首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Host mutations in Escherichia coli K12 selected for the temperature-sensitive replication of the bacterial plasmid colicinogenic factor E(1) (ColE(1)) exhibit a pleiotropic effect with respect to the effect of the mutation on other extra-chromosomal elements. The mutations also vary with respect to the time of incubation of the cells at 43 degrees C required for complete cessation of ColE(1) DNA synthesis. While the synthesis of the bacterial chromosome appears unaffected, supercoiled ColE(1) DNA replication stops immediately in some mutants and gradually decreases during several generations of cell growth before stopping in others. Mutations isolated in the ColE(1) plasmid resulted in only a gradual cessation of ColE(1) DNA synthesis over several generations of cell growth at 43 degrees C. Conjugal transfer of the ColE(1) and ColV factors occurs normally in the host mutants when the transfer is carried out at the permissive temperature; however, the presence of a group I mutation in the donor cell prohibited conjugal transfer of either plasmid DNA at 43 degrees C to a normal recipient cell. Similarly, the presence of this mutation in the recipient prevented the establishment of ColE(1) or ColV in the mutant recipient cell upon conjugation with a normal donor at 43 degrees C. Various host ColE(1) replication mutants carrying either ColE(1) or ColE(2) were also defective in the mitomycin C-induced production of colicin E(1) or colicin E(2) at 43 degrees C. The majority of the host mutations examined exhibited a temperature sensitivity to growth in deoxycholate in addition to the inhibition of plasmid DNA replication, suggesting a membrane alteration in these mutants when grown at the restrictive temperature.  相似文献   

2.
Plasmid Specificity of The Origin of Transfer of Sex Factor F   总被引:6,自引:4,他引:2       下载免费PDF全文
The ability of F-like plasmids to promote transfer from the F origin of transfer was determined. Chromosome transfer was measured from plasmid derivatives of RecA(-) Hfr deletion strains which had lost all the F transfer genes but which in some cases retained, and in others had also lost, the origin sequence. ColV2 and ColVBtrp could initiate transfer from the F origin, but R100-1, R1-19, and R538-1 drd could not. These results can be correlated with the plasmid specificity of the traI components of the different plasmid transfer systems, supporting the hypothesis that the origin of transfer is the site of action of the traI product. Most F-like plasmids, including R1-19 and R538-1 drd, could transfer ColE1, consistent with previous findings that the (plasmid-specific) traI product is not necessary for ColE1 transfer by Flac; ColE1 transfer may be initiated by a ColE1-or host-determined product. R100-1 and R136fin(-) could not transfer ColE1 efficiently, apparently because of differences residing in their pilus-forming genes.  相似文献   

3.
We report a novel type of recA independent recombination between plasmids ColE1 or ColK and a naturally occurring miniplasmid (pLG500). This miniplasmid can be complemented for mobilization and relaxation in the presence of ColE1 or ColK. Recombination between ColE1 and pLG500, or ColK and pLG500, was site-specific, and was only detected following the mobilization of these plasmids. The composite plasmids thus formed were stable, but recombination (resulting in dissociation of their component replicons) was again detected following mobilization. For ColE1, the site at which cointegration with pLG500 occurred was mapped to within 47 base pairs of the relaxation nicking site; for ColK, the recombination site was localized to the same region as its genetically defined transfer origin. The generation of these cointegrate plasmids is consistent with the hypothesis that mobilization entails relaxation nicking, transfer of the nicked single strand of DNA, and recircularization of the transferred single strand by ligation of 3′ and 5′ termini by the relaxation protein bound to the 5′ nick terminus. Since both plasmids are mobilized by the same proteins, their cointegration can be explained as a consequence of the ligation of the 5′ end of one plasmid to the 3′ end of the other, and vice versa.  相似文献   

4.
Summary Mobilization of the plasmid ColE1 from cells containing a conjugative plasmid (such as F) requires the synthesis of ColE1 mob proteins, and the presence, in cis, of bom (basis of mobility), a region of ColE1 containing the origin of transfer (oriT). The process of ColE1 transfer is thought to resemble that of the conjugative plasmid F, although the plasmids share little sequence homology. In F, conjugation is preceded by a strand-specific nicking event at oriT. The nicked strand is then conducted to the recipient with the 5 end leading. This is believed also to occur with ColE1, but direct biochemical confirmation has been precluded by its small size (6.65 kb). To test this hypothesis genetically, a novel method, using a dv-based vector, has been devised to site-specifically integrate bom (or any other cloned sequence) into the chromosome of Escherichia coli. When provided with suitable mobilizing plasmids, such strains were found to transfer the chromosome in a polar way. From these data, the orientation of transfer of ColE1 was deduced and shown to be analogous to F.  相似文献   

