首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J K Barton  S J Lippard 《Biochemistry》1979,18(12):2661-2668
The cationic complex (2-hydroxyethanethiolato)(2,2',2'-terpyridine)platinum(II), [(terpy)Pt(HET)]+, binds cooperatively to poly(A).poly(U) by intercalation. The melting temperature of poly(A).poly(U) in low-salt buffer is increased by 6 degrees C in the presence of [(terpy)Pt(HET)]+, indicating stabilization of the duplex structure by the bound platinum reagent. Viscosity measurements provide evidence for comparable lengthening of the polynucleotide in the presence of [(terpy)Pt(HET)]+ and the intercalating dye, ethidium bromide. Scatchard plots of the binding of [(terpy)Pt(HET)]+ to poly(A).poly(U) and poly(I).poly(C), determined through ultracentrifugation pelleting methods, show large positive curvature, reflecting the strong cooperativity associated with the platinum complex-RNA interaction. The characteristics of the binding isotherms are interpreted in terms of a model where cooperative pair units of [(terpy)Pt(HET)]+ intercalate into the double-stranded polymer. At saturation, two platinum molecules are bound for every three base pairs. This stoichiometry may be compared with the nearest-neighbor-exclusion binding observed previously in the interaction of [(terpy)Pt(HET)]+ and the ethidium cation with DNA, in which one intercalator occupies every other interbase-pair site at saturation. The striking differences observed in the interaction of [(terpy)Pt(HET)]+ with DNA and RNA suggest that drug recognition is sensitive to the constraints imposed by nucleic acid secondary structure.  相似文献   

2.
The interaction between a novel aromatic thiolato derivative from the family of DNA-intercalating platinum complexes, phenylthiolato-(2,2',2"-terpyridine)platinum(II)-[PhS(ter py)Pt+], and nucleic acids was studied by using viscosity, equilibrium-dialysis and kinetic measurements. Viscosity measurements with sonicated DNA provide direct evidence for intercalation, and show that at binding ratios below 0.2 molecules per base-pair PhS(terpy)Pt+ causes an increase in contour length of 0.2 nm per bound molecule. However, helix extension diminishes at greater extents of binding, indicating the existence of additional, non-intercalated, externally bound forms of the ligand. The ability of PhS(terpy)Pt+ to aggregate in neutral aqueous buffers at a range of ionic strengths and temperatures was assessed by using optical-absorption methods. Scatchard plots for binding to calf thymus DNA at ionic strength 0.01 (corrected for dimerization) are curvilinear, concave upward, providing further evidence for two modes of binding. The association constant decreases at higher ionic strengths, in accord with the expectations of polyelectrolyte theory, although the number of cations released per bound unipositive ligand molecule is substantially greater than 1. Stopped-flow kinetic measurements confirm the complexity of the binding reaction by revealing multiple bound forms of the ligand whose kinetic processes are both fast and closely coupled. Thermal denaturation of DNA radically alters the shapes of binding isotherms and either has little effect on, or enhances, the affinity of potential binding sites, depending on experimental conditions. Scatchard plots for binding to natural DNA species with differing nucleotide composition show that the ligand has a requirement for a single G X C base-pair at the highest-affinity intercalation sites.  相似文献   

3.
The binding of platinum (II)-terpyridine complexes to DNA was studied by using equilibrium dialysis. Optical absorption methods were used to measure the ability of the ligands to aggregate in aqueous buffer. Scatchard plots for the binding of the monomeric [Pt(terpy)SC4H9]+ cation to DNA at I0.01 are curvilinear, concave upwards, suggesting two modes of binding. The association constant decreases at higher ionic strengths, consistent with polyelectrolyte theory, and 1.1 cations are released per bound ligand molecule. The association constants of the binuclear ligands [Pt(terpy)S[CH2]4S(terpy)Pt]2+ and [Pt(terpy)S[CH2]6S(terpy)Pt]2+ are 8 and 23 times larger respectively than the affinity of the monomer. For the latter binuclear derivative the increase may be ascribed to bifunctional reaction. Differential dialysis experiments with DNAs of differing base composition show that [Pt(terpy)SC4H9]+ has a requirement for a single G X C base-pair at the highest-affinity site. However, in the binuclear ligands chromophore specificity is severely compromised. Similar experiments indicate that 9-aminoacridine and selected methylene-linked diacridines show no significant sequence selectivity.  相似文献   

