首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A methodology has been developed and used to investigate a direct link between juvenile whitebait (Hyperlophus vittatus), the key prey species sampled from the stomachs of Little Penguins (Eudyptula minor), and the specific nursery area of that prey. A unique application of existing methodology initially involved the measurement of the stable isotopes of oxygen (δ18O:δ16O) and carbon (δ13C:δ12C) in sagittal otolith carbonate, using standard mass spectrometric techniques. The results indicated that the inshore distribution of juvenile (0+ year old) whitebait between Cockburn Sound and Koombana Bay, Western Australia consisted of a number of separate assemblages. Measured differences in stable oxygen isotope ratios were attributed to variations in freshwater input to the embayments that provided the whitebait habitats. In contrast, the measured stable carbon isotope ratios probably resulted from the different isotopic compositions of the food webs in the various habitats. Secondly, a comparison of the average value of carbon and oxygen isotope signatures of pooled otoliths from samples of whitebait from a number of different nearshore coastal sites (assemblages), with that of whitebait obtained from the stomachs of penguins at their main breeding site (Penguin Island) indicated that the values from the penguins resemble most closely those of the average otolith values obtained from whitebait from only one site (Becher Point). Assuming that the whitebait sampled were representative of the whitebait in the nearshore habitats and the diets of the penguins, then these results imply that at the time of sampling the penguins were feeding on whitebait from only one site.  相似文献   

2.
The diet of Japanese eels, Anguilla japonica, was investigated using stomach content and stable isotope analyses. Stable isotope enrichment of carbon and nitrogen (Δδ13C and Δδ15N) was first estimated for A. japonica by comparing the isotopic signatures (δ13C and δ15N) of reared eels to that of their food. The estimated isotope enrichment was then applied to the diet estimation of A. japonica in the Kojima Bay-Asahi River system, Japan, combined with conventional stomach content analysis. Stable isotope enrichment varied among tissues, from 0.2‰ to 0.8‰ for carbon and from 1.3‰ to 2.1‰ for nitrogen. Nitrogen isotope enrichment of A. japonica muscle estimated in this study was 2.1‰, which was different from the previously reported mean δ15N enrichment of several animals of 3.4‰. These results indicate that isotope-based diet estimations for A. japonica need to use species- and tissue-specific values of isotope enrichment. In the diet analysis, stomach contents and stable isotopes revealed that (1) A. japonica appear to usually feed on a single type of prey species in each feeding session, (2) principal prey species were mud shrimp, Upogebia major, in brackish Kojima Bay and crayfish, Procambarus clarkia, in the Asahi River, (3) A. japonica in Kojima Bay primarily depend on the pelagic food web as a carbon source due to mud shrimp being filter feeders and eels in the Asahi River primarily depend on the littoral food web. Based on these results and the recently reported eel movements between Kojima Bay and the Asahi River, it appears that A. japonica can adapt to various feeding environments as opportunists, but also utilize the food resources by targeting a single type of prey species during a single feeding session.  相似文献   

3.
River discharge supplies nearshore communities with a terrestrial carbon source that is often reflected in invertebrate and fish consumers. Recent studies in the Beaufort Sea have documented widespread terrestrial carbon use among invertebrates, but only limited use among nearshore fish consumers. Here, we examine the carbon source and diet of rapidly growing young-of-year Arctic cisco (Coregonus autumnalis) using stable isotope values (δ13C and δ15N) from muscle and diet analysis (stomach contents) during a critical and previously unsampled life stage. Stable isotope values (δ15N and δ13C) may differentiate between terrestrial and marine sources and integrate over longer time frames (weeks). Diet analysis provides species-specific information, but only from recent foraging (days). Average δ13C for all individuals was ?25.7 ‰, with the smallest individuals possessing significantly depleted δ13C values indicative of a stronger reliance of terrestrial carbon sources as compared to larger individuals. Average δ15N for all individuals was 10.4 ‰, with little variation among individuals. As fish length increased, the proportion of offshore Calanus prey and neritic Mysis prey increased. Rapid young-of-year growth in Arctic cisco appears to use terrestrial carbon sources obtained by consuming a mixture of neritic and offshore zooplankton. Shifts in the magnitude or phenology of river discharge and the delivery of terrestrial carbon may alter the ecology of nearshore fish consumers.  相似文献   

