首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new technique of PCR hot start using oligonucleotide primers with a stem–loop structure is developed here. The molecular beacon oligonucleotide structure without any chromophore addition to the ends was used. The 3′-end sequence of the primers was complementary to the target and five or six nucleotides complementary to the 3′-end were added to the 5′-end. During preparation of the reaction mixture and initial heating, the oligonucleotide has a stem–loop structure and cannot serve as an effective primer for DNA polymerase. After heating to the annealing temperature it acquires a linear structure and primer extension can begin.  相似文献   

2.
Pon RT  Yu S 《Nucleic acids research》2005,33(6):1940-1948
Multiple oligonucleotides of the same or different sequence, linked end-to-end in tandem can be synthesized in a single automated synthesis. A linker phosphoramidite [R. T. Pon and S. Yu (2004) Nucleic Acids Res., 32, 623–631] is added to the 5′-terminal OH end of a support-bound oligonucleotide to introduce a cleavable linkage (succinic acid plus sulfonyldiethanol) and the 3′-terminal base of the new sequence. Conventional phosphoramidites are then used for the rest of the sequence. After synthesis, treatment with ammonium hydroxide releases the oligonucleotides from the support and cleaves the linkages between each sequence. Mixtures of one oligonucleotide with both 5′- and 3′-terminal OH ends and other oligonucleotides with 5′-phosphorylated and 3′-OH ends are produced, which are deprotected and worked up as a single product. Tandem synthesis can be used to make pairs of PCR primers, sets of cooperative oligonucleotides or multiple copies of the same sequence. When tandem synthesis is used to make two self-complementary sequences, double-stranded structures spontaneously form after deprotection. Tandem synthesis of oligonucleotide chains containing up to six consecutive 20mer (120 bases total), various trinucleotide codons and primer pairs for PCR, or self-complementary strands for in situ formation of double-stranded DNA fragments has been demonstrated.  相似文献   

3.
The flap endonuclease (FEN) of the hyperthermophilic archaeon Methanococcus jannaschii was expressed in Escherichia coli and purified to homogeneity. FEN retained activity after preincubation at 95°C for 15 min. A pseudo-Y-shaped substrate was formed by hybridization of two partially complementary oligonucleotides. FEN cleaved the strand with the free 5′ end adjacent to the single-strand–duplex junction. Deletion of the free 3′ end prevented cleavage. Hybridization of a complementary oligonucleotide to the free 3′ end moved the cleavage site by 1 to 2 nucleotides. Hybridization of excess complementary oligonucleotide to the free 5′ end failed to block cleavage, although this substrate was refractory to cleavage by the 5′-3′ exonuclease activity of Taq DNA polymerase. For verification, the free 5′ end was replaced by an internally labeled hairpin structure. This structure was a substrate for FEN but became a substrate for Taq DNA polymerase only after exonucleolytic cleavage had destabilized the hairpin. A circular duplex substrate with a 5′ single-stranded branch was formed by primer extension of a partially complementary oligonucleotide on virion X174. This denaturation-resistant substrate was used to examine the effects of temperature and solution properties, such as pH, salt, and divalent ion concentration on the turnover number of the enzyme.  相似文献   

4.
A primer design strategy named CODEHOP (consensus-degenerate hybrid oligonucleotide primer) for amplification of distantly related sequences was used to detect the priming glycosyltransferase (GT) gene in strains of the Lactobacillus casei group. Each hybrid primer consisted of a short 3′ degenerate core based on four highly conserved amino acids and a longer 5′ consensus clamp region based on six sequences of the priming GT gene products from exopolysaccharide (EPS)-producing bacteria. The hybrid primers were used to detect the priming GT gene of 44 commercial isolates and reference strains of Lactobacillus rhamnosus, L. casei, Lactobacillus zeae, and Streptococcus thermophilus. The priming GT gene was detected in the genome of both non-EPS-producing (EPS) and EPS-producing (EPS+) strains of L. rhamnosus. The sequences of the cloned PCR products were similar to those of the priming GT gene of various gram-negative and gram-positive EPS+ bacteria. Specific primers designed from the L. rhamnosus RW-9595M GT gene were used to sequence the end of the priming GT gene in selected EPS+ strains of L. rhamnosus. Phylogenetic analysis revealed that Lactobacillus spp. form a distinctive group apart from other lactic acid bacteria for which GT genes have been characterized to date. Moreover, the sequences show a divergence existing among strains of L. rhamnosus with respect to the terminal region of the priming GT gene. Thus, the PCR approach with consensus-degenerate hybrid primers designed with CODEHOP is a practical approach for the detection of similar genes containing conserved motifs in different bacterial genomes.  相似文献   

