首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultra‐structure of the frustule of the rarely recorded diatom Fragilaria obtusa Hustedt was studied in detail using sand samples from Laranjal Bay (Lagoa dos Patos Rio Grande do Sul State, Brazil). F. obtusa is transferred to the genus Staurosira Ehrenberg as Staurosira obtusa (Hustedt) Garcia. The taxon is characterized by striae composed of elliptical areolae that are occluded by an internal velum, apical pore field formed by several rows of rimmed pores, girdle bands free of ornamentation, wide valvocopulae, and absence of rimoportulae. This is the first record of S. obtusa from an epipsammic habitat.  相似文献   

2.
3.
As with many other amphibians, Triturus species are characterized by a biphasic life cycle with abrupt changes in the cranial skeleton during metamorphosis. The post-metamorphic shape changes of the cranial skeleton were investigated using geometric morphometric techniques in six species: Triturus alpestris, T. vulgaris, T. dobrogicus, T. cristatus, T. carnifex, and T. karelinii. The comparative analysis of ontogenetic trajectories revealed that these species have a conserved developmental rate with divergent ontogenetic trajectories of the ventral skull shape that mainly reflect phylogenetic relatedness. A striking exception in the ontogenetic pattern was possibly found in T. dobrogicus, characterized by a marked increase in the developmental rate compared to the other newt species. The size-related shape changes explained a large proportion of shape change during post-metamorphic growth within each species, with marked positive allometric growth of skull elements related to foraging.  相似文献   

4.
Are size and arrangement of valve mantle areolae in Aulacoseira Thwaites adapted to light intensity? To test one criterion demonstrating an adaptation, heritability experiments were run on isolates of Aulacoseira subarctica (Müller) Haworth. Several clones of A. subarctica were isolated from Yellowstone Lake (Wyoming, USA), Lewis Lake (Wyoming), and East Rosebud Lake (Montana, USA). Two to four clones from each lake were grown in batch cultures under three irradiance levels: 2, 11.4, and 115 μmol photons·m?2·s?1. Five randomly chosen valves for each of two replicates of each clone were examined using a scanning electron microscope for a total of 300 valves. Size measurements were taken for each valve examined, and images of mantle areolae were captured on film at a magnification of 20,000×. Each image was digitized, and quantitative morphometric areolar characters were measured. A quantitative genetic analysis was performed within each light environment for the mean area of the external opening of mantle areolae, the mean distance between areolae within pervalvar striae, and the mean distance between pervalvar striae. Resulting estimates of heritability from among‐lake and within‐lake analyses indicate that all three mantle areolar characters could presently respond to selection and thus have potentially done so in the past.  相似文献   

5.
The evolution of body size, the paired phenomena of giantism and dwarfism, has long been studied by biologists and paleontologists. However, detailed investigations devoted to the study of the evolution of ontogenetic patterns shaping giant species are scarce. The damselfishes of the genus Dascyllus appear as an excellent model for such a study. Their well understood phylogeny reveals that large‐bodied species have evolved in two different clades. Geometric morphometric methods were used to compare the ontogenetic trajectories of the neurocranium and the mandible in both small‐bodied (Dascyllus aruanus and Dascyllus carneus; maximum size: 50–65 mm standard length) and giant (Dascyllus trimaculatus and Dascyllus flavicaudus; maximum size: 90–110 mm standard length) Dascyllus species. At their respective maximum body size, the neurocranium of the giant species is significantly shorter and have a higher supraoccipital crest relative to the small‐bodied species, whereas mandible shape variation is more limited and is not related to the ‘giant’ trait. The hypothesis of ontogenetic scaling whereby the giant species evolved by extending the allometric trajectory of the small‐bodied ones (i.e. hypermorphosis) is rejected. Instead, the allometric trajectories vary among species by lateral transpositions. The rate of shape changes and the type of lateral transposition also differ according to the skeletal unit among Dascyllus species. Differences seen between the two giant species in the present study demonstrate that giant species may appear by varied alterations of the ancestor allometric pattern. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 99 , 99–117.  相似文献   

