首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
X-linked Amelogenesis imperfecta (AI) is a genetic disorder affecting the formation of enamel. In the present study two families, one with X-linked dominant and one with X-linked recessive AI, were studied by linkage analysis. Eleven cloned RFLP markers of known regional location were used. Evidence was obtained for linkage between the AI locus and the marker p782, defining the locus DXS85 at Xp22, by using two-point analysis. No recombination was scored between these two loci in 15 informative meioses, and a peak lod score (Zmax) of 4.45 was calculated at zero recombination fraction. Recombination was observed between the more distal locus DXS89 and AI, giving a peak lod score of 3.41 at a recombination fraction of .09. Recombination was also observed between the AI locus and the more proximal loci DXS43 and DXS41 (Zmax = 0.09 at theta max = 0.31 and Zmax = 0.61 at theta max = 0.28, respectively). Absence of linkage was observed between the AI locus and seven other loci, located proximal to DXS41 or on the long arm of the X chromosome. On the basis of two-point linkage analysis and analysis of crossover events, we propose the following order of loci at Xp22: DXS89-(AI, DXS85)-DXS43-DXS41-Xcen.  相似文献   

2.
The Coffin-Lowry syndrome (CLS) is an X-linked inherited disease of unknown pathogenesis characterized by severe mental retardation, typical facial and digital anomalies, and progressive skeletal deformations. Our previous linkage analysis, based on four pedigrees with the disease, suggested a localization for the CLS locus in Xp22.1-p22.2, with the most likely position between the marker loci DXS41 and DXS43. We have now extended the study to 16 families by using seven RFLP marker loci spanning the Xp22.1-p22.2 region. Linkage has been established with five markers from this part of the X chromosome: DXS274 (lod score [Z] (theta) = 3.53 at theta = .08), DXS43 (Z(theta) = 3.16 at theta = .08), DXS197 (Z(theta) = 3.03 at theta = .05), DXS41 (Z(theta) = 2.89 at theta = .08), and DXS207 (Z(theta) = 2.73 at theta = .13). A multipoint linkage analysis further placed, with a maximum multipoint Z of 7.30, the mutation-causing CLS within a 7-cM interval defined by the cluster of tightly linked markers (DXS207-DXS43-DXS197) on the distal side and by DXS274 on the proximal side. Thus, these further linkage data confirm and refine the map location for the gene responsible for CLS in Xp22.1-p22.2. As no linkage heterogeneity was detected, this validates the use of the Xp22.1-p22.2 markers for carrier detection and prenatal diagnosis in CLS families.  相似文献   

3.
Heterogeneity in X-linked recessive Charcot-Marie-Tooth neuropathy.   总被引:3,自引:0,他引:3       下载免费PDF全文
Three families presenting with X-linked recessive Charcot-Marie-Tooth neuropathies (CMT) were studied both clinically and genetically. The disease phenotype in family 1 was typical of CMT type 1, except for an infantile onset; two of five affected individuals were mentally retarded, and obligate-carrier females were unaffected. Families 2 and 3 showed distal atrophy with weakness, juvenile onset, and normal intelligence. Motor-nerve conduction velocities were significantly slowed, and electromyography data were consistent with denervation in affected CMT males in all three families. Thirty X-linked RFLPs were tested for linkage studies against the CMT disease loci. Family 1 showed tight linkage (recombination fraction [theta] = 0) to Xp22.2 markers DXS16, DXS143, and DXS43, with peak lod scores of 1.75, 1.78, and 2.04, respectively. A maximum lod score of 3.48 at DXS16 (theta = 0) was obtained by multipoint linkage analysis of the map DXS143-DXS16-DXS43. In families 2 and 3 there was suggestion of tight linkage (theta = 0) to Xq26 markers DXS86, DXS144, and DXS105, with peak lod scores of 2.29, 1.33, and 2.32, respectively. The combined maximum multipoint lod score of 1.81 at DXS144 (theta = 0) for these two families occurred in the map DXS10-DXS144-DXS51-DXS105-DXS15-DXS52++ +. A joint homogeneity analysis including both regions (Xp22.2 and Xq26-28) provided evidence against homogeneity (chi 2 = 9.12, P less than .005). No linkage to Xp11.12-q22 markers was observed, as was reported for X-linked dominant CMT and the Cowchock CMT variant. Also, the chromosomes 1 and 17 CMT loci were excluded by pairwise linkage analysis in all three families.  相似文献   