5.
A novel endonuclease IV post-PCR genotyping system   总被引:1,自引:0,他引:1  
Here we describe a novel endonuclease IV (Endo IV) based assay utilizing a substrate that mimics the abasic lesions that normally occur in double-stranded DNA. The three component substrate is characterized by single-stranded DNA target, an oligonucleotide probe, separated from a helper oligonucleotide by a one base gap. The oligonucleotide probe contains a non-fluorescent quencher at the 5′ end and fluorophore attached to the 3′ end through a special rigid linker. Fluorescence of the oligonucleotide probe is efficiently quenched by the interaction of terminal dye and quencher when not hybridized. Upon hybridization of the oligonucleotide probe and helper probe to their complementary target, the phosphodiester linkage between the rigid linker and the 3′ end of the probe is efficiently cleaved, generating a fluorescent signal. In this study, the use of the Endo IV assay as a post-PCR amplification detection system is demonstrated. High sensitivity and specificity are illustrated using single nucleotide polymorphism detection.  相似文献   

6.
Combinatorial fluorescence energy transfer (CFET) tags, constructed by exploiting energy transfer and combinatorial synthesis, allow multiple biological targets to be analyzed simultaneously. We here describe a multiplex single nucleotide polymorphism (SNP) assay based on single base extension (SBE) using CFET tags and biotinylated dideoxynucleotides (biotin-ddNTPs). A library of CFET-labeled oligonucleotide primers was mixed with biotin-ddNTPs, DNA polymerase and the DNA templates containing the SNPs in a single tube. The nucleotide at the 3′-end of each CFET-labeled oligonucleotide primer was complementary to a particular SNP in the template. Only the CFET-labeled primer that is fully complementary to the DNA template was extended by DNA polymerase with a biotin-ddNTP. We isolated the DNA extension fragments that carry a biotin at the 3′-end by capture with streptavidin-coated magnetic beads, while the unextended primers were eliminated. The biotinylated fluorescent DNA fragments were subsequently analyzed in a multicolor fluorescence electrophoresis system. The distinct fluorescence signature and electrophoretic mobility of each DNA extension product in the electropherogram coded the SNPs without the use of a sizing standard. We simultaneously distinguished six nucleotide variations in synthetic DNA templates and a PCR product from the retinoblastoma tumor suppressor gene. The use of CFET-labeled primers and biotin-ddNTPs coupled with the specificity of DNA polymerase in SBE offered a multiplex method for detecting SNPs.  相似文献   

7.
Bai X  Kim S  Li Z  Turro NJ  Ju J 《Nucleic acids research》2004,32(2):535-541
We report here the design, synthesis and evaluation of a novel photocleavable (PC) biotinylated nucleotide analog, dUTP-PC-Biotin, for DNA polymerase extension reaction to isolate DNA products for mass spectrometry (MS) analysis. This nucleotide analog has a biotin moiety attached to the 5-position of 2′-deoxyribouridine 5′-triphosphate via a photocleavable 2-nitrobenzyl linker. We have demonstrated that dUTP-PC-Biotin can be faithfully incorporated by the DNA polymerase Thermo Sequenase into the growing DNA strand in a DNA polymerase extension reaction and that its incorporation does not hinder the addition of the subsequent nucleotide. Therefore, the DNA extension fragments generated by using the dUTP-PC-Biotin can be efficiently isolated by a streptavidin-coated surface and recovered by near-UV light irradiation at room temperature in mild condition for further analysis without using any chemicals or heat. Single and multiple primer extension reactions were performed using the dUTP-PC-Biotin to generate DNA products for MALDI-TOF MS analysis. Such nucleotide analogs that carry a biotin and a photocleavable linker will allow the isolation and purification of DNA products under mild conditions for MS-based genetic analysis by DNA sequencing or multiplex single nucleotide polymorphism (SNP) detection. Furthermore, these nucleotide analogs should also be useful in isolating DNA–protein complexes under non-denaturing conditions.  相似文献   

