首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies on soybean nodule senescence   总被引:2,自引:7,他引:2       下载免费PDF全文
Klucas RV 《Plant physiology》1974,54(4):612-616
Soybean Glycine max. L. Merr. nodule senescence was studied using the loss of acetylene reduction by intact tap root nodules as its indication. Tap root nodules from two varieties (Calland and Beeson) of field-grown soybeans were used. The specific activities of nitrogenase (micromoles/minute gram fresh weight of nodules) as measured by the acetylene reduction assay decreased abruptly between 58 to 65 and 68 to 75 days after planting the Beeson and Calland soybeans, respectively. Major changes were not detected in dry weight, total nitrogen, and leghemoglobin levels during the period when in vivo nitrogenase activity declined. Ammonium levels in the cytosol of nodules and poly-β-hydroxybutyrate increased moderately just prior to or coincidental with the loss of nitrogenase activity. Neither enzymes that have been postulated to be involved in ammonium assimilation nor NADP+-specific isocitrate dehydrogenase exhibited any large changes in specific activities during the initial period when nitrogenase activity declined.  相似文献   

2.
The study on localization of ATP-ase in root nodules of Astragalus sinicus and Sesbania cannabina shows that the particles of lead phosphate precipitates resulting from the reaction of ATP hydrolytic enzyme are distributed in cell wall, plasmolemma, cytoplasm and peribacteroid membranes etc. of the host cells. This ATP-ase plays an important role in the transportation and absorption of substances. Owing to the need of photosynthates provided for the nitrogen fixation of root nodules, the active reaction of ATP-ase in bacteroids varies with their developments. The numbers of bacteroids having ATP hydrolytic enzyme in young root nodules are significantly less than those in senescent nodules. Possibly, this active reaction is related with the physiological function of nitrogen fixation of bacteroids at different development stages.  相似文献   

3.
During the first few days of nitrogen fixation activity by soybean (Glycine max (L.) Merr) root nodules, d-chiro-inositol, myo-inositol, sucrose, alpha,alpha-trehalose, and maltose accumulate rapidly and reach concentrations several fold greater than concentrations in other plant organs. Concentrations of d-pinitol in nodules (>/=1.0 milligrams per gram fresh weight) were similar to concentrations in leaf blades. The concentration of fructose in nodules was lower than concentrations in other plant organs.Comparison of nonnodulated roots, nodulated roots (after removal of nodules), and nodules indicated that nodules may compete successfully with roots for carbohydrates, especially the disaccharides sucrose, alpha,alpha-trehalose, and maltose. Based on the isolation of protoplasts and bacteroids, it was tentatively concluded that the highest concentrations of cyclitols in soybean nodules are located in the infected region and that, inside infected cells, the highest concentrations of d-pinitol and myo-inositol are outside of bacteroids.Evidence for the identification of d-chiro-inositol and maltose in soybean nodules is presented.  相似文献   

4.
Green LS  Emerich DW 《Plant physiology》1997,114(4):1359-1368
A mutant strain of Bradyrhizobium japonicum USDA 110 devoid of [alpha]-ketoglutarate dehydrogenase activity (LSG184) was used to test whether this tricarboxylic acid cycle enzyme is necessary to support nitrogen fixation during symbiosis with soybean (Glycine max). LSG184 formed nodules about 5 d later than the wild-type strain, and the nodules, although otherwise normal in structure, contained many fewer infected host cells than is typical. At 19 d after inoculation cells infected with the mutant strain were only partially filled with bacteroids and showed large accumulations of starch, but by 32 d after inoculation the host cells infected with the mutant appeared normal. The onset of nitrogen fixation was delayed about 15 d for plants inoculated with LSG184, and the rate, on a per nodule fresh weight basis, reached only about 20% of normal. However, because nodules formed by LSG184 contained only about 20% of the normal number of bacteroids, it could be inferred that the mutant, on an individual bacteroid basis, was fixing nitrogen at near wild-type rates. Therefore, the loss of [alpha]-ketoglutarate dehydrogenase in B. japonicum does not prevent the formation or the functioning of nitrogen-fixing bacteroids in soybean.  相似文献   