4.
The human X-linked hypophosphatemic rickets gene locus (HYP, formerly HPDR) has been previously localized by linkage analysis to Xp22.31-Xp21.3 and the locus order Xpter-DXS43-HYP-DXS41-Xcen established. Recombination between HYP and these flanking markers is frequently observed and additional markers have been sought. The polymorphic loci DXS197 and DXS207 have been localized to Xpter-Xp11 and Xp22-Xp21, respectively. We have further localized DXS197 to Xpter-Xp21.3 by using a panel of rodent-human hybrid cells and have established the map positions of DXS197 and DXS207 in relation to HYP by linkage studies of hypophosphatemic rickets families. Linkage between DXS197 and the loci DXS43, DXS85, and DXS207 was established with peak lod score values of 6.19, 0 = 0.032; 4.14, 0 = 0.000; and 3.01, 0 = 0.000, respectively. Multilocus linkage analysis mapped the DXS197 and DXS207 loci distal to HYP and demonstrated the locus order Xpter-DXS85-(DXS207, DXS43, DXS197)-HYP-DXS41-Xcen. These additional genetic markers DXS197 and DXS207 will be useful as alternative markers in the genetic counseling of some families.  相似文献   

5.
The AMELX gene located at Xp22.1-p22.3 encodes for the enamel protein amelogenin and has been implicated as the gene responsible for the inherited dental abnormality X-linked amelogenesis imperfecta (XAI). Three families with XAI have been investigated using polymorphic DNA markers flanking the position of AMELX. Using two-point linkage analysis, linkage was established between XAI and several of these markers in two families, with a combined lod score of 6.05 for DXS16 at theta = 0.04. This supports the involvement of AMELX, located close to DXS16, in the XAI disease process (AIH1) in those families. Using multipoint linkage analysis, the combined maximum lod score for these two families was 7.30 for a location of AIH1 at 2 cM distal to DXS16. The support interval around this location extended about 8 cM proximal to DXS92, and the AIH1 location could not be precisely defined by multipoint mapping. Study of recombination events indicated that AIH1 lies in the interval between DXS143 and DXS85. There was significant evidence against linkage to this region in the third family, indicating locus heterogeneity in XAI. Further analysis with markers on the long arm of the X chromosome showed evidence of linkage to DXS144E and F9 with no recombination with either of these markers. Two-point analysis gave a peak lod score at DXS144E with a maximum lod score of 2.83 at theta = 0, with a peak lod score in multipoint linkage analysis of 2.84 at theta = 0. The support interval extended 9 cM proximal to DXS144E and 14 cM distal to F9.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Leber hereditary optic neuroretinopathy (LHON) is a maternally inherited disease, probably transmitted by mutations in mtDNA. The variation in the clinical expression of the disease among family members has remained unexplained, but pedigree data suggest an involvement of an X-chromosomal factor. We have studied genetic linkage of the liability to develop optic atrophy to 15 polymorphic markers on the X chromosome in six pedigrees with LHON. The results show evidence of linkage to the locus DXS7 on the proximal Xp. Tight linkage to the other marker loci was excluded. Multipoint linkage analysis placed the liability locus at DXS7 with a maximum lod score (Zmax) of 2.48 at a recombination fraction (theta) of .0 and with a Zmax - 1 support interval theta = .09 distal to theta = .07 proximal of DXS7. No evidence of heterogeneity was found among different types of families, with or without a known mtDNA mutation associated with LHON.  相似文献   

7.
The X-linked recessive type of retinitis pigmentosa (XLRP) causes progressive night blindness, visual field constriction, and eventual blindness in affected males by the third or fourth decade of life. The biochemical basis of the disease is unknown, and prenatal diagnosis and definitive carrier diagnosis remain elusive. Heterogeneity in XLRP has been suggested by linkage studies of families affected with XLRP and by phenotypic differences observed in female carriers. Localization of XLRP near Xp11.3 has been suggested by close linkage to an RFLP at the locus DXS7 (Xp11.3) detected by probe L1.28. In other studies a locus for XLRP with metallic sheen has been linked to the ornithine transcarbamylase (OTC) locus mapping to the Xp21 region. In this study, by linkage analysis using seven RFLP markers between Xp21 and Xcen, we examined four families with multiple affected individuals. Close linkage was found between XLRP and polymorphic sites OTC (theta = .06 with lod 5.69), DXS84 (theta = .05 with lod 4.08), and DXS206 (theta = .06 with lod 2.56), defined by probes OTC, 754, and XJ, respectively. The close linkage of OTC, 754, and XJ to XLRP localizes the XLRP locus to the Xp21 region. Data from recombinations in three of four families place the locus above L1.28 and below the Duchenne muscular dystrophy (DMD) gene, consistent with an Xp21 localization. In one family, however, one affected male revealed a crossover between XLRP and all DNA markers, except for the more distal DXS28 (C7), while his brother is recombined for this marker (C7) and not other, more proximal markers. This suggests that in this family the XLRP mutation maps near DXS28 and above the DMD locus.  相似文献   