8.
Here, we present a novel method for SNP genotyping based on protease-mediated allele-specific primer extension (PrASE), where the two allele-specific extension primers only differ in their 3′-positions. As reported previously [Ahmadian,A., Gharizadeh,B., O'Meara,D., Odeberg,J. and Lundeberg,J. (2001), Nucleic Acids Res., 29, e121], the kinetics of perfectly matched primer extension is faster than mismatched primer extension. In this study, we have utilized this difference in kinetics by adding protease, a protein-degrading enzyme, to discriminate between the extension reactions. The competition between the polymerase activity and the enzymatic degradation yields extension of the perfectly matched primer, while the slower extension of mismatched primer is eliminated. To allow multiplex and simultaneous detection of the investigated single nucleotide polymorphisms (SNPs), each extension primer was given a unique signature tag sequence on its 5′ end, complementary to a tag on a generic array. A multiplex nested PCR with 13 SNPs was performed in a total of 36 individuals and their alleles were scored. To demonstrate the improvements in scoring SNPs by PrASE, we also genotyped the individuals without inclusion of protease in the extension. We conclude that the developed assay is highly allele-specific, with excellent multiplex SNP capabilities.  相似文献   

9.
Conjugation of ligands to antisense oligonucleotides is a promising approach for enhancing their effects. In this report, a new method for synthesizing oligonucleotide conjugates is described. 2′-Amino-2′-deoxy-5′-dimethoxytrityl-uridine was select ively acylated with a succinic acid linker at the 2′ position. This compound was incorporated at the 3′ end of an oligonucleotide corresponding to the sequence of Oblimersen. The carboxyl group was protected for oligonucleotide synthesis as a benzyl ester, which could be selectively cleaved at the solid phase by a catalytic phase transfer reaction using palladium nanoparticles as catalyst. An oligonucleotide–fluorescein conjugate was prepared by condensation of aminofluorescein. Circular dichroism spectroscopic experiments showed a B-DNA type structure. The melting temperature of the duplex was only slightly lower than that of Oblimersen. Biological activity measured by western blotting resulted in a Bcl-2 target downregulation nearly identical to that of control Oblimersen on human melanoma cells, proving that this method is attractive for the binding of ligands located in the minor groove.  相似文献   

10.
Here we report a PCR-based DNA engineering technique for seamless assembly of recombinant molecules from multiple components. We create cloning vector and target molecules flanked with compatible single-stranded (ss) extensions. The vector contains a cassette with two inversely oriented nicking endonuclease sites separated by restriction endonuclease site(s). The spacer sequences between the nicking and restriction sites are tailored to create ss extensions of custom sequence. The vector is then linearized by digestion with nicking and restriction endonucleases. To generate target molecules, a single deoxyuridine (dU) residue is placed 6–10nt away from the 5′-end of each PCR primer. 5′ of dU the primer sequence is compatible either with an ss extension on the vector or with the ss extension of the next-in-line PCR product. After amplification, the dU is excised from the PCR products with the USER enzyme leaving PCR products flanked by 3′ ss extensions. When mixed together, the linearized vector and PCR products directionally assemble into a recombinant molecule through complementary ss extensions. By varying the design of the PCR primers, the protocol is easily adapted to perform one or more simultaneous DNA manipulations such as directional cloning, site-specific mutagenesis, sequence insertion or deletion and sequence assembly.  相似文献   

11.
A new deprotection procedure enables a medium scale preparation of phosphodiester and phosphorothioate oligonucleotides substituted with a protected thiol function at their 5′-ends and an amino group at their 3′-ends in good yield (up to 72 OD units/µmol for a 19mer phosphorothioate). Syntheses of 3′-amino-substituted oligonucleotides were carried out on a modified support. A linker containing the thioacetyl moiety was manually coupled in two steps by first adding its phosphoramidite derivative in the presence of tetrazole followed by either oxidation or sulfurization to afford the bis-derivatized oligonucleotide bound to the support. Deprotection was achieved by treating the fully protected oligonucleotide with a mixture of 2,2′-dithiodipyridine and concentrated aqueous ammonia in the presence of phenol and methanol. This procedure enables (i) cleavage of the oligonucleotide from the support, releasing the oligonucleotide with a free amino group at its 3′-end, (ii) deprotection of the phosphate groups and the amino functions of the nucleic bases, as well as (iii) transformation of the 5′-terminal S-acetyl function into a dithiopyridyl group. The bis-derivatized phosphorothioate oligomer was further substituted through a two-step procedure: first, the 3′-amino group was reacted with fluorescein isothiocyanate to yield a fluoresceinylated oligonucleotide; the 5′-dithiopyridyl group was then quantitatively reduced to give a free thiol group which was then substituted by reaction with an Nα-bromoacetyl derivative of a signal peptide containing a KDEL sequence to afford a fluoresceinylated peptide–oligonucleotide conjugate.  相似文献   