5.
Iron is an important nutrient in N2-fixing legume root nodules. Iron supplied to the nodule is used by the plant for the synthesis of leghemoglobin, while in the bacteroid fraction, it is used as an essential cofactor for the bacterial N2-fixing enzyme, nitrogenase, and iron-containing proteins of the electron transport chain. The supply of iron to the bacteroids requires initial transport across the plant-derived peribacteroid membrane, which physically separates bacteroids from the infected plant cell cytosol. In this study, we have identified Glycine max divalent metal transporter 1 (GmDmt1), a soybean homologue of the NRAMP/Dmt1 family of divalent metal ion transporters. GmDmt1 shows enhanced expression in soybean root nodules and is most highly expressed at the onset of nitrogen fixation in developing nodules. Antibodies raised against a partial fragment of GmDmt1 confirmed its presence on the peribacteroid membrane (PBM) of soybean root nodules. GmDmt1 was able to both rescue growth and enhance 55Fe(II) uptake in the ferrous iron transport deficient yeast strain (fet3fet4). The results indicate that GmDmt1 is a nodule-enhanced transporter capable of ferrous iron transport across the PBM of soybean root nodules. Its role in nodule iron homeostasis to support bacterial nitrogen fixation is discussed.  相似文献   

6.
Actual nitrogen fixation of root nodules of differentAlbizia-rhizobium symbioses, was compared with the potential nitrogen fixation of isolated bacteroids. The potential nitrogen fixation exceeded actual nitrogen fixation in all symbionts. After addition of nitrate the actual nitrogen fixation decreased more than did potential nitrogen fixation in effective symbiosis, whereas in a less effective symbiosis, the actual and potential nitrogen fixation increased as a result of better photosynthate supply to the roots and nodules. As confirmed by correlation analysis, the nitrogen fixation and photosynthetic yield of suboptimum symbioses were relatively enhanced by dressing with inorganic nitrogen fertilizer.  相似文献   

7.
The dependence of the nitrogen fixing system in the root nodules of pea plants (Pisum sativum) L. cv. Torsdag II) on light induced reactions was studied. The pots of the inoculated pea plants, after the nolules had fixed nitrogen for a fornight, were transferred to a dark room. The control plants were kept under normal lighting conditions. The decay of leghemoglobin was measured after photosynthesis had ceased. In the dark the red nodules turned green in three days, when about half of the haem had been broken down. The plants in normal lighting conditions had maintained the red nodules. The appearence of leghemoglobin and bacteroids was simultaneouos. In normal lighting conditions the number of bacteroids was about 1.6 × 108 per g fresh nodules. The appearance of leghemoglobin and bacteroids was simultaneous. In normal lighting conditons the number of bacteroids was bout 1.6 × 108 per g fresh nodules. At the same time as the nodules turned green in the dark most of the bacteroids disappeared and the number of rod-shaped bacteria increased. After five days int the dark thenumber of bacteria of the green nodules was 2.2 × 108 per g fresh nodules. A large increase of of bacteria in the nodules is one of the results after the termination of effective symbiosis. Quantitative estimations were made with an automatic amino acid analysator of the amino acid composition in the root nodules of pea plants grown in the light and of pea plants grown in the dark. Altogether 27 amino acids and amides and 3 unknown ninhydrin positive compounds were found in the free amino acid fraction. In the red N-fixing nodules asparagine, the amide of aspartic acid, was the most prominent (more than 50 per cent of the total amino acid fraction), indicating the energy charge of the nitrogen fixation. 5 days in the dark affected the proportions of the amino acids as follows. Asparagine, homoserine, γ-aminobutyric acid and ethanolamine were decreased and the most of the others increased. In the hydrolysate of the non-soluble protein fraction 25 amino acids could be detected. The proportions of the amino acids in the root nodules of light-grown and dark-grown pea plants were very similar. Hydroxyproline and α, γ-diaminopimelic acid (DAP) were found in these fraction. Most of the DAP was contained in the peptide fraction. Also hydroxyproline was found to a small extent. It was assumed that the amino acids in this fraction were derived from the peptides of both plant cells and rhizobia.  相似文献   

8.
Summary Acetylene was reduced to ethylene by effective white clover nodules and by fully and partially effective intact nodules, nodule homogenates, and bacteroids of soybeans. Succinate and several amino acids markedly stimulated the reduction by effective soybean bacteroids, but the stimulation was slight with partially effective bacteroids. Acetylene metabolism by effective soybean bacteroids was also enhanced by excretions of in vitro-grown Rhizobium japonicum, excretions of bacteria derived from effective and ineffective nodules, and the soluble fraction from these nodules. Inhibitors of nitrogen fixation were not found in ineffective nodules. Ineffective soybean and white clover nodules and homogenates or isolated bacteria from ineffective soybean nodules did not reduce acetylene. Additions of succinate, amino acids, the soluble fraction of effective nodules, or excretions of effective bacteroids or of in vitro-grown cells of an effective R. japonicum strain did not promote nitrogen fixation by bacterial cells obtained from ineffective soybean nodules.  相似文献   

