首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The foraging ecology of elasmobranchs (sharks, skates, and rays) is difficult to study because species have spatially and temporally diverse diets. Many diet and habitat preference studies for mammals, birds, and teleosts use stable isotope analysis, but interpretations are limited for elasmobranch studies because taxon-specific isotope discrimination factors from a controlled experiment are unavailable. Trophic discrimination factors for plasma, red blood cells, and muscle were determined from an experiment with leopard sharks (Triakis semifasciata) fed a constant diet of squid over 1000?days. The ??13C values for shark tissues at equilibrium with the squid diet did not vary significantly among individuals, but plasma and red blood cell ??15N values differed significantly among individuals and sampling day. Individual variation of muscle ??15N averages was observed and likely related to growth. Overall, carbon and nitrogen discrimination factors corresponded to previous studies featuring high-protein diets and carnivorous taxa. The muscle-to-diet discrimination factors from the controlled feeding study were applied to blue sharks (Prionace glauca) and smooth hammerhead sharks (Sphyrna zygaena) caught offshore from Baja California, Mexico. This case study demonstrates the potential of stable isotope analysis to illuminate differences in foraging patterns between elasmobranch species.  相似文献   

2.
Synopsis Stomach content data from 281 tiger sharks caught during shark control programs in Hawaii between 1967 and 1969, and during 1976 were analyzed to examine feeding habits and ontogenetic shifts in diet. As sharks increased in size, prey diversity and frequency of occurrence of large prey items increased. The percent occurrence of teleosts and cephalopods in stomachs decreased as sharks increased in length, while occurrence of elasmobranchs, turtles, land mammals, crustaceans, and undigestible items increased. Comparisons between the diets of tiger sharks from Hawaii and other locations indicate that ontogenetic shifts are universal in this species and that tiger sharks may be opportunistic feeders that prey heavily on abundant, easy to capture prey. Small tiger sharks may be spatially segregated from medium and large sharks and appear to be primarily nocturnal, bottom feeders. Large tiger sharks feed near the bottom at night, but also feed at the surface during the day. Prey, similar in size to humans, begin to occur in the diet of tiger sharks approximately 230 cm TL, and therefore sharks of this size and larger may pose the greatest threat to humans. Ontogenetic shifts in diet may be attributed to increased size of sharks, expanded range and exploitation of habitats of larger sharks, and/or improved hunting skill of larger sharks.Deceased 1974  相似文献   

3.
Synopsis Gastric evacuation in young lemon sharks, Negaprion brevirostris, was studied in a field enclosure. Regression analysis was used to evaluate the adequacy of linear, exponential, and square root models in describing the decrease in stomach contents with time after feeding. The linear model produced the best fit and was thus used to compare gastric evacuation at the three temperatures. Gastric evacuation in young lemon sharks is considerably longer than for carnivorous teleosts but shorter than for other elasmobranchs. These differences are the result of differing energy requirements determined by the physiology and behavior of the species.  相似文献   

4.
The feeding habits of the sand tiger shark Carcharias taurus , one of the most threatened sharks of the world, are poorly known. Sand tiger sharks are critically endangered in the South-west Atlantic. Since 2007, the law requires that all individuals caught in recreational fisheries off Argentina must be released. Using data from a north Patagonian recreational fishery ( n =164 stomachs with contents), we analyzed the diet of sand tiger sharks in relation with size, sex, maturity stage and season; assessed prey consumption patterns and hooking location; and estimated diet overlap with fishery landings. Sand tiger sharks consumed mainly teleosts (55.4% of the total prey number, N ) and elasmobranchs (41.84% N ), and ate more benthic elasmobranchs (batoids and angel sharks) as they become larger. Sharks swallowed prey mostly in one piece (93.7%) and were hooked mainly in internal organs (87.4%, n =175), causing occlusion and perforation of the esophagus and stomach, and lacerations to the pericardium, heart and liver. Sand tiger sharks fed on the most heavily landed species, overlapping almost completely (>90%) with fishery landings. Conservation plans should take into account that releasing hooked sharks could be insufficient to minimize fishing mortality and that competition for food with fisheries is likely to occur.  相似文献   