8.
Linkage relationship between retinoschisis and four marker loci   总被引:3,自引:1,他引:2  
Summary The linkage relationship between the locus for juvenile retinoschisis (RS) and four X-chromosomal marker loci DXS9 (RC8), DXS16 (XUT23), DXS41 (99-6), and DXS43 (D2) has been studied in six families showing a history of this disease. Recombination with RS was found for all marker loci except DXS9. The maximum lod score is =2.66 for RS vs. SXS9 at a recombination fraction of =0.0. Multipoint linkage analysis was performed and the locus order best supported by our data is: RS-DXS9-DXS43-DXS16-DXS41.  相似文献   

9.
DNA linkage analysis of X-linked retinoschisis   总被引:10,自引:2,他引:8  
Summary Four families with juvenile retionoschisis (RS) have been studied by linkage analysis utilizing eleven polymorphic X-chromosomal markers. The results suggest a close linkage between DXS43, DXS41, and DXS208 and the RS locus at Xp22. The RS locus is distal to the OTC locus, DXS84, and the DMD locus but proximal to DXS85. No recombination events were observed between the RS locus and DXS43 and DXS41. The maximum likelihood estimate of the recombination fraction () was thus zero and the peak lod scores () were 4.98 (DXS43) and 4.09 (DXS41). The linkage data suggest that the gene order on Xp is DXS85-(DXS43, RS, DXS41)-DMD-DXS84-OTC.  相似文献   

10.
Multipoint linkage analysis in Menkes disease.   总被引:1,自引:0,他引:1       下载免费PDF全文
Linkage analyses were performed in 11 families with X-linked Menkes disease. In each family more than one affected patient had been diagnosed. Forty informative meioses were tested using 11 polymorphic DNA markers. From two-point linkage analyses high lod scores are seen for DXS146 (pTAK-8; maximal lod score 3.16 at recombination fraction [theta] = .0), for DXS1 (p-8; maximal lod score 3.44 at theta = .0), for PGK1 (maximal lod score 2.48 at theta = .0), and for DXS3 (p19-2; maximal lod score 2.90 at theta = .0). This indicates linkage to the pericentromeric region. Multilocus linkage analyses of the same data revealed a peak for the location score between DXS146(pTAK-8) and DXYS1X(pDP34). The most likely location is between DXS159 (cpX289) and DXYS1X(pDP34). Odds for this location relative to the second-best-supported region, between DXS146(pTAK-8) and DXS159 (cpX289), are better than 74:1. Visualization of individual recombinant X chromosomes in two of the Menkes families showed the Menkes locus to be situated between DXS159(cpX289) and DXS94(pXG-12). Combination of the present results with the reported absence of Menkes symptoms in male patients with deletions in Xq21 leads to the conclusion that the Menkes locus is proximal to DXSY1X(pDP34) and located in the region Xq12 to Xq13.3.  相似文献   

11.
Aland eye disease: linkage data   总被引:4,自引:0,他引:4  
M Schwartz  T Rosenberg 《Genomics》1991,10(2):327-332
A large Danish family with Aland Island eye disease (AIED) was studied by linkage analysis using 16 polymorphic DNA markers covering the whole X chromosome. Positive lod scores were found for marker loci at the proximal part of the short arm of the X chromosome, DXS255 and TIMP (Zmax = 3.93 and 3.18 at theta = 0.0), suggesting an assignment of the locus for AIED to this part of the X chromosome. Recombination was observed with the locus DXS7 as well as with other loci distal to DXS7. These results are not in agreement with the deletion presented previously by D-A. M. Pillers et al. (1990, Am. J. Med. Genet. 36: 23-28), which mapped AIED to Xp21.  相似文献   