4.
5.
The nature of binding of Ru(phen) 2+ (I), Ru(bipy) 2+ (II), Ru(terpy) 2+ (III) (phen = 1,10-phenanthroline, bipy 3 = 2,2'-bipyridyl, 3 terpy = 2,2'2," - 2 terpyridyl) to DNA, poly[d(G-C)] and poly[d(A-T)] has been compared by absorption, fluorescence, DNA melting and DNA unwinding techniques. I binds intercalatively to DNA in low ionic strength solutions. Topoisomerisation shows that it unwinds DNA by 22 degrees +/- 1 per residue and that it thermally stabilizes poly[d(A-T)] in a manner closely resembling ethidium. Poly[d(A-T)] induces greater spectral changes on I than poly[d(G-C)] and a preference for A-T rich regions is indicated. I binding is very sensitive to Mg2+ concentration. In contrast to I the binding of II and III appears to be mainly electrostatic in nature, and causes no unwinding. There is no evidence for the binding of the neutral Ru(phen)2 (CN)2 or Ru(bipy)2 (CN)2 complexes. DNA is cleaved, upon visible irradiation of aerated solutions, in the presence of either I or II.  相似文献   

6.
The interactions of methylene blue, azure B, and thionine with calf thymus DNA, [poly (dG-dC)]2, [poly(dA-dT)]2, and the constituent mononucleotides 2′-deoxyguanosine-5′-monophosphate(dGMP), 2′-deoxyadenosine-5′-monophosphate(dAMP), 2′-deoxycytidine-5′-monophosphate(dCMP), and thymidine-5′-monophosphate(dTMP) have been studied by steady-state absorption spectroscopy and with equilibrium dialysis. Scatchard plots for binding of the dyes to the nucleic acid polymers were convex downward at low binding ratios, characteristic of intercalation, and binding constants for this mode were calculated under conditions of varying ionic strength. For each of the dyes, binding constants with [poly(dG-dC)]2 and [poly(dA-dT)]2 were of the same order of magnitude, so that previously reported (G-C) preferentially is not very marked. At high binding ratios, the Scatchard plots did not return to the abscissa but curved upward, indicative of a weaker cooperative binding mode, occurring under conditions where the dye is in excess, which is suggested to be external stacking of the dye molecules promoted by the polyanion. The dependence of the absorption spectra on added salt demonstrated a shift in the strong binding mode for the three dyes with [poly(dA-dT)]2 with increasing ionic strength, while with [poly(dG-dC)]2 this does not occur. The dyes were found to bind to purine but not pyrimidine mononucleotides with dGMP and dAMP, 1:1 complexes were formed initially and also 1:2 dye/nucleotide complexes with increasing nucleotide concentrations. Under low salt conditions, binding to dAMP was slightly stronger than to dGMP for the three dyes studied, while at high ionic strength, when the binding constants are significantly lower, all binding constants become very similar. Binding to mononucleotides is suggested to be primarily stabilised by π-π stacking interactions between the planar dyes and the nucleobases: for thionine and azure B there also appears to be H-bonds between the exocyclic amines and the sugar–phosphates conferring extra stability. Neither increasing the number of phosphate groups on the nucleotides nor changing from deoxyribose to ribose sugars had any significant effect on the binding constants. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
Equilibrium binding studies and viscosity experiments are described that characterize the interaction of delta- and lambda-[Ru(o-phen)3]2+ with calf thymus DNA. The mode of binding of these compounds to DNA is a matter of controversy. Both isomers of [Ru(o-phen)3]2+ were found to bind but weakly to DNA, with binding constants of 4.9 (+/- 0.3) x 10(4) M-1 and 2.8 (+/- 0.2) x 10(4) M-1 determined for the delta and lambda isomers, respectively, at 20 degrees C in a solution containing 5 mM Tris-HCl (pH 7.1) and 10 mM NaCl. We determined that the quantity delta log K/delta log [Na+] equals 1.37 and 1.24 for the delta and lambda isomers, respectively. Application of polyelectrolyte theory allows us to use these values to show quantitatively that both the delta and lambda isomers are essentially electrostatically bound to DNA. Viscosity experiments show that binding the lambda isomer does not alter the relative viscosity of DNA to any appreciable extent, while binding of the delta isomer decreases the relative viscosity of DNA. From these viscosity results, we conclude that neither isomer of [Ru(o-phen)3]2+ binds to DNA by classical intercalation.  相似文献   