6.
Assessments of temporal bone morphology have played an important role in taxonomic and phylogenetic evaluations of fossil taxa, and recent three‐dimensional analyses of this region have supported the utility of the temporal bone for testing taxonomic and phylogenetic hypotheses. But while clinical analyses have examined aspects of temporal bone ontogeny in humans, the ontogeny of the temporal bone in non‐human taxa is less well documented. This study examines ontogenetic allometry of the temporal bone in order to address several research questions related to the pattern and trajectory of temporal bone shape change during ontogeny in the African apes and humans. We further apply these data to a preliminary analysis of temporal bone ontogeny in Australopithecus afarensis. Three‐dimensional landmarks were digitized on an ontogenetic series of specimens of Homo sapiens, Pan troglodytes, Pan paniscus, and Gorilla gorilla. Data were analyzed using geometric morphometric methods, and shape changes throughout ontogeny in relation to size were compared. Results of these analyses indicate that, despite broadly similar patterns, African apes and humans show marked differences in development of the mandibular fossa and tympanic portions of the temporal bone. These findings indicate divergent, rather than parallel, postnatal ontogenetic allometric trajectories for temporal bone shape in these taxa. The pattern of temporal bone shape change with size exhibited by A. afarensis showed some affinities to that of humans, but was most similar to extant African apes, particularly Gorilla. Am J Phys Anthropol 151:630–642, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
We analysed linear measurements on various parts of the body and the configuration of 11 landmarks on the wing in a large sample of Ephedrus persicae that had emerged from 13 aphid host species, to assess whether static allometry (a measure of the scaling relationship between traits in a population of individuals at the same ontogenetic stage) accounts for variation in body shape. The analysed specimens came from several localities in Europe, Asia Minor, Japan and South America, and cover a large portion of the distribution area of E. persicae. We found that allometry accounts for variation in body shape among different biotypes within the E. persicae group. The allometric slopes for head size (HD), petiolus width (PETW), mesoscutum width (MSC), and ovipositor sheath length (OVPL) diverged significantly among biotypes, indicating biotype-specific allometries. The analysis of allometric variation in wing shape showed that the pattern and direction of allometric changes also differed among individuals that had emerged from different hosts. Our results (observed divergences in the directions of allometric slopes of particular morphometric traits and wing shape) suggest that allometric relations within E. persicae are not conserved, so that allometry itself changes, evolving differently in aphid parasitoids that emerge from different hosts.  相似文献   

8.
Conodonts are a clade of chordates and are valuable indicator fossils for biostratigraphy. The segminiplanate (neogondolelliform) conodonts represent a major morphological group ranging from upper Carboniferous to Upper Triassic marine sediments. However, the morphological similarity of segminiplanate P1 elements generates problems for taxonomy, especially in the Permian and Triassic clades. This paper represents the first study of morphological variation in Triassic segminiplanate conodonts using a geometric morphometric approach. The laminar microstructures observed in conodont cross‐sections indicate that, within our analysed specimens, smaller conodonts with fewer laminae are generally from an earlier ontogenetic stage while larger conodonts with more laminae are from a later stage of ontogeny. Using linear regressions between relative warp scores from both upper and lateral views and conodont length, we demonstrate strongly allometric growth patterns for the species Paragondolella bifurcata Budurov & Stefanov. Our results indicate that the species‐group taxon Pg. praeszaboi bystrickyi (Kovacs et al.) is an early growth stage of Pg. bifurcata and thus synonymous. We suggest that the allometry of conodonts should be considered seriously, especially when there are numerous transitional morphologies between large‐ and small‐sized conodonts. Reconstructing the ontogenetic series and using larger‐sized conodonts within the numerous transitional morphologies in the population of a rock sample for the definition of new species are suggested for future studies.  相似文献   

9.
A new species from the diatom genus Gomphoneis, G. mesta, was described following morphological and ultra-structural analyses of its frustules by light and scanning electron microscopy. The valve striation consisting of double rows of areolae and the presence of longitudinal lines dictate the systematic position of this taxon in the genus Gomphoneis. The set of features that distinguishes G. mesta from allied taxa is small valves, 26.5–81.6 μm in length and 7–12.5 μm in width, lanceolate to clavate shape, with a broadly lanceolate axial area, and longitudinal lines positioned next to the valve margins, thus contributing to a general thickening of the valve outline. When compared to other members of the genus, G. mesta most resembles G. magna Kociolek & Stoermer. Gomphoneis mesta dominates the epilithic community, growing in the Cherna Mesta, a pristine high-mountainous tributary of the Mesta River in Bulgaria. The species has been also found as small populations in all other benthic habitats of the Cherna Mesta and in a few locations along the Mesta River.  相似文献   