4.
Since 2006, the known distribution of Hemimysis anomala has greatly expanded in the Great Lakes ecosystem, with, to date, 45 sites of occurrence among 91 monitored sites, located in four of the Great Lakes and the upper St. Lawrence River. By means of carbon and nitrogen stable isotopes, a first assessment of the feeding ecology of Hemimysis was completed. The δ13C values of 18 individuals collected in Lake Erie (Port Mainland) on a single date (Sept. 23, 2008) ranged from −30.2 to −24.5‰, indicating that Hemimysis could feed on multiple carbon sources including pelagic and littoral autochthonous and terrestrial carbon. In Lake Erie, variation in δ13C was related to δ15N, indicating the importance of food source for determining the trophic position of Hemimysis. The δ15N signatures of individuals were strongly related to their C/N ratios, suggesting that variations in the nutritional value of Hemimysis may depend on trophic position. Isotopic variation among individuals in Lake Erie was complemented by temporal variation in Lake Ontario. Monthly changes (from June to December 2008) in carbon isotope signatures were observed and related to changes in water temperature, highlighting the variations in the baseline prey signatures that fuel Hemimysis diets. The observed variation in stable isotope signatures occurring among individuals within a localized Hemimysis assemblage and temporally should be considered as a key design feature in further studies attempting to identify the possible effects of Hemimysis on nearshore food webs in the Great Lakes.  相似文献   

5.
The food source utilization and trophic relationship of the fish assemblage in the Red River mangrove ecosystem, Vietnam were examined using dual isotope analysis. The carbon and nitrogen stable isotope signatures of 23 fish species ranged from ?24.0 to ?15.7‰ and from 8.8 to 15.5‰, respectively. Cluster analysis based on the δ13C and δ15N signatures clearly separated the mangrove fish into five feeding groups, representing detritivores, omnivores, piscivores, zoobenthivores, and zooplanktivores, which concurred with the dietary information. The results suggested that mangrove carbon contributed a small proportion in the diets of the mangrove fish, with dominant food sources coming from benthic invertebrates, including ocypodid and grapsid crabs, penaeid shrimps, bivalves, gastropods, and polychaetes. The δ15N values showed that the food web structure may be divided into different trophic levels (TLs). The lowest TLs associated with Liza macrolepis, Mugil cephalus, and Periophthalmus modestus; 18 fish species had TLs between 3.0 and 3.8; and Pennahia argentata had the highest TL (c. 4.0).  相似文献   

6.
Determining how marine predators partition resources is hindered by the difficulty in obtaining information on diet and distribution. Stable isotopes (SI) of carbon (13C/12C, δ13C) and nitrogen (15N/14N, δ15N) provide a two‐dimensional estimate of the dietary space of consumers; an animal's isotopic composition is directly influenced by what they consume and where they feed. Harp (Pagophilus groenlandicus) and hooded (Cystophora cristata) seals are abundant phocid species found in the North Atlantic. We measured and contrasted SI values between seals sampled at nearshore and offshore sites to test for effects of sampling location, sex, age‐class, and body size to gain insight into how these species partition space and prey resources. In addition we contrasted previously published results for gray seals (Halichoerus grypus). Isotope values differed significantly by age class and location in harp and hooded seals. We found significant differences in SI values (mean δ13C and δ15N ± SE) between all species. Hooded seals, a continental shelf‐edge, deep‐diving species, exhibited low SI values (juveniles: ?20.9‰ ± 0.03‰, 13.36‰ ± 0.05‰; adults: ?20.41‰ ± 0.03‰, 14.81‰ ± 0.04‰) characteristic of feeding on meso‐ to bathypelagic prey. Harp seals, which dive to moderate depths primarily on the shelf had intermediate SI values (juveniles: ?20.53‰ ± 0.01‰, 13.91‰ ± 0.01‰; adults: ?20.13‰ ± 0.01‰, 14.96‰ ± 0.01‰) characteristic of feeding on epipelagic prey, whereas gray seals, which feed on or near the sea floor in shallow shelf waters, had high SI values (juveniles: ?19.74‰ ± 0.04‰, 17.51‰ ± 0.05‰; adults: ?18.86‰ ± 0.01‰, 17.23‰ ± 0.02‰) characteristic of feeding on demersal prey. In all species, δ13C values increased with body size and age in the same manner, indicating that seals exploit or forage in deeper habitats as they get larger and older. We hypothesize that the consistent ontogenetic shift in foraging niche, despite large differences between species in their diving behavior, geographic range and habitat use, not only reflects increased access to different prey due to increased diving capacity, but a progressive adjustment to balance energy budgets by reducing foraging costs.  相似文献   

