首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

2,4-Dinitroaniline is an efficient intramolecular fluorescence-quencher for fluorescein - labeled oligonucleotides and interacts with the heterocyclic bases on duplex formation. Consequently, intramolecular fluorescence quenching is disturbed in double labeled oligonucleotides of this type, and fluorescein shows strong fluorescence in a duplex form. There is a substential increase of the fluorescence-quantum yield when the marker and quencher is attached to a single guanosine residue. Two kinds of doubly labeled oligonucleotides have been synthesized, using the NPE/NPEOC strategy.  相似文献   

2.
In an effort to discover novel oligonucleotide modifications for antisense therapeutics, we have prepared oligodeoxyribonucleotides containing more than 200 different modifications and measured their affinities for complementary RNA. These include modifications to the heterocyclic bases, the deoxy-ribose sugar and the phosphodiester linkage. From these results, we have been able to determine structure-activity relationships that correlate hybridization affinity with changes in oligonucleotide structure. Data for oligonucleotides containing modified pyrimidine nucleotides are presented. In general, modifications that resulted in the most stable duplexes contained a heteroatom at the 2'-position of the sugar. Other sugar modifications usually led to diminished hybrid stability. Most backbone modifications that led to improved hybridization restricted backbone mobility and resulted in an A-type sugar pucker for the residue 5'to the modified internucleotide linkage. Among the heterocycles, C-5-substituted pyrimidines stood out as substantially increasing duplex stability.  相似文献   

3.
Flp is a member of the integrase family of site-specific recombinases. Flp is known to be a double-stranded (ds)DNA binding protein that binds sequence specifically to the 13 bp binding elements in the FRT site (Flprecognitiontarget). We subjected a random pool of oligonucleotides to the in vitro binding site selection method and have unexpectedly recovered a series of single-stranded oligonucleotides to which Flp binds with high affinity. These single-stranded oligonucleotides differ in sequence from the duplex FRT site. The minimal length of the oligonucleotides which is active is 29 nt. This single strand-specific DNA binding activity is located in the same C-terminal 32 kDa domain of Flp in which the site-specific dsDNA binding activity resides. Competition studies suggest that the apparent affinity of Flp for single-stranded oligonucleotide is somewhat less than for a complete duplex FRT site but greater than for a single duplex 13 bp binding element. We have also shown that Cre, another member of the integrase family of site-specific recombinases, also exhibits single-stranded DNA binding similar to that of Flp.  相似文献   

4.
Short oligonucleotides that can bind to adjacent sites on target mRNA sequences are designed and evaluated for their binding affinity and biological activity. Sequence-specific binding of short tandem oligonucleotides is compared with a full-length single oligonucleotide (21mer) that binds to the same target sequence. Two short oligonucleotides that bind without a base separation between their binding sites on the target bind cooperatively, while oligonucleotides that have a one or two base separation between the binding oligonucleotides do not. The binding affinity of the tandem oligonucleotides is improved by extending the ends of the two oligonucleotides with complementary sequences. These extended sequences form a duplex stem when both oligonucleotides bind to the target, resulting in a stable ternary complex. RNase H studies reveal that the cooperative oligonucleotides bind to the target RNA with sequence specificity. A short oligonucleotide (9mer) with one or two mismatches does not bind at the intended site, while longer oligonucleotides (21mers) with one or two mismatches still bind to the same site, as does a perfectly matched 21mer, and evoke RNase H activity. HIV-1 inhibition studies reveal an increase in activity of the cooperative oligonucleotide combinations as the length of the dimerization domain increases.  相似文献   

5.
Mixed duplex/quadruplex oligonucleotides have attracted great interest as therapeutic targets as well as effective biomedical aptamers. In the case of thrombin-binding aptamer (TBA), the addition of a duplex motif to the G-quadruplex module improves the aptamer resistance to biodegradation and the affinity for thrombin. In particular, the mixed oligonucleotide RE31 is significantly more effective than TBA in anticoagulation experiments and shows a slower disappearance rate in human plasma and blood. In the crystal structure of the complex with thrombin, RE31 adopts an elongated structure in which the duplex and quadruplex regions are perfectly stacked on top of each other, firmly connected by a well-structured junction. The lock-and-key shape complementarity between the TT loops of the G-quadruplex and the protein exosite I gives rise to the basic interaction that stabilizes the complex. However, our data suggest that the duplex motif may have an active role in determining the greater anti-thrombin activity in biological fluids with respect to TBA. This work gives new information on mixed oligonucleotides and highlights the importance of structural data on duplex/quadruplex junctions, which appear to be varied, unpredictable, and fundamental in determining the aptamer functional properties.  相似文献   