9.
Nitrogen-fixing symbiosis of legume plants with Rhizobium bacteria is established through complex interactions between two symbiotic partners. Similar to the mutual recognition and interactions at the initial stages of symbiosis, nitrogen fixation activity of rhizobia inside root nodules of the host legume is also controlled by specific interactions during later stages of nodule development. We isolated a novel Fix(-) mutant, ineffective greenish nodules 1 (ign1), of Lotus japonicus, which forms apparently normal nodules containing endosymbiotic bacteria, but does not develop nitrogen fixation activity. Map-based cloning of the mutated gene allowed us to identify the IGN1 gene, which encodes a novel ankyrin-repeat protein with transmembrane regions. IGN1 expression was detected in all organs of L. japonicus and not enhanced in the nodulation process. Immunoanalysis, together with expression analysis of a green fluorescent protein-IGN1 fusion construct, demonstrated localization of the IGN1 protein in the plasma membrane. The ign1 nodules showed extremely rapid premature senescence. Irregularly enlarged symbiosomes with multiple bacteroids were observed at early stages (8-9 d post inoculation) of nodule formation, followed by disruption of the symbiosomes and disintegration of nodule infected cell cytoplasm with aggregation of the bacteroids. Although the exact biochemical functions of the IGN1 gene are still to be elucidated, these results indicate that IGN1 is required for differentiation and/or persistence of bacteroids and symbiosomes, thus being essential for functional symbiosis.  相似文献   

10.
A large amount of energy is utilized by legume nodules for the fixation of nitrogen and assimilation of fixed nitrogen (ammonia) into organic compounds. The source of energy is provided in the form of photosynthates by the host plant. Phosphoenol pyruvate carboxylase (PEPC) enzyme, which is responsible for carbon dioxide fixation in C4 and crassulacean acid metabolism plants, has also been found to play an important role in carbon metabolism in legume root nodule. PEPC-mediated CO2 fixation in nodules results in the synthesis of C4 dicarboxylic acids, viz. aspartate, malate, fumarate etc. which can be transported into bacteroids with the intervention of dicarboxylate transporter (DCT) protein. PEPC has been purified from the root nodules of few legume species. Information on the relationship between nitrogen fixation and carbon metabolism through PEPC in leguminous plants is scanty and incoherent. This review summarizes the various aspects of carbon and nitrogen metabolism in legume root nodules.  相似文献   

11.
Observations were made on the content of α-aminoadipic acid and α-aminophimelic acid (DAP) in pea plants, nodules and Rhizobium leguminosarum, strain HT3. The preparations were purified by ion exchange chromatography, Qualitative analyses were made by paper chromatography, and quantitative analyses by means of an automatic amino acid analysator. In the whole plant and seeds the content of α-aminoadipic acid soluble in 70% ethanol varied between 10 and 80 μg/g dry weight. The shoot and red nitrogen fixing nodules contained more of this acid than roots and green inactive nodules. In the insoluble fraction of the shoot its concentration was 0.4-0.6 mg/g dry weight. α-Aminoadipic acid was not found in free living rhizobia, which again contained a considerable amount of α-aiaminopimelic acid, about 0.5 mg/g dry weight. The synthesis of DAP was intensive also in root nodules. In red nodules, which fixed molecular nitrogen, the content of DAP was 2.1 mg/g dry weight and in green inactive nodules 1.3 mg/g dry weight. It was shown that in the nodules DAP is closely connected with cell wall peptides of bacteroids. DAP could not be found in pea plants outside the nodules.  相似文献   

12.
Summary Rhizobium strains CIAT 301, CIAT 79 and SLM 602 were tested and found effective in the nodulation and nitrogen fixation of cowpea cv. MI-35 (Vigna unguiculata (L.) Walp) plants in growth chamber experiments. Fresh weight of nodules increased with plant age initially and stabilized in 20–30 days from planting, followed by a secondary flush of nodule growth after 30 days. Apparent nitrogen fixation per gram nodule fresh weight reached a maximum in 20–30 days after planting and then decreased, even though a flush of new nodules was produced.  相似文献   