5.
In elasmobranch (Scyllium canicula, Galleus canis) and teleost (Migull capitocum) fishes it is possible to form motor food-searching conditioned reflexes to discrimination of light and darkness. Some differences were revealed in ecological and conditioned motor behavioural activities in higher and lower sharks. Elasmobranch and teleost fishes exhibit significant differences in ecological, feeding and conditioned reflex behaviour. Nervous activity in elasmobranchs is characterized by lower and primitive organization as compared to that in teleosts.  相似文献   

6.
Elasmobranch fishes have long been noted for having unusually large brains for ectotherms, and therefore may be exceptions to the rule that vertebrates in general devote less than 8% of their resting metabolic rate to the central nervous system. The brain mass of sharks, skates and rays is often several times larger than that of teleost fishes of the same size. Still, the underlying reasons for this have remained unclear. Ion pumping by the Na+/K+-ATPase is the single most energy consuming process in the brain. In this study, Na+/K+-ATPase activity was measured in the brain of four species of elasmobranchs and 11 species of teleosts. While the average brain mass of the elasmobranchs examined was approximately three times that of the teleosts, the mean specific Na+/K+-ATPase activity was only about one-third of that of the teleosts. Thus, the total brain Na+/K+-ATPase activity was similar in elasmobranchs and teleosts. This suggests that the large brain size of elasmobranchs is at least partly related to a low mass-specific rate of brain energy use.  相似文献   

7.
Elasmobranchs are apical predators in most marine communities where they occur, often playing a substantial role in the food web dynamics of those communities. However, despite their high trophic status they are often poorly studied compared to most commercially important teleosts. Furthermore, despite efforts towards ecosystem-based management, elasmobranchs are still often lumped into generic categories referred to as ??shark?? or ??skate?? unclassified, with limited effort to identify individual species. The role of elasmobranchs in ecosystems has never been more important to our understanding of marine ecology due to high levels of exploitation of many species. Similar to other high trophic level predators, many elasmobranchs have life-history characteristics that make them vulnerable to over-exploitation. Elasmobranch populations are now heavily targeted in many fisheries throughout the world. Increasing exploitation of this group is especially alarming because their feeding ecology is poorly studied and by extension their influence in shaping ecosystems. Given recent increased attention on elasmobranchs in the scientific literature, management and conservation circles, and the general news media, researchers over the past decade have begun to more closely examine the ecological role of this important taxon of fishes. Due to this increasing awareness, and the development of new and innovative methods and analytical techniques, it prompted us to organize an international symposium on the ??Feeding Ecology of Elasmobranchs??. The symposium was held on 10 July 2010, in conjunction with the 27th annual meeting of the American Elasmobranch Society meetings in Providence, Rhode Island.  相似文献   

8.
Recovery from anaerobic exercise is thought to be prolonged in elasmobranchs because they lack several mechanisms for maintaining or increasing oxygen delivery that are present in teleosts. For example, teleosts increase hematocrit and maximal blood-oxygen carrying capacity through red cell ejection from the spleen. Teleosts also counteract the reduction in hemoglobin oxygen affinity resulting from metabolic acidosis through an adrenergic-mediated increase in red cell Na+-H+ exchanger activity. To begin to assess the consequences of anaerobic exercise accompanying catch-and-release fishing occurring within the estuarine nursery habitats of juvenile sandbar sharks (Carcharhinus plumbeus, Nardo), we constructed blood-oxygen equilibrium curves using samples from individuals 1 h after capture by hook and line (exercise-stressed) and samples from fully-recovered animals maintained in a shore-side tank (control sharks). We also compared exercise-stressed and control sharks for hemoglobin concentration, hematocrit, red cell count, intracellular pH, and nucleoside triphosphate concentration ([NTP]). In contrast to results from previous studies on elasmobranchs, we found an elevation in both hematocrit (≈ 21%) and blood hemoglobin concentration (≈ 10%) in exercise-stressed sharks. There was also clear evidence of red cell swelling. Mean red cell volume was ≈ 28% higher and mean cell hemoglobin concentration was ≈ 10% lower in exercise-stressed sharks. Most important, in spite of significant metabolic acidosis (0.3 pH units), blood from exercise-stressed sharks had an oxygen affinity equivalent to that of blood from control sharks. This was a direct consequence of intracellular pH being alkalinized by approximately 0.15 pH units relative to plasma pH in exercise-stressed sharks. Our results using isolated hemoglobin solutions showed that the observed reduction (≈ 15%) in intracellular [NTP] also contributed to the leftward shift in the oxygen equilibrium curves. As expected, we found sandbar shark red cells to be unresponsive to exogenous catecholamines. Regardless, sandbar sharks appear able to prevent the decrease in blood-oxygen affinity resulting from anaerobic exercise (and the concomitant decreases in plasma pH), as has been well-documented in teleosts. Our results suggest, therefore, that oxygen delivery following exhaustive exercise is not necessarily compromised in juvenile sandbar sharks, and that hook and line capture and subsequent release do not increase rates of mortality, although both are yet to be directly confirmed.  相似文献   

