoplasmic fuzz which is normally more characteristic of zonulae adhaerentes.  相似文献   

8.
A 0.5% mineral-oil solution of 9.10-dimethyl-1.2-benzanthracene (DMBA) was applied to artificial cecal pouches in the lower lips of rats. Ultrastructural studies were made of plasma membranes and intercellular junctions during the process of malignant transformation in the oral mucosal epithelium and after squamous cell carcinoma had been induced by the carcinogen. After the administration of DMBA, the inner leaflet of the membranes where the microfilaments are attached showed high electron density and intramembranous particles on the P-face of basal cells decreased to about half that of controls. However, on the E-face the number of intramembranous particles increased by approximately 10% compared with controls. Though the normal size range for intramembranous particles was 9-12 nm, the administration of DMBA caused aggregations of from three to six particles on the P-face. In squamous cell carcinomas, only the outer leaflet of the membranes showed high electron density; the number of intramembranous particles was 30% higher on the P-face and approximately three times higher on the E-face compared with controls and the morphology of the intramembranous particles, which formed irregular aggregates of from five to 20 particles, was specific. In animals treated with DMBA, the number of gap junctions decreased by between 50% and 70%, although no structural changes occurred. In squamous cell carcinomas, the area of gap junctions was about 50% lower and the number of gap junctions about 40% lower than in controls. Changes in the number and area of desmosomes were similar to those of gap junctions both in the DMBA-treated animals and in squamous cell carcinomas.  相似文献   

9.
The peritoneal mesothelium of mouse embryos (12 to 18 day of gestation) was studied by freeze-fracture and in sections in order to reveal the initial formation of the tight junctions. Freeze-fracture observations showed three types of tight junctions. Type I consists of belt-like meshworks of elevations on the P face and of shallow grooves on the E face. No tight junctional particle can be seen either on the elevations or in the grooves. Type II shows rows of discontinuous particles on the elevations on the P face. Type III consists of strands forming ridges on the P face. On the E face, the grooves of Type II and III appear to be narrower and sharper than those of Type I. Quantitatively, Type I junctions are most numerous during the early stages (day 12-13) of embryonic development, while Type III junctions become more common in the later stages, and are the only type seen by day 18. Observations on sections, however, fail to distinguish between the three types. The results suggest that an initial sign of tight junction formation is close apposition of the two cell membranes in the junctional domain, without tight junctional particles. Later, the particles appear to be incorporated in the tight junctions and the strands form by fusion of the particles.  相似文献   

10.
Summary Zonulae occludentes, gap junctions and desmosomes have been demonstrated in replicas of freeze-fractured follicular cells of normal human and rabbit thyroid glands. The zonulae occludentes between the human follicular cells are composed of two to eight strands, which completely separate the intercellular space from the follicular lumen. Four to twelve or more strands are visible between the follicular cells of the rabbit thyroid gland.In the meshes of the zonulae occludentes as well as below them, gap junctions are present. They are numerous on the fracture faces of the human follicular cell membranes, but infrequent in those of the rabbit.Aggregates of particles related to desmosomes are found in the deeper meshes of the zonulae occludentes or close to them.  相似文献   

11.
Summary Two kinds of occluding junctions are found between ileal epithelial cells of suckling rats: apical zonulae occludentes (ZO) and fasciae occludentes (FO) which are associated with the lateral plasma membranes of many epithelial cells. In unfixed preparations, glycerol treatment induces the further proliferation of extensive fasciae occludentes. Both kinds of junction have identical structural elements when visualized in freeze fracture replicas, although the arrangement of these elements differs. Zonulae occludentes consist of networks of branching and anastomosing linear ridges or rows of 10 nm particles with 20–30 nm spaces between the rows which form narrow belt-like structures around the apical region of adjacent cells. Fasciae occludentes, on the other hand, consist of similar linear ridges or rows of particles but the junction strands are often discontinuous, open ended and only occasionally intersect with each other. Several different fracture planes through the plasma membrane in the region of the occluding junctions have been observed and these provide further evidence that two components, one from each membrane, fused at the level of the extracellular space, form the junction sealing element. Furthermore, we present evidence which indicates a staggered rather than an in-register arrangement of these two components.This study was supported in part by National Institutes of Health Program Project No. NS10299 and National Institutes of Health Sciences Advancement Award No. RR06148 (J.D.R.) and by the Cancer Research Campaign (S.K.) and Medical Research Council (A.R.L.)  相似文献   