6.
We report the synthesis of 2'-modified nucleosides designed specifically for incorporating labels into oligonucleotides. Conversion of these nucleosides to phosphoramidite and solid support-bound derivatives proceeds in good yield. Large-scale synthesis of 11-mer oligonucleotides possessing the 2'-modified nucleosides is achieved using these derivatives. Thermal denaturation studies indicate that the presence of 2'-modified nucleosides in 11-mer duplexes has minimal destabilizing effects on the duplex structure when the nucleosides are placed at the duplex termini. The powerful combination of phosphoramidite and support-bound derivatives of 2'-modified nucleosides affords the large-scale preparation of an entirely new class of oligonucleotides. The ability to synthesize oligonucleotides containing label attachment sites at 3', intervening, and 5' locations of a duplex is a significant advance in the development of oligonucleotide conjugates.  相似文献   

7.
Detailed investigation of the spatial structure of duplex (Phn-NH(CH2)2NH) x pd(CCAAACA).pd(TGTTTGGC) having a covalently linked N-(2-hydroxyethyl)-phenazine in aqueous solution was continued by means of one- and two-dimensional 1H-NMR spectroscopy. Distances between the protons of the oligonucleotides as well as distances between the phenazinium and the nearest nucleotide groups protons were determined from the series of one-dimensional NOE experiments. The effective correlation time tau c determined for some proton pairs shows the phenazinium fragment to have greater internal motion than the heterocyclic bases. The deoxyribose protons coupling constants show the sugars to be in 2'-endo-conformation. The restrained molecular mechanics have yielded a possible structure of duplex in the aqueous solution fitting the experimental set of interproton distances.  相似文献   

8.
We reported that plant ribosome inactivating proteins (RIP) have a unique DNA glycosylase activity that removes adenine from single-stranded DNA (Nicolas, E., Beggs, J. M., Haltiwanger, B. M., and Taraschi, T. F. (1998) J. Biol. Chem. 273, 17216-17220). In this investigation, we further characterized the interaction of the RIP gelonin with single-stranded oligonucleotides and investigated its activity on double-stranded oligonucleotides. At physiological pH, zinc and beta-mercaptoethanol stimulated the adenine DNA glycosylase activity of gelonin. Under these conditions, gelonin catalytically removed adenine from single-stranded DNA and, albeit to a lesser extent, from normal base pairs and mismatches in duplex DNA. Also unprecedented was the finding that activity on single-stranded and double-stranded oligonucleotides containing multiple adenines generated unstable products with several abasic sites, producing strand breakage and duplex melting, respectively. The results from competition experiments suggested similar interactions between gelonin's DNA-binding domain and oligonucleotides with and without adenine. A re-examination of the classification of gelonin as a DNA glycosylase/AP lyase using the borohydride trapping assay revealed that gelonin was similar to the DNA glycosylase MutY: both enzymes are monofunctional glycosylases, which are trappable to their DNA substrates. The k(cat) for the removal of adenine from single-stranded DNA was close to the values observed with multisubstrate DNA glycosylases, suggesting that the activity of RIPs on DNA may be physiologically relevant.  相似文献   

9.
5-Formyluracil (5-foU) is a potentially mutagenic lesion of thymine produced in DNA by ionizing radiation and various chemical oxidants. The elucidation of repair mechanisms for 5-foU will yield important insights into the biological consequences of the lesion. Recently, we reported that 5-foU is recognized and removed from DNA by Escherichia coli enzymes Nth (endonuclease III), Nei (endonuclease VIII) and MutM (formamidopyrimidine DNA glycosylase). Human cells have been shown to have enzymatic activities that release 5-foU from X-ray-irradiated DNA, but the molecular identities of these activities are not yet known. In this study, we demonstrate that human hNTH1 (endonuclease III homolog) has a DNA glycosylase/AP lyase activity that recognizes 5-foU in DNA and removes it. hNTH1 cleaved 5-foU-containing duplex oligonucleotides via a β-elimination reaction. It formed Schiff base intermediates with 5-foU-containing oligonucleotides. Furthermore, hNTH1 cleaved duplex oligonucleotides containing all of the 5-foU/N pairs (N = G, A, T or C). The specific activities of hNTH1 for cleavage of oligonucleotides containing 5-foU and thymine glycol were 0.011 and 0.045 nM/min/ng protein, respectively. These results indicate that hNTH1 has DNA glycosylase activity with the potential to recognize 5-foU in DNA and remove it in human cells.  相似文献   