7.
Invasions of Ponto-Caspian gobiid fishes are suspected to cause regime shifts in freshwater ecosystems. This study compared the trophic niche differentiations of Neogobius melanostomus and Ponticola kessleri in the upper Danube River using stable isotope analyses (δ13C and δ15N), gut content analyses and morphometric analyses of the digestive tract. Both species were identified as predacious omnivores with high dietary overlap and a generalistic feeding strategy. Amphipods (especially invasive Dikerogammarus spp.) contributed 2/3 to the index of food importance. δ15N-signatures of N. melanostomus revealed an ontogenetic diet shift and significantly exceeded those in P. kessleri by ~1.5‰, indicating a niche separation of half a trophic level. P. kessleri had shorter uncoiled intestinal tracts than N. melanostomus, indicating a narrower niche and adaptation to animal food. Trophic niches in both species expanded during the growth period with increasing intraguild predation and cannibalism in P. kessleri and increasing molluscivory in N. melanostomus. P. kessleri showed a higher degree of specialization and more stable feeding patterns across seasons, whereas N. melanostomus adapted its diet according to the natural prey availability. The feeding patterns of both species observed in the upper Danube River strongly differ from those in their native ranges, underlining their great plasticity. Both goby species consumed mainly other non-native species (~92% of gut contents) and seemed to benefit from previous invasions of prey species like Dikerogammarus villosus. The invasive success of gobies and their prey mirror fundamental ecological changes in large European freshwater ecosystems.  相似文献   

8.
We observed Suwannee River Gulf sturgeon, Acipenser oxyrinchus desotoi, in the laboratory and found free embryos (first interval after hatching) hid under rocks and did not migrate. Thus, wild embryos should be at the spawning area. Larvae (first interval feeding exogenously) initiated a slow downstream migration, and some juveniles (interval with adult features) continued to migrate slowly for at least 5 months, e.g., a 1-step long larva-juvenile migration. No other population of sturgeon yet studied has this migration style. A conceptual model using this result suggests wild year-0 sturgeon have a variable downstream migration style with short-duration (short distance) migrants and long-duration (long distance) migrants. This migration style should widely disperse wild fish. The model is supported by field studies that found year-0 juveniles are widely dispersed in fresh water to river km 10. Thus, laboratory and field data agree that the entire freshwater reach of river downstream of spawning is nursery habitat. Foraging position of larvae and early juveniles was mostly on the bottom, but fish also spent hours holding position in the water column, an unusual feeding location for sturgeons. The holding position of fish above the bottom suggests benthic forage in the river is scarce and fish have evolved drift feeding. The unusual migration and foraging styles may be adaptations to rear in a river at the southern limit of the species range with poor rearing habitat (low abundance of benthic forage and high summer water temperatures). Suwannee River Gulf sturgeon and Hudson River Atlantic sturgeon, A. o. oxyrinchus, are similar for initiation of migration, early habitat preference, and diel migration. The two subspecies differ greatly for migration and foraging styles, which is likely related to major differences in the quality of rearing habitat. The differences between Atlantic sturgeon populations show the need for geographical studies to represent the behavior of an entire species.  相似文献   