12.
Using multipoint linkage analysis in 20 families segregating for X-linked retinitis pigmentosa (XLRP), the lod scores on a map of eight RFLP loci were obtained. Our results indicate that under the hypothesis of homogeneity the maximal multipoint lod score supports one disease locus located slightly distal to OTC at Xp21.1. Heterogeneity testing for two XLRP loci suggested that a second XLRP locus may be located 8.5 cM proximal to DXS28 at Xp21.3. Further heterogeneity testing for three disease loci failed to detect a third XLRP locus proximal to DXS7 in any of our 20 XLRP families.  相似文献   

13.
Linkage analysis was performed to evaluate the relationship between the locus for X-linked juvenile retinoschisis (RS) and five X-chromosomal markers-RC8 (DXS9), SE3.2L (DXS16), 99-6 (DXS41), D2 (DXS43), and 782 (DXS85)-all mapped to the interval Xp22.1-p22.3. Seven U.S. families with 56 affected males were studied. No recombinants were found between RS and DXS9 with a maximum lod score (Z) of 4.93 at a recombination fraction of zero. Obligate recombinants were found for RS with DXS16, DXS41, DXS43, and DXS85. Multipoint linkage analysis and consideration of recombination events within pedigrees suggest that DXS41 and DXS43, and also DXS41 and DXS16, flank RS and that DXS85 lies outside the interval DXS41-DXS43. Our pedigrees provide no evidence for genetic heterogeneity of RS, with five of our families individually showing evidence of linkage. (Z greater than 2.0) to the least one of these probes from Xp22.1-p22.3.  相似文献   

14.
We here report linkage studies in a family suffering from a recently described hereditary muscle disease named X-linked myopathy with excessive autophagy (XMEA). Significant lod scores excluding linkage to the Duchenne-Becker muscular dystrophy locus were found. Several other loci on the short and long arms of the X chromosome produced negative lod scores, whereas probe DX13-7 defining locus DXS15 showed no recombinants and a lod score of z = 0.903 at theta = .0. Further studies should be done to determine whether the gene for XMEA is (1) located at Xq and (2) caused by a mutation of the Emery-Dreifuss muscular dystrophy gene, which has been assigned to the same region.  相似文献   

15.
Twelve families with Wiskott-Aldrich syndrome (WAS) were studied by linkage analysis using 10 polymorphic marker loci from the X-chromosome pericentromeric region. The results confirm close linkage of WAS to the DXS14, DXS7, TIMP, and DXZ1 loci and are consistent with previous data suggesting that WAS maps to the proximal Xp and is flanked by the DXS14 and DXS7 loci. The strongest linkage (Z = 10.19 at theta = 0.00) was found to be between WAS and the hypervariable DXS255 locus, a marker locus already mapped between DXS7 and DXS14 and which was informative for all meioses included in this analysis. Linkage of the WAS to two pericentromeric Xq loci, DXS1 and PGK1, was also established. On the basis of these results, accurate predictive testing should now be feasible in the majority of WAS families.  相似文献   

16.
Refined localization of the gene causing X-linked juvenile retinoschisis   总被引:9,自引:0,他引:9  
Previous linkage studies in X-linked juvenile retinoschisis (RS) placed the gene between the loci DXS43 and DXS41 in the region Xp22.2-p22.1. Here we have extended our earlier studies by analyzing 31 RS families with the markers DXS16 (pSE3.2-L), DXS274, DXS92, and ZFX. Pairwise linkage analysis revealed significant linkage of the RS gene to all markers used; locus DXS274 (probe CRI-L1391) was tightly-linked to the disorder, with a lod score of 9.02 at a recombination fraction of 0.05. The genetic map around the RS locus was refined by multilocus linkage studies in an expanded database including a large set of normal families (40 CEPH families). The results indicated that the RS gene locus lies between (DXS207, DXS43) and DXS274 with odds of 1.8 x 10(4):1 favoring this most likely location over the second most likely location, i.e., distal to DXS43. Analysis by LINKMAP gave a maximum location score of 136.4 with the order Xpter-DXS16-(DXS207,DXS43)-RS-DXS274-(D XS41,DXS92)-Xcen. To assess the diagnostic value of the markers in Finnish patients, a total of 12 markers were tested for allele frequencies in 126 Finnish unrelated blood donors. With the exception of the markers DXS207, DXS43, and DXS92, allele frequencies did not show any significant deviation from the data published elsewhere. Haplotype analysis was performed with five DNA markers flanking the RS locus. Patients from southwest Finland had a haplotype association that differed from the haplotype association found in the patients from north central Finland, favoring the hypothesis that the mutations in the two groups arose independently.  相似文献   