13.
Efficiency of symbiotic nitrogen fixation in legumes depends on bringing together the processes of N2 fixation, assimilation of its products, supply of nitrogenase with energy, and development of nodule tissue and cellular structures. Coordination of these processes could arise from the evolutionary old functions of the nodules associated with deposition of the products of photosynthesis governed by systemic signals traveling between the above-ground organs and the roots. Further increase in symbiotic efficiency was associated with a pronounced ability to fix N2 by intracellular bacteroids that lost capability to propagate (as observed in galegoid legumes from the tribes Viciae, Trifolieae, and Galegae producing indeterminate nodules). However, efficiency of these symbioses is restricted by a slow removal from the nodules of the products of N2 fixation, which are assimilated along the same amide pathway as nitrogen compounds arriving from the soil. In legumes from the tribe Phaseoleae, such a restriction was overcome owing to a particular way of nitrogen assimilation via its incorporation into ureides (in determinate nodules). Development of symbioses where specialization of bacteroids in symbiotic fixation of atmospheric nitrogen is combined with its ureide assimilation will make it possible to produce new forms of plants highly efficient in symbiotic nitrogen fixation.  相似文献   

14.
Expression of Bradyrhizobium japonicum wild-type strain USDA110 nirK , norC and nosZ denitrification genes in soybean root nodules was studied by in situ histochemical detection of β -galactosidase activity. Similarly, PnirK- lacZ , PnorC- lacZ , and PnosZ- lacZ fusions were also expressed in bacteroids isolated from root nodules. Levels of β -galactosidase activity were similar in both bacteroids and nodule sections from plants that were solely N2-dependent or grown in the presence of 4 m M KNO3. These findings suggest that oxygen, and not nitrate, is the main factor controlling expression of denitrification genes in soybean nodules. In plants not amended with nitrate, B. japonicum mutant strains GRK308, GRC131, and GRZ25, that were altered in the structural nirK , norC and nosZ genes, respectively, showed a wild-type phenotype with regard to nodule number and nodule dry weight as well as plant dry weight and nitrogen content. In the presence of 4 m M KNO3, plants inoculated with either GRK308 or GRC131 showed less nodules, and lower plant dry weight and nitrogen content, relative to those of strains USDA110 and GRZ25. Taken together, the present results revealed that although not essential for nitrogen fixation, mutation of either the structural nirK or norC genes encoding respiratory nitrite reductase and nitric oxide reductase, respectively, confers B. japonicum reduced ability for nodulation in soybean plants grown with nitrate. Furthermore, because nodules formed by each the parental and mutant strains exhibited nitrogenase activity, it is possible that denitrification enzymes play a role in nodule formation rather than in nodule function.  相似文献   

15.
In vivo CO2 fixation and in vitro phosphoenolpyruvate (PEP) carboxylase levels have been measured in lupin (Lupinus angustifolius L.) root nodules of various ages. Both activities were greater in nodule tissue than in either primary or secondary root tissue, and increased about 3-fold with the onset of N2 fixation. PEP carboxylase activity was predominantly located in the bacteroid-containing zone of mature nodules, but purified bacteroids contained no activity. Partially purified PEP carboxylases from nodules, roots, and leaves were identical in a number of kinetic parameters. Both in vivo CO2 fixation activity and in vitro PEP carboxylase activity were significantly correlated with nodule acetylene reduction activity during nodule development. The maximum rate of in vivo CO2 fixation in mature nodules was 7.9 nmol hour−1 mg fresh weight−1, similar to rates of N2 fixation and reported values for amino acid translocation.  相似文献   

16.
Nodul{macron}ted alfalfa plants were grown hydroponically. Inorder to quantify N2 fixation and remobilization of N reservesduring regrowth the plants were pulse-chase-labelled with 15N.Starch and ethanol-soluble sugar contents were analysed to examinechanges associated with those of N compounds. Shoot removalcaused a severe decline in N2 fixation and starch reserves within6 d after cutting. The tap root was the major storage site formetabolizable carbohydrate compounds used for regrowth; initiallyits starch content decreased and after 14 d started to recoverreaching 50% of the initial value on day 24. Recovery of N2fixation followed the same pattern as shoot regrowth. Afteran initial decline during the first 10 d following shoot removal,the N2 fixation, leaf area and shoot dry weight increased sorapidly that their levels on day 24 exceeded initial values.Distribution of 15N within the plant clearly showed that a significantamount of endogenous nitrogen in the roots was used by regrowingshoots. The greatest use of N reserves (about 80% of N incrementin the regrowing shoot) occurred during the first 10 d and thencompensated for the low N2 fixation. The distribution of N derivedeither from fixation or from reserves of source organs (taproots and lateral roots) clearly showed that shoots are thestronger sink for nitrogen during regrowth. In non-defoliatedplants, the tap roots and stems were weak sinks for N from reserves.By contrast, relative distribution within the plant of N assimilatedin nodules was unaffected by defoliation treatment. Key words: Medicago sativa L., N2 fixation, N remobilization, N2 partitioning, regrowth  相似文献   