10.
The Eco dam methylase is active on denatured DNA and single-stranded synthetic oligonucleotides containing GATC sites. The results suggest that on interaction with single-stranded oligonucleotides the Eco dam methylase is able to form a duplex structure within the GATC site, and that this duplex site is a substrate for enzyme.  相似文献   

11.
M K Ghosh  K Ghosh  O Dahl    J S Cohen 《Nucleic acids research》1993,21(24):5761-5766
An all phosphorodithioate oligodeoxyribonucleotide (PS2; 17-mer) complementary to the coding region of the rabbit beta-globin mRNA was compared with the normal (PO2) and phosphorothioate (POS) oligonucleotide of the same size and sequence with respect to physicochemical properties and antisense activity in cell-free systems. The melting temperature (Tm) of the PS2-cDNA duplex was reduced by 17 degrees C relative to the PO2-cDNA duplex, compared to 11 degrees C for the POS-cDNA duplex, suggesting a decreased stability of the duplex with an increasing sulfur substitution. Like the POS-derivative, the PS2 oligonucleotide is quite stable against exonucleases, but these modified oligonucleotides showed different stability towards endonucleases and also towards different sub-cellular fractions of MCF-7 cells. During in vitro protein binding studies, the PS2 oligonucleotide showed similar binding (10-20%) to that of the PO2 oligonucleotide, while the POS oligonucleotide bound 60%. In cell-free translation, the PS2 oligonucleotide produced slightly higher specific translation inhibition of rabbit beta-globin mRNA compared to that of the PO2 oligonucleotide, and this was true only at concentration below 2 mM. The POS-derivative, except at 10 mM concentration, always showed higher translation arrest of the rabbit beta-globin mRNA compared to that of the other two oligonucleotides. The present study suggests that the PS2 oligonucleotide offers very little advantage over the POS oligonucleotide for use as an antisense analog.  相似文献   

12.
The double helix is known to form as a result of hybridization of complementary nucleic acid strands in aqueous solution. In the helix the negatively charged phosphate groups of each nucleic acid strand are distributed helically on the outside of the duplex and are available for interaction with cationic groups. Cation-coated glass surfaces are now widely used in biotechnology, especially for covalent attachment of cDNAs and oligonucleotides as surface-bound probes on microarrays. These cationic surfaces can bind the nucleic acid backbone electrostatically through the phosphate moiety. Here we describe a simple method to fabricate DNA microarrays based upon adsorptive rather than covalent attachment of oligonucleotides to a positively charged surface. We show that such adsorbed oligonucleotide probes form a densely packed monolayer, which retains capacity for base pair-specific hybridization with a solution state DNA target strand to form the duplex. However, both strand dissociation kinetics and the rate of DNase digestion suggest, on symmetry grounds, that the target DNA binds to such adsorbed oligonucleotides to form a highly asymmetrical and unwound duplex. Thus, it is suggested that, at least on a charged surface, a non-helical DNA duplex can be the preferred structural isomer under standard biochemical conditions.  相似文献   

13.
Through binding and fluorescence studies of oligonucleotides covalently attached to a pyrene group via one carbon linker at the sugar residue, we previously found that pyrene-modified RNA oligonucleotides do not emit well in the single-stranded form, yet the attached pyrene emits with a significantly high quantum yield upon binding to a complementary RNA strand. In sharp contrast, similarly modified pyrene–DNA probes exhibit very weak fluorescence both in the double-stranded and single-stranded forms. The pyrene-modified RNA oligonucleotides therefore provide a useful tool for monitoring RNA hybridization. The purpose of this paper is to present the structural basis for the different fluorescence properties of pyrene-modified RNA/RNA and pyrene-modified DNA/DNA duplexes. The results of absorption, fluorescence anisotropy and circular dichroism studies all consistently indicated that the pyrene attached to the RNA duplex is located outside of the duplex, whereas the pyrene incorporated into the DNA duplex intercalates into the double helix. 1H NMR measurements unambiguously confirmed that the pyrene attached to the DNA duplex indeed intercalates between the base pairs of the duplex. Molecular dynamics simulations support these differences in the local structural elements around the pyrene between the pyrene–RNA/RNA and the pyrene–DNA/DNA duplexes.  相似文献   