17.
We report the study of five independent X-linked hydrocephalus (HSAS1) families with polymorphic DNA markers of the Xq28 region. A total of 58 individuals, including 7 living affected males and 22 obligate carriers, have been studied. Maximum lod score was 7.21 at theta = 2.40% for DXS52 (St14-1). A single recombination event was observed between this marker and the HSAS1 locus. Other markers studied were DXS296 (Z = 2.02 at theta = 2.5%), DXS304 (Z = 4.37 at theta = 7.8%), DXS74 (Z = 3.50 at theta = 0%), DXS15 (Z = 1.96 at theta = 5.7%), DXS134 (Z = 3.31 at theta = 0%), and F8C (Z = 5.79 at theta = 0%). These data confirm the localization of the HSAS1 gene to Xq28 and provide evidence for genetic homogeneity of this syndrome. In addition, examination of two obligate recombinant meioses along with multipoint linkage analysis supports the distal localization of the HSAS1 locus with respect to the DXS52 cluster. These observations are of potential interest for future studies aimed at HSAS1 gene characterization.  相似文献   

18.
The study of rare genetic forms of dystonia and parkinsonism permits positional cloning of genes potentially involved in more common, multifactorial forms of these diseases. One movement disorder amenable to molecular genetic analysis is the X-linked dystonia-parkinsonism syndrome (XDP). This disease is endemic to the Philippines where it originated by a genetic founder effect. Linkage analysis was performed with DNA from 14 XDP kindreds by using 12 polymorphic DNA sequences in Xp11-Xq22. Two-point analysis demonstrated maximum lod scores of 5.45, 4.95, 4.28, and 5.99 for DXS106, DXS159, PGK1, and DXS72, respectively, at recombination fractions of zero (DXS106 and DXS159), .01 (PGK1), and .04 (DXS72). Multipoint analysis resulted in a maximum-likelihood score (Zmax) of 8.41 with a (Zmax - 1) support interval of 9 cM between DXS159 and DXS72 (Xq12-q21.1). In 19 XDP kindreds significant linkage disequilibrium was found for loci DXS72 (delta = .47), PGK1 (delta = .36), DXS95 (delta = .30), DXS106 (delta = .28), and DXS159 (delta = .26). These data indicate that the gene mutated in XDP (locus DYT3) is located in Xq12-q21.1.  相似文献   

19.
Three polymorphic markers have been used to improve the genetic map of the region Xp22.1-p22.2, which contains the HYP (hypophosphataemic rickets) locus. DXS365 gave no recombinants with HYP, with a peak Lod score of 5.4 at = 0.0. A microsatellite marker mPA274 was derived for the DXS274 locus; it detects five alleles with a polymorphism information content of 0.55. Combining information from this microsatellite and the original DXS274 marker, probe CRI-L1391, the peak Lod score for DXS274 against HYP was 9.6 at = 0.02. A microsatellite associated with the DXS207 locus (mPA207) gave a peak lod score against HYP of 4.7 at = 0.14. A consideration of key recombinants and multilocus analysis suggests the gene order: Xpter-DXS207-DXS43-DXS197-(DXS365, HYP)-DXS274-DXS41-Xcen.  相似文献   

20.
Aland Island eye disease (AIED) is an X-chromosomal disorder characterized by reduced visual acuity, progressive axial myopia, regular astigmatism, latent nystagmus, foveal hypoplasia, defective dark adaptation, and fundus hypopigmentation. The syndrome was originally reported in 1964 in a family on the Aland Islands. To determine the localization of the AIED gene, linkage studies were performed in this family. total of 37 polymorphisms, covering loci on the entire X chromosome, were used. By two-point analysis the strongest evidence for linkage was obtained between AIED and DXS255 (maximum lod score [Zmax] 4.92 at maximum recombination fraction [theta max] .00). Marker loci DXS106, DXS159, and DXS1 also showed no recombination with AIED. Other positive lod scores at theta max .00 were obtained with markers localized in the XY homologous region in Xq13-q21, but the numbers of informative meioses were small. Multilocus linkage analysis indicated that the most probable location of AIED is in the pericentromeric region between DXS7 and DXS72. These results rule out localizations of AIED more distal on Xp that have been proposed by others. Our data do not exclude the possibility that AIED and incomplete congenital stationary night blindness are caused by mutations in the same gene. This question should be resolved by careful clinical comparison of the disorders and ultimately by the molecular dissection of the genes themselves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号