10.
Most studies of morphological variability in or among species are performed on adult specimens. However, it has been proven that knowledge of the patterns of size and shape changes and their covariation during ontogeny is of great value for the understanding of the processes that produce morphological variation. In this study, we investigated the patterns of sexual dimorphism, phylogenetic variability, and ontogenetic allometry in the Spermophilus citellus with geometric morphometrics applied to cross-sectional ontogenetic data of 189 skulls from three populations (originating from Burgenland, Banat, and Dojran) belonging to two phylogenetic lineages (the Northern and Southern). Our results indicate that sexual dimorphism in the ventral cranium of S. citellus is expressed only in skull size and becomes apparent just before or after the first hibernation because of accelerated growth in juvenile males. Sexes had the same pattern of ontogenetic allometry. Populations from Banat and Dojran, belonging to different phylogroups, were the most different in size but had the most similar adult skull shape. Phylogenetic relations among populations, therefore, did not reflect skull morphology, which is probably under a significant influence of ecological factors. Populations had parallel allometric trajectories, indicating that alterations in development probably occur prenatally. The species’ allometric relations during cranial growth showed characteristic nonlinear trajectories in the two northern populations, with accelerated shape changes in juveniles and continued but almost isometric growth in adults. The adult cranial shape was reached before sexual maturity of both sexes and adult size after sexual maturity. The majority of shape changes during growth are probably correlated with the shift from a liquid to a solid diet and to a lesser degree due to allometric scaling, which explained only 20 % of total shape variation. As expected, viscerocranial components grew with positive and neurocranial with negative allometry.  相似文献   

11.
To achieve maximum efficacy, taxonomic studies that seek to distinguish amongst species must first account for allometric shape variation within species. Two recently developed software packages (SMATR and MorphoJ) offer regression‐based allometric approaches that are notable for their statistical power and ease of use and that may prove highly useful to taxonomists working with linear or geometric morphometric data. We investigate species delimitation of the slender‐bodied fishes in the Leporinus cylindriformis group using these programs and demonstrate the utility of the allometric corrections that they provide. Without allometric correction, many pairs of species are difficult to distinguish on the basis of morphometrics, but once regressions are used to account for marked allometric variation within species, most of the recognized species in this group can be readily distinguished with linear or geometric morphometrics, particularly using variation in the depth of the body. Both approaches returned congruent patterns of separation amongst putative species, but the geometric approach in MorphoJ distinguished amongst four more pairs of species than did the linear approach in SMATR and appears to provide slightly more statistical power. Based on distinctive morphometrics, meristics, and coloration, a highly elongate species of Leporinus from the Suriname, Corantijn, and Coppename rivers of Suriname is described herein as a new species, Leporinus apollo sp. nov. The unique L. cylindriformis holotype from Porto de Moz, Brazil differs in morphology, meristics, and pigmentation from specimens commonly referred to that species from the main basin of the Amazon; the latter specimens may represent an additional undescribed species. The L. cylindriformis holotype itself may represent a rare species or a specimen collected at the edge of its native range. Measurements of the holotype and paratype of Leporinus niceforoi, which were collected in the Amazonian slope of Colombia, differ substantially from similarly pigmented and putatively conspecific specimens from Amazonian portions of Ecuador and Peru. Recently collected specimens from Colombia are needed to determine whether the observed morphometric variation encompassed by the current concept of L. niceforoi indicates a morphocline within a single species, suggests the presence of multiple cryptic species, or results from shrinkage of the types. In all these cases, linear or geometric morphometric data can reliably differentiate amongst species, but only after one accounts for allometric shape variation. The new SMATR and MorphoJ software packages both offer easy and effective approaches to such allometrically informed taxonomy, and may prove useful to any systematist working on taxa that change shape as they grow. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 103–130.  相似文献   