14.
Optimization of probe design for array-based experiments requires improved predictability of oligonucleotide hybridization behavior. Currently, designing oligonucleotides capable of interacting efficiently and specifically with the relevant target is not a routine procedure. Multiple examples demonstrate that oligonucleotides targeting different regions of the same RNA differ in their hybridization ability. The present work shows how thermodynamic evaluations of oligo-target duplex or oligo self-structure stabilities can facilitate probe design. Statistical analysis of large sets of hybridization data reveals that thermodynamic evaluation of oligonucleotide properties can be used to avoid poor RNA binders. Thermodynamic criteria for the selection of 20 and 21mers, which, with high probability, interact efficiently and specifically with their targets, are suggested. The design of longer oligonucleotides can also be facilitated by the same calculations of ΔG°T values for oligo-target duplex or oligo self-structure stabilities and similar selection schemes.  相似文献   

15.
The ability of certain azole substituted oligodeoxy-ribonucleotides to promote antiparallel triple helix formation with duplex targets having CG or TA interruptions in the otherwise homopurine sequence was examined. 2'-Deoxyribonucleosides of the azoles, which include pyrazole, imidazole, 1,2,4-triazole and 1,2,3,4-tetrazole were synthesized using the stereo-specific sodium salt glycosylation procedure. These nucleosides were successfully incorporated using solid-support, phosphoramidite chemistry, into oligonucleotides designed to interact with the non-homopurine duplex targets. The interaction of these modified oligonucleotides with all four possible base pairs was evaluated and compared to similar data for a series of natural oligonucleotides. The oligonucleotides containing simple azoles enhanced the triplex forming ability considerably at non-homopurine targets. Binding of these modified oligonucleotides to duplex targets containing TA inversion sites was particularly noteworthy, and compare favorably to unmodified oligonucleotides for binding to duplex targets containing CG as well as TA base pairs. The selectivity exhibited by certain azoles is suggestive of base pair specific interactions. Thus, the azoles evaluated during this study show considerable promise for efforts to develop generalized triplex formation at non-homopurine duplex sequences.  相似文献   

16.
Dmochowski IJ  Tang X 《BioTechniques》2007,43(2):161, 163, 165 passim
The recent development of caged oligonucletides that are efficiently activated by ultraviolet (UV) light creates opportunities for regulating gene expression with very high spatial and temporal resolution. By selectively modulating gene activity, these photochemical tools will facilitate efforts to elucidate gene function and may eventually serve therapeutic aims. We demonstrate how the incorporation of a photocleavable blocking group within a DNA duplex can transiently arrest DNA polymerase activity. Indeed, caged oligonucleotides make it possible to control many different protein-oligonucleotide interactions. In related experiments, hybridization of a reverse complementary (antisense) oligodeoxynucleotide to target mRNA can inhibit translation by recruiting endogenous RNases or sterically blocking the ribosome. Our laboratory recently synthesized caged antisense oligonucleotides composed of phosphorothioated DNA or peptide nucleic acid (PNA). The antisense oligonucleotide, which was attached to a complementary blocking oligonucleotide strand by a photocleavable linker, was blocked from binding target mRNA. This provided a useful method for photomodulating hybridization of the antisense strand to target mRNA. Caged DNA and PNA oligonucleotides have proven effective at photoregulating gene expression in cells and zebrafish embryos.  相似文献   

17.
Pestivirus NS3 (p80) protein possesses RNA helicase activity.   总被引:28,自引:16,他引:12       下载免费PDF全文
The pestivirus bovine viral diarrhea virus (BVDV) p80 protein (referred to here as the NS3 protein) contains amino acid sequence motifs predictive of three enzymatic activities: serine proteinase, nucleoside triphosphatase, and RNA helicase. We have previously demonstrated that the former two enzymatic activities are associated with this protein. Here, we show that a purified recombinant BVDV NS3 protein derived from baculovirus-infected insect cells possesses RNA helicase activity. BVDV NS3 RNA helicase activity was specifically inhibited by monoclonal antibodies to the p80 protein. The activity was dependent on the presence of nucleoside triphosphate and divalent cation, with a preference for ATP and Mn2+. Hydrolysis of the nucleoside triphosphate was necessary for strand displacement. The helicase activity required substrates with an un-base-paired region on the template strand 3' of the duplex region. As few as three un-base-paired nucleotides were sufficient for efficient oligonucleotide displacement. However, the enzyme did not act on substrates having a single-stranded region only to the 5' end of the duplex or on substrates lacking single-stranded regions altogether (blunt-ended duplex substrates), suggesting that the directionality of the BVDV RNA helicase was 3' to 5' with respect to the template strand. The BVDV helicase activity was able to displace both RNA and DNA oligonucleotides from RNA template strands but was unable to release oligonucleotides from DNA templates. The possible role of this activity in pestivirus replication is discussed.  相似文献   