12.
N J Lane 《Tissue & cell》1979,11(3):481-506
Both rectal pads of the cockroach and rectal papillae of the blowfly possess highly infolded lateral borders; these are associated by desmosomes and septate junctions that maintain the physical integrity of the cell layer at the luminal and basal intercellular regions. Adjacent cells are coupled by gap junctions that allow for cell-to-cell communication and which occur at intervals along the undulating lateral clefts. In rectal pads, occluding basal tight junctions are found as well as extensive scalariform junctions. The latter, like the stacked membrane infoldings of rectal papillae, exhibit intercellular columns and numerous intramembranous P face particles; these are undoubtedly involved in ion transport. In the inter-stack clefts of papillae, reticular septate junctions are encountered which, after freeze-fracture, possess a striking network of PF ridges and EF grooves that are discontinuous and not always complementary. These may serve to regulate the speed and extent of distension of the clefts during solute movement to allow for even and effective fluid flow in this transporting epithelium.  相似文献   

13.
The microvillar and lumenal plasma membrane P-face of Ascaris intestinal cells is shown to be covered by relatively large (13 nm) particles at a fairly high density (1000/μm2), while the E-face has virtually none. The P-face of the lateral cell membranes, those separating the cells, have fewer and smaller (8 nm) particles. The intestinal cells are also shown to be connected by an apical complex of smooth septate and tricellular junctions similar to those found between some insect midgut cells. A periodic layer of tannic acid staining material is found on the cytoplasmic sides of the smooth septate junction, and when the intercellular space is filled with lanthanum, smoothly curved, 10 nm wide septal walls can be seen. Below the belt of septate junctions are a large number of gap junctions. These have closely packed arrays of particles on the P-face with some particle aggregates adhering to the closely packed pit arrays on the E-face.  相似文献   

14.
The ultrastructure of hepatocytes, bile canaliculi, and hepatic sinusoids of the larval lamprey, Petromyzon marinus, was examined using thin-sectioned and freeze-fractured tissues. The liver is a "tubular gland" with hepatocytes arranged in a tubular fashion around large bile canaliculi. Hepatocytes are roughly conical in shape, with their tapered apices facing a bile canalicular lumen. They possess extensive rough and smooth endoplasmic reticulum, a well-developed Golgi complex, abundant mitochondria, and varying numbers of large secondary lysosomes. Both secondary lysosomes and the Golgi complex are concentrated in the apical or peribiliary cytoplasm, indicating a possible role in bile secretion. The apical surfaces of the hepatocytes bear numerous elongate microvilli and occasional cilia, which project into the bile canaliculi. The hepatocytes are joined, apically, by junctional complexes composed of zonulae occludentes and adhaerentes. In freeze-fracture, the zonulae occludentes are of variable apicobasal depth and consist of honeycomb-like meshworks of fibrils. Spaces of variable width frequently appear in the P-face grooves, indicating that the zonulae occludentes are "leaky." Numerous communicating (gap) junctions join the hepatocytes laterally. Varying numbers of lateral microvilli project into the intercellular spaces and, basally, the plasma membrane is deeply infolded, resulting in the formation of apparently interdigitating basal processes resting upon a thin basal lamina. Sinusoids are composed of both a heavily-fenestrated, continuous endothelium, and phagocytic reticulo-endothelial (Kupffer) cells. Depsite the difference in arrangement of their hepatocytes, the mammalian and lamprey livers show similar ultrastructural features.  相似文献   