5.
The relaxation site of ColE1 has been located within the restriction fragment HpaII L, which is 148 base-pairs in length. Restriction mapping data indicate that the relaxation nick (the presumptive origin of transfer) of ColE1 is located at a distance of 250 to 300 nucleotides away from the replication origin, downstream in the direction of replication. This result is consistent with the observation made by Inselburg (1977), that the relaxation phenomenon probably does not play a direct role in vegetative replication of ColE1. The sequence of 185 nucleotides surrounding the relaxation site has been determined and this contains a translational symmetry and several 2-fold rotational symmetries. These symmetric elements may be recognition sites for proteins involved in the conjugal transfer of ColE1. The sequence further demonstrates that the relaxation site, unlike the cis A nicking site of φX174, is located in an intercistronic region. The site of the relaxation break has a 2-fold rotational symmetry.  相似文献   

6.
The effect of two Rec(-) mutations (AB2463 and JC1553) on the ability of a cell to accept, maintain, and express the colicinogenic factors ColE(1), ColE(2), and ColV was examined in Escherichia coli. These mutations had no observable effect on the colicinogenic properties of the ColV factor, but prevented the spontaneous and induced production of colicins E(1) and E(2) which are determined by the ColE(1) and ColE(2) factors, respectively. The two Rec(-) mutations had no apparent effect on the ability of the cells to acquire, maintain, or transfer the ColE(1) and ColE(2) factors. These mutations did not affect the expression of immunity by any of the three Col factors. ColE(1) and ColE(2) were also shown to be indirectly induced by mating F(-) cells carrying these Col factors with ultraviolet-irradiated, non-colicinogenic, Hfr and F(+) cells. Indirect induction of colicin production occurred when either an irradiated F(+) Rec(+) or F(+) Rec(-) strain was employed as the donor strain.  相似文献   

7.
An Escherichia coli mutant (polA1), defective in deoxyribonucleic acid (DNA) polymerase I, (EC 2.7.7.7) is unable to maintain colicinogenic factor E1 (ColE1), whereas several sex factor plasmids are maintained normally in this strain. polA1 mutant strains containing these sex factor plasmids do not exhibit a readily detectable plasmid-induced polymerase activity. A series of E. coli mutants that are temperature sensitive for ColE1 maintenance, but able to maintain other plasmids, were isolated and shown to fall into two phenotypic groups. Mutants in one group are defective specifically in ColE1 maintenance at 43 C, but exhibit normal DNA polymerase I activity. Mutations in the second group map in the polA gene of E. coli, and bacteria carrying these mutations are sensitive to methylmethanesulfonate (MMS). Revertants that were selected either for MMS resistance or the ability to maintain ColE1 were normal for both properties. The DNA polymerase I enzyme of two of these mutants shows a pronounced temperature sensitivity when compared to the wild-type enzyme. An examination of the role of DNA polymerase I in ColE1 maintenance indicates that it is essential for normal replication of the plasmid. In addition, the presence of a functional DNA polymerase I in both the donor and recipient cell is required for the ColV-promoted conjugal transfer of ColE1 and establishment of the plasmid in the recipient cell.  相似文献   

8.
Antimicrobial resistance is one of the major threats to Public Health worldwide. Understanding the transfer and maintenance of antimicrobial resistance genes mediated by mobile genetic elements is thus urgent. In this work, we focus on the ColE1-like plasmid family, whose distinctive replication and multicopy nature has given rise to key discoveries and tools in molecular biology. Despite being massively used, the hosts, functions, and evolutionary history of these plasmids remain poorly known. Here, we built specific Hidden Markov Model (HMM) profiles to search ColE1 replicons within genomes. We identified 1,035 ColE1 plasmids in five Orders of γ-Proteobacteria, several of which are described here for the first time. The phylogenetic analysis of these replicons and their characteristic MOBP5/HEN relaxases suggest that ColE1 plasmids have diverged apart, with little transfer across orders, but frequent transfer across families. Additionally, ColE1 plasmids show a functional shift over the last decades, losing their characteristic bacteriocin production while gaining several antimicrobial resistance genes, mainly enzymatic determinants and including several extended-spectrum betalactamases and carbapenemases. Furthermore, ColE1 plasmids facilitate the intragenomic mobilization of these determinants, as various replicons were identified co-integrated with large non-ColE1 plasmids, mostly via transposases. These results illustrate how families of plasmids evolve and adapt their gene repertoires to bacterial adaptive requirements.  相似文献   