18.
A method is presented for choosing optimal oligodeoxyribonucleotides as probes for filter hybridization, primers for sequencing, or primers for DNA amplification. Three main factors that determine the quality of a probe are considered: stability of the duplex formed between the probe and target nucleic acid, specificity of the probe for the intended target sequence, and self-complementarity. DNA duplex stability calculations are based on the nearest-neighbor thermodynamic values determined by Breslauer et al. [Proc. Natl. Acad. Sci. U.S.A. (1986), 83: 3746]. Temperatures of duplex dissociation predicted by the method described here were within 0.4 degrees C of the values obtained experimentally for ten oligonucleotides. Calculations for specificity of the probe and its self-complementarity are based on a simple dynamic algorithm.  相似文献   

19.
G J Freeman  D D Rao  A S Huang 《Gene》1979,5(2):141-157
The single-stranded RNA genome of vesicular stomatitis virus (VSV, Indiana serotype, San Juan strain) yields approx. 75 RNase T1-resistant oligonucleotides ranging in size from 10 to 50 bases. Each of the five structural genes, isolated as duplex RNA molecules hybridized to complementary mRNA, contains two or more of these large oligonucleotides. One of the oligonucleotides is identified as part of the non-coding region near the 3' end of the genome. Comparison of these results with others indicate that the RNA sequence of VSV is apparently stable in the laboratory but not in the wild. RNase T1-resistant oligonucleotides are also shown for all five VSV mRN species. Whether the mRNA for these digestions are are isolated from duplex RNA molecules or as single-stranded RNA species, the oligonucleotide patterns for each mRNA are virtually identical, indicating that each mRNA is transcribed from contiguous sequences on the genome. Comparison with published oligonucleotide patterns obtained from other isolates of VSV or from VSV deletion mutants indicate that identity and changes in their genome structure can be correlated with specific structural genes.  相似文献   

20.
King JB  Bowen LM  Dupureur CM 《Biochemistry》2004,43(26):8551-8559
Phosphoramidates are modified deoxyoligonucleotides that feature nitrogen in place of the 3'-oxygen of a phosphodiester linkage. Noted for stability against nuclease activity, these linkages are of both mechanistic and therapeutic interest. While a number of studies characterizing the properties of oligonucleotides composed entirely of phosphoramidate linkages have been published, little is known about how singly substituted phosphoramidate substitutions affect the thermodynamics and structure of protein-oligonucleotide interactions. We chose to investigate these interactions with PvuII endonuclease, the DNA binding behavior of which is well-characterized. Oligonucleotide duplexes containing a phosphoramidate substitution at the scissile phosphates were resistant to cleavage by the enzyme, even after extended incubations. However, the enzyme was able to cleave the native strand in a native:phosphoramidate heteroduplex at a rate comparable to that observed with the native substrate. Ca(II)-stimulated PvuII binding for a phosphoramidate-substituted oligonucleotide is comparable to that of the native duplex (K(d) approximately 200 pM). K(d) values obtained in the presence of Mg(II) are somewhat weaker (K(d) approximately 10 nM). Under metal-free conditions, the enzyme exhibited a remarkable approximately 50-fold greater affinity for the modified oligonucleotide relative to the native substrate (5 vs 240 nM). While (31)P NMR spectra indicate increased chemical shift dispersion in the free phosphoramidate duplex, the spectrum of the enzyme-bound duplex is similar to that of the native duplex. (1)H-(15)N HSQC analysis indicates that enzyme conformations in the presence of these oligonucleotides are also comparable. The tight binding of the phosphoramidate duplex under metal-free conditions and its resistance to cleavage are attributed to local conformational adjustments propagating from the O-->N substitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号