12.
Post-natal ontogenetic variation of the marmot mandible and ventral cranium is investigated in two species of the subgenus Petromarmota (M. caligata, M. flaviventris) and four species of the subgenus Marmota (M. caudata, M. himalayana, M. marmota, M. monax). Relationships between size and shape are analysed using geometric morphometric techniques. Sexual dimorphism is negligible, allometry explains the main changes in shape during growth, and males and females manifest similar allometric trajectories. Anatomical regions affected by size-related shape variation are similar in different species, but allometric trajectories are divergent. The largest modifications of the mandible and ventral cranium occur in regions directly involved in the mechanics of mastication. Relative to other anatomical regions, the size of areas of muscle insertion increases, while the size of sense organs, nerves and teeth generally decreases. Epigenetic factors, developmental constraints and size variation were found to be the major contributors in producing the observed allometric patterns. A phylogenetic signal was not evident in the comparison of allometric trajectories, but traits that allow discrimination of the Palaearctic marmots from the Nearctic species of Petromarmota are present early in development and are conserved during post-natal ontogeny.  相似文献   

13.
In this study, I investigate body-form variability in the trophically polymorphic Cuatro Cienegas cichlid, Cichlasoma minckleyi. I use geometric morphometrics to assess and compare size, shape, and allometric patterns within and between dental morphs (distinguished by differences in pharyngeal bones and papilliform or molariform dentitions). I find that dental morphs do not differ significantly in size, shape, or allometric slopes, but do differ in allometric intercepts; thus, dental morphs exhibit different patterns of body-form variability. Within each morph, body-form varies between more fusiform 'piscivores' and deeper-bodied dietary generalists. However, papilliform individuals show a continuous distribution of body-forms, whereas molariform individuals exhibit a discontinuity. I compare results from geometric analyses with those from a traditional (distance-based) morphometric analysis, finding that geometric techniques more clearly recognize discontinuities in shape. Finally, I suggest explanations for observed differences in body-form variability between dental morphs, concluding that the best explanation hinges on the relative importance of genetic and environmental factors in influencing body-form.  相似文献   

14.
Yang  Jing-Rong  Duthie  Hamish C. 《Hydrobiologia》1993,269(1):57-66
Teratological forms of Stephanodiscus niagarae Ehrenb. and S. parvus Stoermer & Håkansson were observed during a study of diatoms preserved in a radiometrically dated core from Hamilton Harbour (Lake Ontario, Canada). Morphological features and ultrastructures of both species were studied under the light and scanning electron microscope. The valve structure of abnormal forms of S. niagarae appears to be weakly silicified, especially in the central area. The shape of satellite pores are very irregular in comparison with the round shape of the normal specimen. The central fultoportulae are characterized as small tubes extending out of the external valve. Two types of abnormal frustules are present in the population of S. parvus studied. In one type valves are underdeveloped and only the siliceous layer and ribs are present, and in the other type the valves are strongly silicified and the areolae are almost completely occluded.The teratological forms of both species appeared in the core sediments after 1911, and both became the dominant components of diatom assemblages after 1970. Their occurrence and increased abundance coincides with records of heavy metal pollution in the harbour.  相似文献   

15.
This study analyses the ontogenetic diet shifts of a Neotropical catfish, Pimelodus maculatus (Siluriformes, Pimelodidae), from an ecomorphological standpoint. We collected 241 individuals in the Piracicaba River (Brazil) and, in the laboratory, seven morphometric variables were recorded from each specimen: standard length (SL), body depth, head length, snout length, eye diameter, mouth height and mouth width. After standardizing these measurements (as a proportion of SL), linear regressions were run to determine whether their growth was isometric or allometric in relation to SL. The diet analysis shows that the main food item for fish in the smaller size classes is aquatic insects, while the largest individuals feed mainly on other fish. As the great majority of the morphometric variables analyzed showed isometric growth as a function of SL – which means that these fish do not change their shape significantly during their lives – the ontogenetic diet shifts may be seen as a consequence of the absolute size increment of their mouth gape, which allows individuals to maximize their energetic gain by ingesting larger prey with a higher caloric content.  相似文献   