9.
Summary Physical maps of the two independently isolated Escherichia coli plasmids, pMB1 and ColE1, were prepared with 13 restriction endonucleases and compared. A 5.1 kilobase continuous region covering 55% of pMB1 and 75% of ColE1 was found to have similar, but non-identical, restriction maps. The differences in the maps of this region probably arose by localized mutational events rather than by major sequence rearrangements. The F-factor was found to mobilize pMB1 efficiently for conjugal transfer. A region on pMB1 required for its F-mediated transfer was mapped. Results of our study combined with results of other investigators suggest that pMB1 and ColE1 share functional properties such as colicin production, colicin immunity, mode of replication, and mobilization by the F-factor, and that the sequences required to code these functions are contained within the 5.1 kilobase homologous region.  相似文献   

10.
Summary Sequences essential for the conjugal transfer of ColE1 can be divided into a cis-acting site and a region encoding trans-acting products. Each of these was successively cloned into a non-transmissible plasmid vector. The resulting chimera was transmissible by the conjugative plasmids F'lac,pro (incFI) and R64drd11 (incI). The sequences encoding colicin E1, immunity, and incompatibility were absent from this chimera: therefore they are not essential for the conjugal transmission of the ColE1 plasmid.In contrast to ColE1, however, the same chimera was deficient in conjugal transfer initiated by R751 (incP) and R388 (incW). This suggests that ColEl sequences other than those cloned in the chimeric plasmid are necessary for its mobilization by R751 and R388. Three such regions were revealed by screening a series of ColE1 insertion mutants for transfer by R751 and R388. Two of these regions encode no other known function while the third is encoded by a region which overlaps the gene for colicin E1 itself.  相似文献   

11.
Characterization of a mini-ColC1 plasmid.   总被引:48,自引:23,他引:25       下载免费PDF全文
An in vitro constructed plasmid, pVH15, consisting of the entire genome of the plasmid ColE1, the tryptophan operon of Escherichia coli, and regions of the bacteriophage PHI80pt190, spontaneously gave rise in E. coli to a mini-ColE1 plasmid consisting of approximately one-half of the ColE1 genome and a small segment of phi80pt190 DNA. This mini-ColE1 plasmid, designated pVH51, has a molecular weight of approximately 2.1 X 10(6) and possesses a single EcoRI restriction site. Heteroduplex analyses showed that about 90% of the pVH51 plasmid hybridizes to about 50% of the ColE1 plasmid. Phenotypically, pVH51 did not produce colicin E1 but conferred immunity to this colicin. The number of mini-ColE1 plasmid molecules per cell was maintained at a four- to fivefold higher level than normal ColE1. A mini-ColE1 hybrid plasmid, designated pML21 and consisting of pVH51 and the kan fragment of plasmid pSC105 inserted at the EcoRI restriction site of mini-ColE1, was maintained at a lower copy number level than pVH51. As in the case of normal ColE1, both pVH51 and pML21 continued to replicate in the presence of chloramphenicol. The promotion of conjugal transfer of pVH51 and pML21 by a self-transmissible plasmid was greatly reduced compared with normal ColE1.  相似文献   

12.
Summary Conjugal mobility of ColE1 and related plasmids is promoted by a wide range of conjugative plasmids. ColE1 produces trans-acting products and has a region required in cis (bom; basis of mobility) for such mobility. Here we show that plasmid pBR322 contains a functional bom sequence located within a 141 bp HhaI fragment. This bom region is functional for conjugation promoted by several different conjugative plasmids and is highly conserved in ColE1 and contains nic the putative origin of transfer. The orientation and position of bom with respect to the ColE1 vegetative origin of replication can be changed without affecting the frequency of conjugal mobility promoted by R64drd11.  相似文献   

13.
Conjugal transfer of cloning vectors derived from ColE1.   总被引:1,自引:0,他引:1  
I G Young  M I Poulis 《Gene》1978,4(2):175-179
The transfer properties of five cloning vectors derived from ColE1 were studied. Two of the vectors (pSF2124 and pGM706) behaved like wild type ColE1 in that they could be transferred efficiently in the presence of the conjugative plasmid F. The mobilization of the remaining three vectors (pMB9, PBR313 and pBR322) by F was barely detectable. The transfer defect in pBR313 and pBR322 could be complemented by ColK when R64drd11, but not F, was used as the conjugative plasmid. The transferred plasmids could be recovered unchanged from recipients. Conjugal transfer is a potentially useful technique for screening hybrid plasmids in low-risk cloning experiments involving poorly transformable strains.  相似文献   