9.
Evidence of autumn spawning of Gulf sturgeon Acipenser oxyrinchus desotoi in the Suwannee River, Florida, was compiled from multiple investigations between 1986 and 2008. Gulf sturgeon are known from egg collections to spawn in the springtime months following immigration into rivers. Evidence of autumn spawning includes multiple captures of sturgeon in September through early November that were ripe (late‐development ova; motile sperm) or exhibited just‐spawned characteristics, telemetry of fish that made >175 river kilometer upstream excursions to the spawning grounds in September–October, and the capture of a 9.3 cm TL age‐0 Gulf sturgeon on 29 November 2000 (which would have been spawned in late September 2000). Analysis of age‐at‐length data indicates that ca. 20% of the Suwannee River Gulf sturgeon population may be attributable to autumn spawning. However, with the very low sampling effort expended, eggs or early life stages have not yet been captured in the autumn, which would be the conclusive proof of autumn spawning. More sampling, and sampling at previously unknown sites frequented by acoustic telemetry fish, would be required to find eggs.  相似文献   

10.
The stability of a discrete body size dimorphism of sexually mature river lamprey Lampetra fluviatilis from the River Endrick, Scotland, was examined over a 21 year period. Stable isotope analysis was used to test the hypothesis that the two size forms comprise individuals with differing migration and parasitic foraging strategies. Maturing river lamprey and the brook lamprey Lampetra planeri were trapped over 3 months each year in the periods 1983–1984 and 2004–2005. Brook lamprey catches and catches of both species combined showed no significant trend in catch rate with time. The catch rate of small body size river lamprey declined between 1983–1984 and 2004–2005 (although the difference did not reach statistical significance; P = 0·055). In contrast, there was a significant increase in the catch rate of the large body size river lamprey and as a consequence, a significant change in the relative proportion of each of the two river lamprey morphs over the study period. Analysis of the stable isotopes of C and N in muscle tissue showed that brook lamprey tissue derived its carbon from a freshwater source and had a δ13C more consistent with that of the River Endrick than with Loch Lomond. δ15N values for this species showed it to be feeding at the base of the food chain, consistent with filter feeding as an ammocoete. The large body size and the small body size river lamprey adults differed substantially in their δ13C values, with the small body size δ13C signature indicative of a freshwater carbon source and the large body size morph of a marine source. The small body size morph had a δ13C signature that was consistent with that of Loch Lomond powan Coregonus lavaretus suggesting that they share a common carbon source. The large body size morph was clearly feeding at a higher trophic level than the small body size morph. A single small body size river lamprey individual with typical morphology for that group, however, had C and N signatures that clustered with those of the large body size morphs. This individual had either migrated to sea to forage, as is typical for the species, or had been feeding on an anadromous fish with a strong marine C signature in fresh water. It is concluded that the body size dimorphism is indicative of a differential migration and foraging strategy in the parasitic phase of the life cycle of river lamprey at this site.  相似文献   

11.
Most functional feeding types are represented within the species rich group of aquatic chironomids. Thus, we hypothesized that different lake types and microhabitats within lakes would (1) host specific chironomid communities and (2) that the individual communities would show specific δ 13C stable isotope signatures reflecting the prevailing origin of food source. To test our hypotheses, five lakes in southwest Greenland were investigated at a high taxonomic resolution and with detailed information on δ 13C signature of the chironomids and of individual microhabitats (macrophytes, sediment, stones, and profundal). We found that there was a significant difference in δ 13C between the chironomid assemblages of freshwater lakes and oligosaline lakes, while assemblages of the littoral microhabitats did not differ significantly. The δ 13C of chironomids reflected the wide variety of habitat signals, particularly in the freshwater lakes. Our results indicate that many chironomid taxa are ubiquitous and are found in several microhabitats, suggesting that they can adjust their feeding strategy according to the habitat. The implication is that chironomid assemblage composition has only limited use as indicator of littoral microhabitats in the Arctic. On the other hand, the δ 13C signature of fossil chironomids might have a potential as indicator of microhabitats in freshwater lakes.  相似文献   