8.
The sodium dodecyl sulfate driven dissociation reactions of daunorubicin (1), mitoxantrone (2), ametantrone (3), and a related anthraquinone without hydroxyl groups on the ring or side chain (4) from calf thymus DNA, poly[d(G-C)]2, and poly[d(A-T)]2 have been investigated by stopped-flow kinetic methods. All four compounds exhibit biphasic dissociation reactions from their DNA complexes. Daunorubicin and mitoxantrone have similar dissociation rate constants that are lower than those for ametantrone and 4. The effect of temperature and ionic strength on both rate constants for each compound is similar. An analysis of the effects of salt on the two rate constants for daunorubicin and mitoxantrone suggests that both of these compounds bind to DNA through a mechanism that involves formation of an initial outside complex followed by intercalation. The daunorubicin dissociation results from both poly[d(G-C)]2 and poly[d(A-T)]2 can be fitted with a single exponential function, and the rate constants are quite close. The ametantrone and 4 polymer dissociation results can also be fitted with single exponential curves, but with these compounds the dissociation rate constants for the poly[d(G-C)]2 complexes are approximately 10 times lower than for the poly[d(A-T)]2 complexes. Mitoxantrone also has a much slower dissociation rate from poly[d(G-C)]2 than from poly[d(A-T)]2, but its dissociation from both polymers exhibits biphasic kinetics. Possible reasons for the biphasic behavior with the polymers, which is unique to mitoxantrone, are selective binding and dissociation from the alternating polymer intercalation sites and/or dual binding modes of the intercalator with both side chains in the same groove or with one side chain in each groove.  相似文献   

9.
Complexes of NaDNA with the bipyridyl-(ethylenediamine)platintum(II) (abbreviated [(bipy)Pt(en)]2+) molecular ion have been studied in solution via ultraviolet absorption experiments at 260 nm between 50 and 90 degrees C. These measurements, performed as a function of the molar ratio of the [(bipy)Pt(en)]2+ complex to DNA base pairs, show that the stability of the DNA double helix is increased by the formation of the DNA.[(bipy)Pt(en)]2+ complex: at a molar ratio of 0.33, the temperature at which the DNA double helix separates into two single strands is increased by about 15 degrees C.  相似文献   

10.
The interaction of newly synthesised water-soluble planar complexes of general structure [Pt(diimine)(N,N-dihydroxyethyl-N'-benzoylthioureato)]+Cl- with DNA was investigated by means of DNA melting studies, CD spectroscopy, and DNA gel mobility studies. Addition of stoichometric amounts of [Pt(diimine)H2L-S,O]Cl complexes to polynucleotides caused a significant increase in the melting temperature of poly(dA-dT) and calf-thymus DNA, respectively, indicating that these complexes interacted with DNA and stabilised the double helical structure. The CD spectra confirmed the relatively strong binding of three related Pt(II) complexes ([Pt(2,2'-bipyridine)H2L-S,O]Cl, [Pt(4,4'-dimethyl-2,2'-bipyridine)H2L-S,O]Cl, and [Pt(1,10-phenanthroline)H2L-S,O]Cl), to DNA. Comparison with the published CD spectra of ethidium bromide/DNA complex suggests a similar intercalation mode of binding. cis-[(4,4'-di-tert-butyl-2,2'-bipyridyl)N,N-di(2-hydroxyethyl)-N'-benzoylthioureatoplatinum(II)] chloride, with its very bulky tert-butyl groups, did not intercalate into the polynucleotide double helix. In DNA mobility studies in the presence of the four [Pt(diimine)H2L-S,O]Cl complexes, only [Pt(2,2'-bipyridine)H2L-S,O]Cl affected the DNA mobility to any detectable extent. Finally, in vivo studies on the biological activity of the complexes, using an Escherichia coli DNA excision repair deficient uvrA mutant strain, indicated that only the [Pt(2,2'-bipyridine)H2L-S,O]Cl complex showed significant cellular toxicity and that this was, in part, linked to DNA damage.  相似文献   

11.
Potentiometric, calorimetric, NMR and stopped-flow kinetic studies were performed on the palladium(II) complexes of thioether and/or nitrogen donor ligands. The ternary systems always contained a tridentate ligand (dien, terpy and dianions of dipeptides, GlyGly, GlyAla and GlyMet) and a monodentate thioether (AcMet). The stability constants of thioether complexes were obtained by indirect potentiometric measurements using uridine as a competitive ligand. The thermodynamic parameters revealed that selectivity of palladium(II) for thioether binding can be significantly influenced by the other donor atoms around the metal ion. [Pd(terpy)]2+ and [Pd(GlyMet)] had the lowest affinity for thioether binding and it was explained by steric and electronic effects. Ternary complexes of nitrogen donors have higher thermodynamic stability constants than the thioether complexes, but rate constants of the substitution reactions revealed that formation of thioether complexes is the faster reaction. As a consequence, the thermodynamic equilibrium state of a multicomponent system is characterized by the coordination of N-donors, which are formed via the existence of thioether-bonded intermediates.  相似文献   