15.
In the central nervous system (CNS) of pupal Calliphora, dramatic alterations occur in the perineurial and glial gap junctions. Having formed macular plaques by late larval stages, in early pupae cell migration causes the EF intramembranous junctional particles to disaggregate and move apart into linear and then disorganised arrays as shown by freeze-fracture. After nerve and glial cell reorganisation into the adult pattern, the gap junctions begin to reform in the late pupae, again seemingly by particle migration into linear arrays and clusters. Ultimately the particles form numerous macular plaques between both perineurial and glial cells. Statistical analyses support the contention that these are performed EF particles which undergo translateral movement from macular larval junctions into the disaggregated particles of early pupae and that the same particles appear to undergo realignment and reclustering in late pupae to form the mature gap junctions of adults. This is the first report to indicate breakdown and reformation of gap junctions in vivo involving reutilisation of the same intramembranous particles. Perineurial “tight” junctions are not to be found in early pupal stages and their absence can be correlated with the free entry of ionic lanthanum into the CNS observed during that period. In late pupae, when the tight junctional moniliform ridges have apparently reformed, the entry of the tracer lanthanum becomes restricted to the level of the perineurium, penetrating no deeper. This is also the case in the adult, where the blood-brain barrier is maintained. PF particles in the form of short linear ridges and clustered particle arrays in nerve cell membranes are present throughout pupal and adult stages; their continued presence throughout the whole of development suggests some role in neuronal function, as yet unclear.  相似文献   

16.
Tissues from the epidermis, alimentary tract and notochord of the cephalochordate Branchiostoma lanceolatum have been examined in both thin sections and freeze-fracture replicas to ascertain the nature of the intercellular junctions that characterize their cell borders. The columnar epithelial cells from the branchial chamber (pharynx), as well as from the anterior and posterior intestine, all feature cilia and microvilli on their luminal surfaces. However, their lateral surfaces exhibit zonulae adhaerentes only. No gap junctions have been observed, nor any tight junctions (as are a feature of the gut of urochordates and higher vertebrates), nor unequivocal septate junctions (as are typical of the gut of invertebrates). The basal intercellular borders are likewise held together by zonulae adhaerentes while hemidesmosomes occur along the basal surface where the cells abut against the basal lamina. The lateral cell surfaces, where the adhesive junctions occur, at both luminal and basal borders, do not exhibit any specialized arrangement of intramembrane particles (IMPs), as visualized by freeze-fracture. The IMPs are scattered at random over the cell membranes, being particularly prevalent on the P-face. The only distinctive IMPs arrays are those found on the ciliary shafts in the form of ciliary necklaces and IMP clusters. With regard to these ciliary modifications, cephalochordates closely resemble the cells of the branchial tract of ascidians (urochordates). However, the absence of distinct junctions other than zonulae adhaerentes makes them exceptions to the situation generally encountered in both vertebrates and urochordates, as well as in the invertebrates. Infiltration with tracers such as lanthanum corroborates this finding; the lanthanum fills the extracellular spaces between the cells of the intestine since there are no junctions present to restrict its entry or to act even as a partial barrier. Junctions are likewise absent from the membranes of the notochord; the membranes of its lamellae and vesicles exhibit irregular clusters of IMPs which may be related to the association between the membranes and the notochordal filaments. Epidermis and glial cells from the nervous system possess extensive desmosomal-like associations or zonulae adhaerentes, but no other junctional type is obvious in thin sections, apart from very occasional cross-striations deemed by some previous investigators to represent 'poorly developed' septate junctions.  相似文献   