14.
Plasmid pWQ799 is a 6.9-kb plasmid isolated from Salmonella enterica serovar Borreze. Our previous studies have shown that the plasmid contains a functional biosynthetic gene cluster for the expression of the O:54 lipopolysaccharide O-antigen of this serovar. The minimal replicon functions of pWQ799 have been defined, and a comparison with nucleotide and protein databases revealed this replicon to be virtually identical to ColE1. This is the first report of involvement of ColE1-related plasmids in O-antigen expression. The replicon of pWQ799 is predicted to encode two RNA molecules, typical of other ColE1-type plasmids. RNAII, the putative replication primer from pWQ799, shares regions of homology with RNAII from ColE1. RNA1 is an antisense regulator of DNA replication in ColE1-related plasmids. The coding region for RNAI from pWQ799 shares no homology with any other known RNAI sequence but is predicted to adopt a secondary structure characteristic of RNAI molecules. pWQ799 may therefore represent a new incompatibility group within this family. pWQ799 also possesses cer, rom, and mob determinants, and these differ minimally from those of ColE1. The plasmid is mobilizable in the presence of either the broad-host-range helper plasmid pRK2013 or the IncI1 plasmid R64drd86. Mobilization and transfer of pWQ799 to other organisms provides the first defined mechanism for lateral transfer of O-antigen biosynthesis genes in S. enterica and explains both the distribution of related plasmids and coexpression of the O:54 factor with other O-factors in different Salmonella serovars. The base composition of the pWQ799 replicon sequences gives an average percent G+C value typical of Salmonella spp. In contrast, the percent G+C value is dramatically lower with rfb0:54, consistent with the possibility that the cluster was acquired from an organism with much lower G+C composition.  相似文献   

15.
Summary Approximately 200,000 clones of Escherichia coli carrying mutagen-treated colicinogenic plasmid E1 (ColE1) were examined for irreversible loss of the plasmid at 43°. Thirty of these clones that appeared to be most defective in plasmid DNA replication at the non-permissive temperature were selected for the study of: (a) the kinetics of plasmid and chromosomal DNA replication during a temperature shift in either the presence or absence of chloramphenicol; (b) the temperature stability of the plasmid DNA-protein relaxation complex; and (c) the temperature effect on F-promoted conjugal transfer. Two mutant plasmids, pJC307 and pJC301, showed defects in their relaxation complex. The relaxation complex of pJC307 exhibited an altered temperature stability in vitro. Reversion to temperature resistant replication resulted in four out of five cases in a concomitant change in the temperature stability of the relaxation complex. Conjugal mobility of this mutant was not markedly reduced at the permissive or non-permissive temperature. Plasmid pJC301 could not be isolated in the form of a relaxation complex and it was very poorly mobilized in an F-promoted conjugation. These results indicate that the ColE1 plasmid codes for at least one of the proteins of the relaxation complex and that the relaxation complex is involved in ColE1 DNA replication. In addition, the properties of the mutant plasmid pJC301 are consistent with a role for the complex in the mobilization of ColE1 during conjugation.  相似文献   

16.
The opposite strands of the ColE1 and ColE3 plasmids were isolated as circular single-stranded DNA molecules. These molecules were compared with M13 and phi X174 viral DNA with respect to their capacity to function as templates for in vitro DNA synthesis by a replication enzyme fraction from Escherichia coli. It was found for both ColE plasmids that the conversion of H as well as L strands to duplex DNA molecules closely resembles phi X174 complementary strand synthesis and occurs by a rifampicin-resistant priming mechanism involving the dnaB, dnaC, and dnaG gene products. Restriction analysis of partially double-stranded intermediates indicates that preferred start sites for DNA synthesis are present on both strands of the ColE1 HaeII-C fragment. Inspection of the nucleotide sequence of this region reveals structural similarities with the origin of phi X174 complementary strand synthesis. We propose that the rifampicin-resistant initiation site (rri) in the ColE1 L strand is required for the priming of discontinuous lagging strand synthesis during vegetative replication and that the rri site in the H strand is involved in the initiation of L strand synthesis during conjugative transfer.  相似文献   