12.
  • Amino acids represent an important component in the diet of the Venus flytrap (Dionaea muscipula), and supply plants with much needed nitrogen resources upon capture of insect prey. Little is known about the significance of prey‐derived carbon backbones of amino acids for the success of Dionaea's carnivorous life‐style.
  • The present study aimed at characterizing the metabolic fate of 15N and 13C in amino acids acquired from double‐labeled insect powder. We tracked changes in plant amino acid pools and their δ13C‐ and δ15N‐signatures over a period of five weeks after feeding, as affected by contrasting feeding intensity and tissue type (i.e., fed and non‐fed traps and attached petioles of Dionaea).
  • Isotope signatures (i.e., δ13C and δ15N) of plant amino acid pools were strongly correlated, explaining 60% of observed variation. Residual variation was related to contrasting effects of tissue type, feeding intensity and elapsed time since feeding. Synthesis of nitrogen‐rich transport compounds (i.e., amides) during peak time of prey digestion increased 15N‐ relative to 13C‐ abundances in amino acid pools. After completion of prey digestion, 13C in amino acid pools was progressively exchanged for newly fixed 12C. The latter process was most evident for non‐fed traps and attached petioles of plants that had received ample insect powder.
  • We argue that prey‐derived amino acids contribute to respiratory energy gain and loss of 13CO2 during conversion into transport compounds (i.e., 2 days after feeding), and that amino‐nitrogen helps boost photosynthetic carbon gain later on (i.e., 5 weeks after feeding).
  相似文献   

13.
14.
Capelin (Mallotus villosus Müller) is a key pelagic mediator of energy from lower to higher trophic levels in arctic waters. This is also the case in Greenland waters, but little is known of its feeding behaviour in this region. By analysing stable nitrogen isotopes and stomach content of capelin collected along 1500?km of the Greenland west coast, this study aims to provide knowledge on capelin feeding ecology and the role that diet composition and biomass may have in generating the observed latitudinal growth differences in Greenland capelin. In total, 572 stomachs were sampled. The most dominant prey by wet weight was euphausiids (61?%) followed by amphipods (18?%) and copepods (10?%). The most common species were Thysanoessa raschii, Themisto libulla, Calanus finmarchicus and Calanus hyperboreus. Copepods dominated in smaller capelin but were replaced by euphausiids in larger fish. A similar prey shift towards euphausiids along with an increase in prey weight (relative and absolute) was seen with increasing latitude. The spatial variation in feeding pattern was supported by stable nitrogen analyses. The mean δ15N values of capelin muscle tissue for the south (60–64°N) and north (68–72°N) were 9.54?‰?±?0.72 and 12.47?‰?±?0.38 (mean?±?SD), respectively. However, when differences in isotopic baseline values (C. finmarchicus δ15N, 2.47?‰) in the two areas were taken into account, the isotope values suggest that capelin in the northern areas fed on a slightly higher trophic level higher than in the south, as would be expected with increasing importance of euphausiids. These significant feeding differences along the Greenland west coast are likely impacting capelin growth and condition as they show parallel trends along the same gradient.  相似文献   