17.
ASSEMBLY OF GAP JUNCTIONS DURING AMPHIBIAN NEURULATION   总被引:20,自引:16,他引:4       下载免费PDF全文
Sequential thin-section, tracer (K-pyroantimonate, lanthanum, ruthenium red, and horseradish peroxidase), and freeze-fracture studies were conducted on embryos and larvae of Rana pipiens to determine the steps involved in gap junction assembly during neurulation. The zonulae occludentes, which join contiguous neuroepithelial cells, fragment into solitary domains as the neural groove deepens. These plaque-like contacts also become permeable to a variety of tracers at this juncture. Where the ridges of these domains intersect, numerous 85-Å participles apparently pile up against tight junctional remnants, creating arrays recognizable as gap junctions. With neural fold closure, the remaining tight junctional elements disappear and are replaced by macular gap junctions. Well below the junctional complex, gap junctions form independent of any visible, preexisting structure. Small, variegated clusters, containing 4–30 particles located in flat, particle-free regions, characterize this area. The number of particles within these arrays increases and they subsequently blend together into a polygonally packed aggregate resembling a gap junction. The assembly process in both apical and basal regions conforms with the concept of translational movement of particles within a fluid plasma membrane.  相似文献   

18.
Presynaptic active zones at neuromuscular junctions of larval frogs   总被引:1,自引:0,他引:1  
Freeze-fracturing presynaptic membranes at tadpole neuromuscular junctions display small clusters of large P-face particles, including short double linear arrays. Short pairs of double particle rows are randomly oriented at some junctions. At others, presynaptic membranes are crossed at regular intervals by long pairs of double rows indistinguishable from those characterizing the active zones of adult amphibian neuromuscular junctions. Formation of double particles rows, pairing of the double rows, and transverse alignments of the pairs are shown to be independent processes.  相似文献   

19.
Summary The rat brain capillary was studied with freeze-fracture technique. The attached plasmalemmal vesicles were quite few in number on the luminal front and sometimes numerous on the contraluminal side. The fracture appearance of some tight junctions showed interconnecting ridges on face A and complementary furrows devoid of particles on face B, comparable to the common tight junction in the normal epithelia. Other tight junctions revealed a preferential disposition of quasicontinuous rows of particles on shallow furrows of face B, resembling the tight junctional strands of capillary endothelium in non-cerebral tissues. Either behavior is probably due to the difference in the fracture plane around the single fibril. In addition, the tight junctional strand could surround the perimeter of the endothelial cell completely although the exposed strand of tight junction was limited in length.  相似文献   

20.
The structure and function of intercellular tight (occluding) junctions, which constitute the anatomical basis for highly regulated interfaces between tissue compartments such as the blood-testis and blood-brain barriers, are well known. Details of the synthesis and assembly of tight junctions, however, have been difficult to determine primarily because no model for study of these processes has been recognized. Primary cultures of brain capillary endothelial cells are proposed as a model in which events of the synthesis and assembly of tight junctions can be examined by monitoring morphological features of each step in freeze-fracture replicas of the endothelial cell plasma membrane. Examination of replicas of non-confluent monolayers of endothelial cells reveals the following intramembrane structures proposed as 'markers' for the sequential events of synthesis and assembly of zonulae occludentes: development of surface contours consisting of elongate terraces and furrows (valleys) orientated parallel to the axis of cytoplasmic extensions of spreading endothelial cells, appearance of small circular PF face depressions (or volcano-like protrusions on the EF face) that represent cytoplasmic vesicle-plasma membrane fusion sites, which are positioned in linear arrays along the contour furrows, appearance of 13-15 nm intramembrane particles at the perimeter of the vesicle fusion sites, and alignment of these intramembrane particles into the long, parallel, anastomosed strands characteristic of mature tight junctions. These structural features of brain endothelial cells in monolayer culture constitute the morphological expression of: reshaping the cell surface to align future junction-containing regions with those of adjacent cells, delivery and insertion of newly synthesized junctional intramembrane particles into regions of the plasma membrane where tight junctions will form, and aggregation and alignment of tight junction intramembrane particles into the complex interconnected strands of mature zonulae occludentes. The distribution of filipin-sterol complex-free regions on the PF intramembrane fracture face of junction-forming endothelial plasmalemmae corresponds precisely to the furrows, aligned vesicle fusion sites and anastomosed strands of tight junctional elements.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号