12.
13.
A method, termed hierarchical oligonucleotide primer extension (HOPE), is developed for quantitative, multiplexing detection of DNA targets present in PCR-amplified community 16S rRNA genes. It involves strand extension reaction and multiple oligonucleotide primers modified with different lengths of polyA at the 5′ end and targeting 16S rRNA genes at different phylogenetic specificities. On annealing to the targets, these primers are extended with a single fluorescently labeled dideoxynucleoside triphosphate or a dye-terminator. Using a DNA autosequencer, these extended primers are separated and identified by size and dye color, and quantified and normalized based on the fluorescence intensities and internal size standards. Using a primer-to-target ratio >1000, constant primer extension efficiencies can be obtained with individual primers to establish a ‘calibration factor’ between individual primers and a universal or domain-specific primer, providing the relative abundance of targeted rRNA genes with respect to total rRNA genes. HOPE up to 10-plexing is demonstrated to correctly identify 20 different bacterial strains, and quantify different Bacteroides spp. in 16S rRNA gene amplicons from different model bacteria mixtures and the influent and effluent of a wastewater treatment plant. Single mismatch discrimination with detection sensitivity of a target down to 0.01–0.05% of total DNA template is achieved.  相似文献   

14.
New linker phosphoramidite reagents containing a cleavable 3′-ester linkage are used for attaching the first nucleoside to the surface of a solid- phase support. Inexpensive, underivatized amino supports, such as long chain alkylamine controlled-pore glass, can serve as universal supports. No modifications to phosphoramidite coupling conditions are required and, after synthesis, treatment with NH4OH releases the products with 3′-OH ends. No 3′-dephosphorylation is required. Phosphoramidite reagents containing a succinate and sulfonyl diethanol linkage between the nucleoside and phosphoramidite group are particularly advantageous and can be used to create both 3′-OH and 5′-phosphate ends on oligonucleotides. Reproducibility and quality of oligonucleotide synthesis is demonstrated for either column and 96-well plate formats on low-, medium- or high-loading CPG supports.  相似文献   

15.
Genomes are becoming heavily annotated with important features. Analysis of these features often employs oligonucleotides that hybridize at defined locations. When the defined location lies in a poor sequence context, traditional design strategies may fail. Locked Nucleic Acid (LNA) can enhance oligonucleotide affinity and specificity. Though LNA has been used in many applications, formal design rules are still being defined. To further this effort we have investigated the effect of LNA on the performance of sequencing and PCR primers in AT-rich regions, where short primers yield poor sequencing reads or PCR yields. LNA was used in three positional patterns: near the 5′ end (LNA-5′), near the 3′ end (LNA-3′) and distributed throughout (LNA-Even). Quantitative measures of sequencing read length (Phred Q30 count) and real-time PCR signal (cycle threshold, CT) were characterized using two-way ANOVA. LNA-5′ increased the average Phred Q30 score by 60% and it was never observed to decrease performance. LNA-5′ generated cycle thresholds in quantitative PCR that were comparable to high-yielding conventional primers. In contrast, LNA-3′ and LNA-Even did not improve read lengths or CT. ANOVA demonstrated the statistical significance of these results and identified significant interaction between the positional design rule and primer sequence.  相似文献   

16.
Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) has gained popularity as a facile method of examining RNA structure both in vitro and in vivo, exploiting accessibility of the ribose 2′-OH to acylation by N-methylisatoic anhydride (NMIA) in unpaired or flexible configurations. Subsequent primer extension terminates at the site of chemical modification, and these products are fractionated by high-resolution gel electrophoresis. When applying SHAPE to investigate structural features associated with the wild-type and analog-substituted polypurine tract (PPT)–containing RNA/DNA hybrids, their size (20–25 base pairs) rendered primer extension impractical. As an alternative method of detection, we reasoned that chemical modification could be combined with tandem mass spectrometry, relying on the mass increment of RNA fragments containing the NMIA adduct (Mr = 133 Da). Using this approach, we demonstrate both specific modification of the HIV-1 PPT RNA primer and variations in its acylation pattern induced by replacing template nucleotides with a non-hydrogen-bonding thymine isostere. Our selective 2′-hydroxyl acylation analyzed by mass spectrometry strategy (SHAMS) should find utility when examining the structure of small RNA fragments or RNA/DNA hybrids where primer extension cannot be performed.  相似文献   