17.
Exposure of Galega orientalis plants to diamines putrescine (Put) and cadaverine (Cad) at concentrations from 0.01 to 2.0 m M significantly altered carbon and nitrogen metabolism in their root nodules. Correlative studies of bacteroid poly- β -hydroxybutyrate (PHB) content and acetylene-reduction capacity of the nodules revealed a negative relationship between these parameters. Utilisation of PHB deposits by bacteroids and high acetylene reduction activity was observed when applying low diamine concentrations. The increase in PHB accumulation in response to high diamine levels was accompanied by a considerable decline in nodule nitrogenase activity. Supplying isolated Galega bacteroids with various diamine concentrations significantly modified bacteroid oxygen consumption, which might be associated with alterations in carbon flux to the bacteroids. Finally, modulation of the bacteroid content upon Put and Cad treatment was examined. The results are discussed in terms of possible causes of the diamine-induced changes in nodule metabolism.  相似文献   

18.
The effects of NH4NO3 on the development of root nodules of Pisum sativum after infection with Rhizobium leguminosarum (strain PRE) and on the nitrogenase activity of the bacteroids in the nodule tissue were studied. The addition of NH4NO3 decreased the nitrogenase activity measured on intact nodules. This reduction of nitrogen fixation did not result from a reduced number of bacteroids or a decreased amount of bacteroid proteins per gram of nodule. The synthesis of nitrogenase, measured as the relative amount of incorporation of [35S]sulfate into the components I and II of nitrogenase was similarly not affected. The addition of NH4NO3 decreased the amount of leghemoglobin in the nodules and there was a quantitative correlation between the leghemoglobin content and the nitrogen-fixing capacity of the nodules. The conclusion is that the decrease of nitrogen-fixing capacity is caused by a decrease of the leghemoglobin content of the root nodules and not by repression of the nitrogenase synthesis.  相似文献   

19.
Effects of drought on nitrogen fixation in soybean root nodules   总被引:3,自引:0,他引:3  
Soybean plants [Glycine max (L.) Merr.] were grown in silica sand and were drought stressed for a 4 week period during reproductive development and without any mineral N supply in order to maximize demand for fixed nitrogen. A strain of Bradyrhizobium japonicum that forms large quantities of polysaccharide in nodules was used to determine whether or not the supply of reduced carbon to bacteroids limits nitrogenase activity. A depression of 30–40% in nitrogen content in leaves and pods of stressed plants indicated a marked decline in nitrogen fixation activity during the drought period. A 50% increase in the accumulation of bacterial polysaccharide in nodules accompanied this major decrease in nitrogen fixation activity and this result indicates that the negative impact of drought on nodules was not due to a depression of carbon supply to bacteroids. The drought treatment resulted in a statistically significant increase in N concentration in leaves and pods. Because N concentration and chlorophyll concentration in leaves were not depressed, there was no evidence of nitrogen deficiency in drought‐stressed plants, and this result indicates that the negative impact of drought on nodule function was not the cause of the depression of shoot growth. At the end of the drought period, the concentration of carbohydrates, amino nitrogen, and ureides was significantly increased in nodules on drought‐stressed plants. The overall results support the view that, under drought conditions, nitrogen fixation activity in nodules was depressed because demand for fixed N to support growth was lower.  相似文献   

20.
Seventeen arginine auxotrophic mutants of Sinorhizobium meliloti Rmd201 were isolated by random transposon Tn5 mutagenesis using Tn5 delivery vector pGS9. Based on intermediate feeding studies, these mutants were designated as argA/argB/argC/argD/argE (ornithine auxotrophs), argF/argI, argG and argH mutants. The ornithine auxotrophs induced ineffective nodules whereas all other arginine auxotrophs induced fully effective nodules on alfalfa plants. In comparison to the parental strain induced nodule, only a few nodule cells infected with rhizobia were seen in the nitrogen fixation zone of the nodule induced by the ornithine auxotroph. TEM studies showed that the bacteroids in the nitrogen fixation zone of ornithine auxotroph induced nodule were mostly spherical or oval unlike the elongated bacteroids in the nitrogen fixation zone of the parental strain induced nodule. These results indicate that ornithine or an intermediate of ornithine biosynthesis, or a chemical factor derived from one of these compounds is required for the normal development of nitrogen fixation zone and transformation of rhizobial bacteria into bacteroids during symbiosis of S. meliloti with alfalfa plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号