17.
Data suggest a two-receptor model for colicin E1 (ColE1) translocation across the outer membrane of Escherichia coli. ColE1 initially binds to the vitamin B(12) receptor BtuB and then translocates through the TolC channel-tunnel, presumably in a mostly unfolded state. Here, we studied the early events in the import of ColE1. Using in vivo approaches, we show that ColE1 is cleaved when added to whole cells. This cleavage requires the presence of the receptor BtuB and the protease OmpT, but not that of TolC. Strains expressing OmpT cleaved ColE1 at K84 and K95 in the N-terminal translocation domain, leading to the removal of the TolQA box, which is essential for ColE1's cytotoxicity. Supported by additional in vivo data, this suggests that a function of OmpT is to degrade colicin at the cell surface and thus protect sensitive E. coli cells from infection by E colicins. A genetic strategy for isolating tolC mutations that confer resistance to ColE1, without affecting other TolC functions, is also described. We provide further in vivo evidence of the multistep interaction between TolC and ColE1 by using cross-linking followed by copurification via histidine-tagged TolC. First, secondary binding of ColE1 to TolC is dependent on primary binding to BtuB. Second, alterations to a residue in the TolC channel interfere with the translocation of ColE1 across the TolC pore rather than with the binding of ColE1 to TolC. In contrast, a substitution at a residue exposed on the cell surface abolishes both binding and translocation of ColE1.  相似文献   

18.
Deletion mutants of plasmid ColE1 that involve the replication origin and adjacent regions of the plasmid have been studied to determine the mechanism by which those mutations affect the expression of plasmid incompatibility. It was observed that (i) a region of ColE1 that is involved in the expression of plasmid incompatibility lies between base pairs -185 and -684; (ii) the integrity of at least part of the region of ColE1 DNA between base pairs -185 and -572 is essential for the expression of ColE1 incompatibility; (iii) the expression of incompatibility is independent of the ability of the ColE1 genome to replicate autonomously; (iv) plasmid incompatibility is affected by plasmid copy number; and (v) ColE1 plasmid-mediated DNA replication of the lambda phage-ColE1 chimera lambda imm434 Oam29 Pam3 ColE1 is inhibited by ColE1-incompatible but not by ColE1-compatible plasmids.  相似文献   

19.
Hybrid plasmids were constructed in vitro by linking the Inc P-1 broad host range plasmid RK2 to the colicinogenic plasmid ColE1 at their EcoRI endonuclease cleavage sites. These plasmids were found to be immune to colicin E1, non-colicin-producing, and to exhibit all the characteristics of RK2 including self-transmissibility. These joint replicons have a copy number of 5 to 7 per chromosome which is typical of RK2, but not ColE1. Unlike ColE1, the plasmids will not replicate in the presence of chloramphenicol and are maintained in DNA polymerase I mutants of Escherichia coli. In addition, only RK2 incompatibility is expressed, although functional ColE1 can be rescued from the hybrids by EcoRI cleavage. This suppression of ColE1 copy number and incompatibility was found to be a unique effect of plasmid size on ColE1 properties. However, the inhibition of ColE1 or ColE1-like plasmid replication in chloramphenicol-treated cells is a specific effect of RK2 or segments of RK2 (Cri+ phenotype). This phenomenon is not a function of plasmid size and requires covalent linkage of RK2 DNA to ColE1. A specific region of RK2 (50.4 to 56.4 × 103 base-pairs) cloned in the ColE1-like plasmid pBR313 was shown to carry the genetic determinant(s) for expression of the Cri+ phenotype.  相似文献   

20.
ColE7 is a nuclease-type colicin released from Escherichia coli to kill sensitive bacterial cells by degrading the nucleic acid molecules in their cytoplasm. ColE7 is classified as one of the group A colicins, since the N-terminal translocation domain (T-domain) of the nuclease-type colicins interact with specific membrane-bound or periplasmic Tol proteins during protein import. Here, we show that if the N-terminal tail of ColE7 is deleted, ColE7 (residues 63-576) loses its bactericidal activity against E.coli. Moreover, TolB protein interacts directly with the T-domain of ColE7 (residues 1-316), but not with the N-terminal deleted T-domain (residues 60-316), as detected by co-immunoprecipitation experiments, confirming that the N-terminal tail is required for ColE7 interactions with TolB. The crystal structure of the N-terminal tail deleted ColE7 T-domain was determined by the multi-wavelength anomalous dispersion method at a resolution of 1.7 angstroms. The structure of the ColE7 T-domain superimposes well with the T-domain of ColE3 and TR-domain of ColB, a group A Tol-dependent colicin and a group B TonB-dependent colicin, respectively. The structural resemblance of group A and B colicins implies that the two groups of colicins may share a mechanistic connection during cellular import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号