15.
The Upper Cretaceous Coon Creek Lagerstätte of Tennessee, USA, is known for its extremely well‐preserved mollusks and decapod crustaceans. However, the depositional environment of this unit, particularly its distance to the shoreline, has long been equivocal. To better constrain the coastal proximity of the Coon Creek Formation, we carried out a multiproxy geochemical analysis of fossil decapod (crab, mud shrimp) cuticle and associated sediment from the type section. Elemental analysis and Raman spectroscopy confirmed the presence of kerogenized carbon in the crabs and mud shrimp; carbon isotope (δ13C) analysis of bulk decapod cuticle yielded similar mean δ13C values for both taxa (?25.1‰ and ?26‰, respectively). Sedimentary biomarkers were composed of n‐alkanes from C16 to C36, with the short‐chain n‐alkanes dominating, as well as other biomarkers (pristane, phytane, hopanes). Raman spectra and biomarker thermal maturity indices suggest that the Coon Creek Formation sediments are immature, which supports retention of unaltered, biogenic isotopic signals in the fossil organic carbon remains. Using our isotopic results and published calcium carbonate δ13C values, we modeled carbon isotope values of carbon sources in the Coon Creek Formation, including potential marine (phytoplankton) and terrestrial (plant) dietary sources. Coon Creek Formation decapod δ13C values fall closer to those estimated for terrigenous plants than marine phytoplankton, indicating that these organisms were feeding primarily on terrigenous organic matter. From this model, we infer that the Coon Creek Formation experienced significant terrigenous organic matter input via a freshwater source and thus was deposited in a shallow, nearshore marine environment proximal to the shoreline. This study helps refine the paleoecology of nearshore settings in the Mississippi Embayment during the global climatic shift in the late Campanian–early Maastrichtian and demonstrates for the first time that organic δ13C signatures in exceptionally preserved fossil marine arthropods are a viable proxy for use in paleoenvironmental reconstructions.  相似文献   

16.
It is important to know the characteristics of migration pattern and vital rates of juveniles to understand the early life history and its effect on the population dynamics of fishes. The relationship between growth and migration pattern of juvenile temperate seabass Lateolabrax japonicus in the Yura River estuary was examined by combination of stable carbon isotope ratio (δ13C) and otolith microstructure. Gut fullness indices were also examined to know the feeding condition of juveniles. δ13C values of seabass juveniles in the lower estuary and surf zone (LES) were enriched, while those in freshwater zone (FW) were depleted, consistent with δ13C differences in prey items. The back-calculated growth rates of juveniles in FW were significantly lower than those of juveniles that resided in the LES from 50 days to 90 days old, implying that juveniles with poor growth ascended the river while those with better growth remained in the LES. However, the growth rates of the juveniles, which resided in FW for more than 1 month, caught up with and even overtook those of juveniles in LES within 1 month after ascended the river. The higher water temperature and better feeding conditions would contribute to better growth rates of juveniles in FW than those in LES.  相似文献   

17.
The ontogenic variations of nitrogen and carbon stable isotopic signatures (δ15N and δ13C) were investigated in two spider crab (Maja brachydactyla) populations inhabiting in different biotopes of Western Europe. The Iroise Sea population is localized in Western Brittany and characterized by a seasonal migration occurring on a large bathymetric and habitat gradient while the Seine Bay population, in the Eastern English Channel, remains in a more homogeneous environment during its migration. In the Iroise Sea population, δ13C values increased significantly both with body size and age, revealing a shift towards “benthic-component” prey with spider crab growth. On the contrary, neither body size nor ageing gave rise to a significant trophic level change (derived from the δ15N). In this M. brachydactyla population, the seasonal migrations from coastal waters in summer to offshore habitats in winter involved significant but slight differences in both δ13C and δ15N. In the Seine Bay population, low variations for both carbon and nitrogen were recorded related to either sex or size or seasonal migration. Thus, the δ13C and δ15N variability in the spider crab depends on the availability and diversity of prey in its different living habitats, as well as on the morphological aptitudes of individuals to feed on prey (individual's size).  相似文献   