9.
Elasmobranchs (sharks, rays, and skates) are currently facing substantial anthropogenic threats, which expose them to acute and chronic stressors that may exceed in severity and/or duration those typically imposed by natural events. To date, the number of directed studies on the response of elasmobranch fishes to acute and chronic stress are greatly exceeded by those related to teleosts. Of the limited number of studies conducted to date, most have centered on sharks; batoids are poorly represented. Like teleosts, sharks exhibit primary and secondary responses to stress that are manifested in their blood biochemistry. The former is characterized by immediate and profound increases in circulating catecholamines and corticosteroids, which are thought to mobilize energy reserves and maintain oxygen supply and osmotic balance. Mediated by these primary responses, the secondary effects of stress in elasmobranchs include hyperglycemia, acidemia resulting from metabolic and respiratory acidoses, and profound disturbances to ionic, osmotic, and fluid volume homeostasis. The nature and magnitude of these secondary effects are species-specific and may be tightly linked to metabolic scope and thermal physiology as well as the type and duration of the stressor. In fishes, acute and chronic stressors can incite a tertiary response, which involves physiological changes at the organismal level, thereby impacting growth rates, reproductive outputs or investments, and disease resistance. Virtually no studies to date have been conducted on the tertiary stress response in elasmobranchs. Given the diversity of elasmobranchs, additional studies that characterize the nature, magnitude, and consequences of physiological stress over a broad spectrum of stressors are essential for the development of conservation measures. Additional studies on the primary, secondary, and tertiary stress response in elasmobranchs are warranted, with particular emphasis on expanding the range of species and stressors examined. Future studies should move beyond simply studying the effects of known stressors and focus on the underlying physiological mechanisms. Such studies should include the coupling of stress indicators with quantifiable aspects of the stressor, which will allow researchers to test hypotheses on survivorship and, ultimately, derive models that effectively link physiology to mortality. Studies of this nature are essential for decision-making that will result in the effective management and conservation of these species.  相似文献   

10.
Pacific sleeper sharks Somniosus pacificus were captured near Steller sea lion Eumetopias jubatus rookeries during the period when Steller sea lion pups are most vulnerable to Pacific sleeper shark predation (first water entrance and weaning). Analysis of stomach contents revealed that teleosts were the dominant prey in August and cephalopods were the dominant prey in May ( n = 198). Marine mammals were found in 15% of stomachs regardless of season, but no Steller sea lion tissues were detected. Molecular genetic analysis identified grey whale Eschrichtius robustus and harbour seal Phoca vitulina remains in some Pacific sleeper shark stomachs. Most mammals were cetacean and at least 70% of the cetaceans were probably scavenged. Although Pacific sleeper shark and Steller sea lion ranges overlapped, so predation could potentially occur, the diet study suggested that predation on Steller sea lions is unlikely, at least when pups first enter the water or during weaning. Harbour seals were infrequent prey and may have been consumed alive. Pacific sleeper sharks consume fast-swimming prey like Pacific salmon Oncorhynchus sp., most likely live animals rather than scavenged animals. Pacific sleeper sharks appeared to be opportunistic consumers of the available prey and carrion, feeding both on the bottom and in the water column, and their diet shifted to teleosts and cetacean carrion as the fish grew larger.  相似文献   