16.
Characterizing patterns of observed current variation, and testing hypotheses concerning the potential drivers of this variation, is fundamental to understanding how morphology evolves. Phylogenetic history, size and ecology are all central components driving the evolution of morphological variation, but only recently have methods become available to tease these aspects apart for particular body structures. Extant monitor lizards (Varanus) have radiated into an incredible range of habitats and display the largest body size range of any terrestrial vertebrate genus. Although their body morphology remains remarkably conservative, they have obvious head shape variation. We use two‐dimensional geometric morphometric techniques to characterize the patterns of dorsal head shape variation in 36 species (375 specimens) of varanid, and test how this variation relates to size, phylogenetic history and ecology as represented by habitat. Interspecific head shape disparity is strongly allometric. Once size effects are removed, principal component analysis shows that most shape variation relates to changes in the snout and head width. Size‐corrected head shape variation has strong phylogenetic signal at a broad level, but habitat use is predictive of shape disparity within phylogenetic lineages. Size often explains shape disparity among organisms; however, the ability to separate size and shape variation using geometric morphometrics has enabled the identification of phylogenetic history and habitat as additional key factors contributing to the evolution of head shape disparity among varanid lizards.  相似文献   

17.
Different types of locomotion in phylogenetically close rodent species can lead to significantly different growth patterns of certain skeletal structures. In the present study, we compared the allometric and phenotypic trajectories of the humerus in semiaquatic (Arvicola sapidus) and fossorial (Arvicola scherman) water vole taxa, using three-dimensional geometric morphometrics, to investigate the relationships between functional and ontogenetic differences. Results revealed shared humerus traits between A. sapidus and A. scherman, specifically an expansion of the epicondylar and deltopectoral crests along postnatal ontogeny. In both species, the humerus of young specimens is more robust than in adults, possibly as a compensatory response for lower bone stiffness. However, significant interspecific differences were detected in all components of allometric and phenotypic trajectories. Noticeably divergent allometric trajectories were observed, probably as a result of different functional pressures exerted on this bone. Important differences in the form of the adult humerus between taxa were also found, particularly in features located in muscle insertion zones. Furthermore, the allometric regression revealed certain shape variation not associated with size in A. scherman, suggesting mechanical stress produced by the persistent digging activity during adulthood. A. scherman is a chisel-tooth digger that shares several traits in the humerus morphology with scratch-digger rodent species. Nevertheless, these shared characteristics are less pronounced in fossorial water voles, which is congruent with the different implications of the forelimb in the digging activity in these two types of diggers.  相似文献   

18.
A revision of the monoraphid pennate diatom genus Campyloneis Grunow was carried out based on LM and EM observations. The material examined originated from various herbarium collections and from extant epiphytic diatom communities on leaves of Posidonia spp. We also examined the generitype C. grevillei (Smith) Grunow and the fossil material of C. gheyselinchi Reinhold from which the author extracted the type. Our results clarified the fine structure of C. grevillei and C. gheyselinchi. Of the various varieties of C. grevillei, only the variety argus (Grunow) Cleve was retained. This differs from the nominate variety in the arrangement and shape of the areolae adjacent to the sternum of the araphid valve. The newly described taxon Campyloneis juliae De Stefano differs from all Campyloneis species in areolae ultrastructure and morphology of the valvocopulae. As for the fossil species C. gheyselinchi, the sternum valve areolae are similar to those of C. grevillei, but scarcity of frustules in the type material prohibited evaluation of its variability. For this reason we provisionally maintained its rank of species. The elaborate linking systems among the valvocopulae and valves in Campyloneis species appear to provide structural reinforcement against pressure from neighboring epiphytic diatoms and scouring of seagrass leaves.  相似文献   

19.
20.
Recent questions concerning the taxonomic status of the diatom genus Gomphoneis Cleve have prompted critical examination of the valvar morphology of a species originally included in the genus. Light and electron microscopic observations on G. mammilla (Ehr.) Cl. show that the characteristics put forth by Cleve to delineate the genus are present in this taxon. Striae composed of two rows of simple areolae located in depressions on the valve and longitudinal lines formed by a broad internal axial plate were observed in G. mammilla. The presence of two apical spines on the headpole and the structure of a bilobed apical pore field located at the footpole are described, in addition to other valve features. Valve morphology of G. mammilla is compared with that of doubly-punctate Gomphonema species with the result that we recommend the two genera remain separate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号