17.
Dozens of PCR-based methods are available for chromosome walking from a known sequence to an unknown region. These methods are of three types: inverse PCR, ligation-mediated PCR and randomly primed PCR. However, none of them has been generally applied for this purpose, because they are either difficult or inefficient. Here we describe a simple and efficient PCR strategy—T-linker-specific ligation PCR (T-linker PCR) for gene or chromosome walking. The strategy amplifies the template molecules in three steps. First, genomic DNA is digested with 3′ overhang enzymes. Secondly, primed by a specific primer, a strand of the target molecule is replicated by Taq DNA polymerase and a single A tail is generated on the 3′ unknown end of the target molecule, and then a 3′ overhang-T linker (named T-linker) is specifically ligated onto the target. Thirdly, the target is amplified by two rounds of nested PCR with specific primers and T-linker primers. T-linker PCR significantly improves the existing PCR methods for walking because it uses specific T/A ligation instead of arbitrary ligation or random annealing. To show the feasibility and efficiency of T-linker PCR, we have exploited this method to identify vector DNA or T-DNA insertions in transgenic plants.  相似文献   

18.
The solution structure of a new modified thrombin binding aptamer (TBA) containing a 5′–5′ inversion of polarity site, namely d(3′GGT5′-5′TGGTGTGGTTGG3′), is reported. NMR and CD spectroscopy, as well as molecular dynamic and mechanic calculations, have been used to characterize the 3D structure. The modified oligonucleotide is characterized by a chair-like structure consisting of two G-tetrads connected by three edge-wise TT, TGT and TT loops. d(3′GGT5′-5′TGGTGTGGTTGG3′) is characterized by an unusual folding, being three strands parallel to each other and only one strand oriented in opposite manner. This led to an anti-anti-anti-syn and syn-syn-syn-anti arrangement of the Gs in the two tetrads. The thermal stability of the modified oligonucleotide is 4°C higher than the corresponding unmodified TBA. d(3′GGT5′-5′TGGTGTGGTTGG3′) continues to display an anticoagulant activity, even if decreased with respect to the TBA.  相似文献   

19.
A set of modified 2′-deoxyribonucleoside triphosphates (dNTPs) bearing a linear or branched alkane, indole or phenyl group linked through ethynyl or alkyl spacer were synthesized and used as substrates for polymerase synthesis of hypermodified DNA by primer extension (PEX). Using the alkyl-linked dNTPs, the polymerase synthesized up to 22-mer fully modified oligonucleotide (ON), whereas using the ethynyl-linked dNTPs, the enzyme was able to synthesize even long sequences of >100 modified nucleotides in a row. In PCR, the combinations of all four modified dNTPs showed only linear amplification. Asymmetric PCR or PEX with separation or digestion of the template strand can be used for synthesis of hypermodified single-stranded ONs, which are monodispersed polymers displaying four different substituents on DNA backbone in sequence-specific manner. The fully modified ONs hybridized with complementary strands and modified DNA duplexes were found to exist in B-type conformation (B- or C-DNA) according to CD spectral analysis. The modified DNA can be replicated with high fidelity to natural DNA through PCR and sequenced. Therefore, this approach has a promising potential in generation and selection of hypermodified aptamers and other functional polymers.  相似文献   

20.
The polymerase chain reaction (PCR) is a versatile method to amplify specific DNA with oligonucleotide primers. By designing degenerate PCR primers based on amino acid sequences that are highly conserved among all known gene family members, new members of a multigene family can be identified. The inherent weakness of this approach is that the degenerate primers will amplify previously identified, in addition to new, family members. To specifically address this problem, we synthesized a specific RNA for each known family member so that it hybridized to one strand of the template, adjacent to the 3′-end of the primer, allowing the degenerate primer to bind yet preventing extension by DNA polymerase. To test our strategy, we used known members of the soluble, nitric oxide-sensitive guanylyl cyclase family as our templates and degenerate primers that discriminate this family from other guanylyl cyclases. We demonstrate that amplification of known members of this family is effectively and specifically inhibited by the corresponding RNAs, alone or in combination. This robust method can be adapted to any application where multiple PCR products are amplified, as long as the sequence of the desired and the undesired PCR product(s) is sufficiently distinct between the primers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号