11.
Synopsis Catch records from the Hawai'i Cooperative Shark Research and Control Program, which operated in Hawai'i from 1967–1969, were examined and data on the Galapagos shark,Carcharhinus galapagensis were analyzed. A total of 304 Galapagos sharks was caught, predominantly with longlines. More female sharks were caught than males, and the catch was skewed geographically. On the island of O'ahu the highest catch rates occurred along the north and south coasts. High catch rates also occurred near points of land, where longshore currents converge. Average depth of capture was greater for juveniles (45.1 m) and mature males (60.2 m), than for subadults (38.8 m) and mature female sharks (34.2 m). Males appear to reach maturity between 205 and 239 cm total length, and females between 215 and 245 cm. Litter size ranged from 4 to 16 pups, with an average of 8.7. In Hawaiian waters Galapagos sharks are born at just over 80 cm total length. Mating and parturition apparently occur early in the year, and gestation is estimated to be about 12 months. Stomach contents consisted mainly of teleosts and benthic prey, and ontogenetic changes in diet occurred as sharks increased in size. Sharks consumed a smaller proportion of teleosts and more elasmobranchs with increasing size. Dietary diversity also increased with increasing size of shark.  相似文献   

12.
The original conception of the hypothalamus controlling feeding by the activity of two specific and reciprocally inhibitory centers has now been largely abandoned. Detailed neural research using a wide variety of methods has demonstrated the complex morphological and functional organization of this part of the brain and has modified the earlier simplistic approach. However, examination of the feeding responses to a variety of stimuli that represent components of control of feeding indicates that much or even most feeding control is extrahypothalamic. As demonstrated by the obesity or aphagia resulting from hypothalamic damage or from reversible hypothalamic interference, the hypothalamus influences or modulates feeding control, possibly by an enabling action, but it does not itself substantially control food intake either in the short or the long term. In the cachaxia of cancer, which can tentatively be regarded as a negative obesity, and which is closely reproducible in a rat model, the decline of food intake can be attributed to failure of control components that are all extrahypothalamic, and the deterioration of control of feeding appears to be quite independent of the hypothalamus. The very detailed reconstruction of intrahypothalamic circuitry that has been developed in recent years has not yet had any real impact on the problem of where or how the active control of food intake is generated or the way in which the hypothalamus influences this control.  相似文献   

13.
This study describes the feeding ecology of three pelagic shark species in the California Current: shortfin mako (Isurus oxyrinchus); blue (Prionace glauca); and thresher (Alopias vulpinus) sharks. Stomach contents of sharks collected from 2002 to 2008 were identified to the lowest taxonomic level and analyzed using univariate and multivariate methods. Of 330 mako sharks sampled (53 to 248?cm fork length [FL]), 238 stomachs contained 42 prey taxa, with jumbo squid (Dosidicus gigas) and Pacific saury (Cololabis saira) representing the most important prey based on the geometric index of importance (GII). In addition, 158 blue sharks were sampled (76 to 248?cm FL) and 114 stomachs contained 38 prey taxa, with jumbo and Gonatus spp. squids representing the most important prey. Lastly, 225 thresher sharks were sampled (108 to 228?cm FL) and 157 stomachs contained 18 prey taxa with northern anchovy (Engraulis mordax) and Pacific sardine (Sardinops sagax) identified as the most important prey. Overall, mako sharks had the most diverse diet based upon Simpson??s diversity index (1/D) (8.43?±?1.16), feeding on many species of teleosts and cephalopods, followed by blue sharks (6.20?±?2.11) which consumed a wide range of prey (primarily cephalopods), while thresher sharks were most specialized (2.62?±?0.34), feeding primarily on coastal pelagic teleosts. Dietary overlap was lowest between blue and thresher sharks (S?rensen similarity index?=?0.321 and Simplified Morisita Horn index?=?0.006), and seasonal variability in diet was greatest for blue sharks (Simplified Morisita Horn index?=?0.260, Analysis of Similarity (ANOSIM) p?<?0.001). In addition, size class, and subregion were significant factors that affected diet of each species differently (ANOSIM p?<?0.001). Despite similarities in life history characteristics and spatial and temporal overlap in habitat, diets of these three common shark species are distinct in the California Current.  相似文献   