18.
Trace element and 87Sr/86Sr isotope analyses of fish pectoral fin rays offer non-destructive methods for determining habitat use. In this study, water and fin ray samples were analyzed for Gulf Sturgeon Acipenser oxyrinchus desotoi from the Choctawhatchee River Basin (FL and AL, USA) and compared with reference samples from Atlantic Sturgeon A. o. oxyrinchus held at controlled salinities (0, 10, 33 ppt). Samples were analyzed using inductively coupled plasma mass spectrometry, with a multi-collector for 87Sr/86Sr. In water, Sr, Ba, Mn and Zn differed between freshwater and saline habitats, with increases in Sr and decreases in Ba, Mn and Zn. 87Sr/86Sr decreased upstream to downstream with lowest values in saline habitats. In the reference study, water trace element concentrations and 87Sr/86Sr corresponded to those in pectoral fin rays. 87Sr/86Sr was higher in pectoral fin ray than water, due to influence of diet, which differed with salinity. In wild fish, trace elements in pectoral fin rays indicated freshwater emigration to saline habitats primarily occurred in the second to third growth zone with some heterogeneity in the population (4% <0.3 years, 39% 0.5–1.3 years, 39% 1.5–2.3 years, 17% 2.5–3.3 years). Analyses of 87Sr/86Sr indicated initial locations of Gulf Sturgeon were in the middle river, with few fish in the upper or lower river. Most (74%) juvenile Gulf Sturgeon utilized more than one river region prior to freshwater emigration and 48% moved upstream temporarily based on increased 87Sr/86Sr. After initial freshwater emigration, fish utilized lower-river to saline habitats. Collectively, these studies demonstrate the usefulness of trace element and 87Sr/86Sr analyses in sturgeon pectoral fin rays.  相似文献   

19.
The feeding habits of co-occurring gadid species Atlantic cod (Gadus morhua) and Greenland cod (Gadus ogac) in coastal Newfoundland waters, examined using stable isotope (δ 13C and δ 15N) and stomach content analysis, indicated little dietary niche overlap and interspecific competition for food resources despite similar trophic levels. Both species consumed a variety of invertebrates and fish but showed a preference for different prey items. Polychaetes, fish and small crustaceans dominated G. ogac stomach contents while small crustaceans, in particular hyperiid amphipods and fish, dominated those of G. morhua. In general, G. morhua consumed more pelagic prey and had a significantly more pelagic (more negative) δ 13C signature while G. ogac consumed primarily benthic prey and had a more benthic (more positive) δ 13C signature. δ 15N levels were similar in these species suggesting similar trophic positions, with levels increasing with fish length in both species. Dietary overlap was not significant in both stomach and stable isotope analyses. We conclude that interspecific competition for food is low between G. ogac and G. morhua and is unlikely to be a factor in the slow rebuilding of Atlantic cod in this region.  相似文献   

20.
In order to investigate the feeding habits of Helicolenus dactylopterus dactylopterus along the continental Portuguese coast, a total of 619 individuals were sampled of which 60% contained food in their stomach and 35% had more than one prey item. Among the 81 prey items that were identified in the stomachs, benthic and benthopelagic prey prevail on this species diet. Acantephyra sp, Pasiphaea sp, mysidacea, and teleostei n.i. were the prey with the higher percent index of relative importance (%IRI) value. Three length groups (5?C20?cm, 21?C27?cm, and 28?C48?cm) were defined through cluster analysis of the mean abundance of prey items. A permutational MANOVA detected significant differences in the diet and stomach fullness index for TLG, season, and maturation stage. Smaller fishes had a generalized diet, feeding mainly on mysidacea changing their diet above 20?cm TL, where a major consumption of natantia was found. The larger individuals, >28?cm TL, present a less generalized diet with pisces as dominant prey group. Seasonally, natantia and pisces were the principal prey groups during spring and winter, respectively, while mysidacea and other crustaceans were predominant during the rest of the year. Mysidacea were also the main prey group for immature individuals while natantia and pisces were the principal prey groups to the other maturity stages. The results of this study indicate that H. d. dactylopterus has a diverse diet focused on small crustaceans such as misyds and as specimens grow shrimps and fishes become more consumed, with larger specimens having a more specialized diet. The different nutritional needs during spawning season also seemed to influence the feeding habits of H. d. dactylopterus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号