14.
Tiger sharks, Galeocerdo cuvier, are apex predators that may structure marine communities through predation. Despite a large number of studies in other areas such as the Pacific Ocean, there are no quantitative data on the diet of tiger sharks in the northwest Atlantic Ocean and Gulf of Mexico. Diet was assessed from 169 tiger sharks by life stage, area, and environmental factors. Fifteen prey groups were identified, with teleosts, molluscs, birds, cephalopods, and reptiles being the predominant prey categories. There was an ontogenetic shift in diet, prey size and diversity. Molluscs were the most common prey in smaller sharks, while teleosts and reptiles became more important in the diet of larger sharks. Dietary overlap was significant by area (Gulf of Mexico vs Atlantic Ocean) and among all life stages except for young-of-the-year and adult tiger sharks. Juvenile tiger sharks also demonstrated selective feeding by targeting gastropod feet over ingesting the entire animal. While results were similar to feeding studies conducted on tiger sharks in other ocean basins, an understanding of area-specific trophic interactions is necessary to inform decision support tools for ecosystem-based approaches to management.  相似文献   

15.
Leptin is a key factor for the regulation of food intake and energy homeostasis in mammals, but information regarding its role in teleosts is still limited. There are large differences between mammalian and teleost leptin at both gene and protein levels, and in order to characterize the function of leptin in fish, preparation of species-specific leptin is therefore a key step. In this study, full-length cDNA coding for rainbow trout leptin was identified. In spite of low amino acid sequence similarity with other animals, leptin is highly conserved between trout and salmon (98.7%). Based on the cDNA, we produced pure recombinant trout leptin (rt-leptin) in E. coli, with a final yield of 20 mg/L culture medium. We then examined the effects of intraperitoneal (IP) injection of rt-leptin on feeding behavior and gene expression of hypothalamic NPY and POMCs (POMC A1, A2 and B) in a short-term (8 h) experiment. The rt-leptin suppressed food intake and led to transient reduction of NPY mRNA levels, while the expression of POMCs A1 and A2, was elevated compared with vehicle-injected controls. These results for rainbow trout are the first that describe a physiological role of leptin using a species-specific orthologue in teleosts, and they suggest that leptin suppresses food intake mediated by hypothalamic regulation. This anorexic effect is similar to that observed in mammals and frogs and supports that the neuroendocrine pathways that control feeding by leptin are ancient and have been conserved through evolution.  相似文献   

16.
The experiments of mechanical isolation of medial hypothalamus from the lateral hypothalamus and the preoptic anterior hypothalamic (POAH) region in rats showed that: 1. The interruption of neural connections between POAH area and medial hypothalamus do not prevent the decrease of food intake which normally occur in a hot environment. 2. At 33 degrees C, hyperphagic rats gained more weight than sham-operated ones. 3. At 4 degrees C, rats made hyperphagic by hypothalamic isolation do not ajust their food intake for a long period and do not gain weight. 4. The excitatory pathways of the feeding center from the POAH area do not penetrate directly into the lateral hypothalamus, but rather into the medial retrochiasmatic area. 5. The temperature influences the diurnal pattern of feeding only in rats with intact or unilateral neural connections of the hypothalamic structures 6. It seems that the thermostatic mechanism, which is a potent regulator of feeding, is closely associated with the central control of thyrotropin release, and that the hypothalamic structures may be considered only as a necessary link in the nervous mechanism involved in feeding control.  相似文献   

17.
Tissue levels of trimethylamine oxide (TMAO) were compared for seven teleost and two elasmobranch species captured from three depth ranges: shallow (<150 m), moderate (500-700 m), and deep (1,000-1,500 m). Within the teleosts, the deep-caught species had significantly greater TMAO content than shallow- or moderate-caught species. In all teleosts, muscle had substantially more TMAO than all other tissues. Kidney or, in some cases, liver had elevated trimethylamine (TMA) content, 2.20-9.65 mmol/kg, along with appreciable trimethylamine oxidase (TMAoxi) activity, suggesting active TMAO synthesis. No correlation was found between TMAoxi activity and TMAO content. The elasmobranchs in this study, Squalus acanthias and Centroscyllium fabricii from shallow and deep water, respectively, were both squaliform sharks. The deep-caught species had significantly more TMAO in all tissues than the shallow species. Furthermore, urea was significantly less in the deep species in all tissues except liver, while the urea:TMAO ratio was significantly less in all tissues. As with teleosts, the TMAO content of muscle was substantially higher for both elasmobranchs than in all other tissues. TMAoxi was below levels of detection in both elasmobranch species, suggesting that TMAO is obtained solely from the diet. This study expands the trend of increased muscle TMAO in deep-sea fish to a variety of other tissues. The accumulation of TMAO in various tissues in deep-sea teleosts and the accumulation of TMAO and concurrent urea decrease in a deep-sea elasmobranch in comparison to a shallow water species strongly support the contention that TMAO is of physiological importance in deep-sea fish.  相似文献   

18.
The inferior lobes of the shark hypothalamus were examined with light, transmission and scanning electron microscopy. The cells bordering the floor of the lateral recess appear to be typical liquor-contacting neurons. With scanning electron microscopy (SEM) the apical ends of these cells are seen to bulge into the ventricular lumen. In contrast, the roof is lined by a more typical ependymal cell characterized by numerous cilia and microvilli. In addition, SEM reveals several kinds of supraependymal cells with processes that appear to penetrate the ventricular lining. A periventricular nucleus underlies the ependymal cells. Neurons of the periventricular nucleus contain numerous lipofuchsin granules. The rest of the inferior lobe consists of many neuronal fibers. The morphology of the hypothalamic inferior lobe is discussed in relation to its possible role in feeding and aggressive behavior in both elasmobranchs and teleosts.  相似文献   

19.
Parathyroid hormone-related protein (PTHrP) is a hypercalcemic factor in mammals. The PTHrP antigen has been localized in both bony and cartilaginous fish tissues. Sites of localization included gills, skin and kidney, organs involved in osmoregulation. Physiological and localization experiments were carried out in elasmobranchs to dissect PTHrP's possible role in osmoregulation. The effects of alterations in the external environment on PTHrP in sharks were examined by keeping juvenile animals under conditions of increased temperature or decreased salinity. There were no alterations in the PTHrP levels in either the circulation or tissues. Significant correlations between plasma PTHrP, electrolyte and urea levels were seen in the pretreatment samples. The localization of PTHrP by immunohistochemistry and in situ hybridization revealed conserved sites of distribution from elasmobranchs to mammals, including skin, kidney, muscle and skeleton.  相似文献   

20.
Taste buds are gustatory endorgans which use an uncommon purinergic signalling system to transmit information to afferent gustatory nerve fibres. In mammals, ATP is a crucial neurotransmitter released by the taste cells to activate the afferent nerve fibres. Taste buds in mammals display a characteristic, highly specific ecto-ATPase (NTPDase2) activity, suggesting a role in inactivation of the neurotransmitter. The purpose of this study was to test whether the presence of markers of purinergic signalling characterize taste buds in anamniote vertebrates and to test whether similar purinergic systems are employed by other exteroceptive chemosensory systems. The species examined include several teleosts, elasmobranchs, lampreys and hagfish, the last of which lacks vertebrate-type taste buds. For comparison, Schreiner organs of hagfish and solitary chemosensory cells (SCCs) of teleosts, both of which are epidermal chemosensory end organs, were also examined because they might be evolutionarily related to taste buds. Ecto-ATPase activity was evident in elongate cells in all fish taste buds, including teleosts, elasmobranchs and lampreys. Neither SCCs nor Schreiner organs show specific ecto-ATPase activity, suggesting that purinergic signalling is not crucial in those systems as it is for taste buds. These findings suggest that the taste system did not originate from SCCs but arose independently in early vertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号