12.
The reactions of Pt(II) complexes, cis-[Pt(NH3)2Cl2], [Pt(terpy)Cl]+, [Pt(terpy)(S-cys)]2+, and [Pt(terpy)(N7-guo)]2+, where terpy=2,2':6',2'-terpyridine, S-cys=L-cysteine, and N7-guo=guanosine, with some biologically relevant ligands such as guanosine-5'-monophosphate (5'-GMP), L-cysteine, glutathione (GSH) and some strong sulfur-containing nucleophiles such as diethyldithiocarbamate (dedtc), thiosulfate (sts), and thiourea (tu), were studied in aqueous 0.1 M Hepes at pH of 7.4 using UV-vis, stopped-flow spectrophotometry, and 1H NMR spectroscopy.  相似文献   

13.
14.
A comparative study of the binding of square planar cis- and trans-[Pt(NH3)2Cl2] complexes and the octahedral [Ru(NH3)5(H2O)]3+ complex to tRNAphe from yeast was carried out by X-ray crystallography. Both of the carcinostatic compounds, cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ show similarities in their mode of binding to tRNA. These complexes bind specifically to the N(7) positions of guanines G15 and G18 in the dihydrouridine loop. [Ru(NH3)5(H2O)]3+ has an additional binding site at N(7) of residue G1 after extensive soaking times (58 days). A noncovalent binding site for ruthenium is also observed in the deep groove of the acceptor stem helix with shorter (25 days) soaking time. The major binding site for the inactive trans-[Pt(NH3)Cl2] complex is at the N(1) position of residue A73, with minor trans-Pt binding sites at the N(7) positions of residues Gm34, G18 and G43. The similarities in the binding modes of cis-[Pt(NH3)2Cl2] and [Ru(NH3)5(H2O)]3+ are expected to be related to their carcinostatic properties.  相似文献   

15.
The non-covalent binding of [(en)Pt(mu-dpzm)2Pt(en)]4+ to the dodecanucleotides d(CGCGAATTCGCG)2 and d(CAATCCGGATTG)2 has been studied by 1H NMR spectroscopy in order to gain a greater understanding of the pre-covalent binding association of cationic dinuclear platinum(II) anti-cancer drugs. NOESY experiments showed that the metal complex bound in the minor groove at the A/T rich regions of both dodecanucleotides. The metal complex did not induce any major DNA conformational changes. However, given the relative dimensions of the DNA minor groove and the metal complex, it is reasonable to expect that the metal complex binding significantly widens the minor groove at the A/T rich binding sites. The results of this study suggest that although dinuclear platinum(II) anti-cancer drugs covalently bind at GC sequences in the DNA major groove, they will preferentially associate with AT sequences in the minor groove before the covalent binding.  相似文献   

16.
The stability of complexes of NaDNA with bipyridyl- (ethylenediamine)platinum(II) (abbreviated [(bipy)Pt(en)](2+)) and with netropsin has been studied using two techniques: (i) ultraviolet (UV) melting experiments were done on NaDNA* [(bipy)Pt(en)](2+), showing that the [(bipy)Pt(en)](2+) ligand stabilizes the DNA double helix structure; and (ii) swelling measurements (via optical microscopy) as a function of relative humidity were done on wet-spun oriented films of NaDNA*[(bipy)Pt(en)](2+) and of NaDNA*netropsin. The swelling data shows that an irreversible transition of the films occurs at high relative humidity, first for the NaDNA*netropsin, then for pure NaDNA, and lastly for the NaDNA*[(bipy)Pt(en)](2+). These results are indicative that the [(bipy)Pt(en)](2+) complex stabilizes the intermolecular bonds which mediate the film swelling characteristics. A model is suggested for the binding of [(bipy)Pt(en)](2+) to DNA to explain why the swelling experiments show this ligand as increasing the intermolecular bond strength between the DNA double helices, while netropsin decreases this degree of stabilization.  相似文献   

17.
A series of complexes of the type [Pt(phen)(AA)]+ (where AA is the anion of glycine, L-alanine, L-leucine, L-phenylalanine, L-tyrosine, or L-tryptophan) has been synthesized. These complexes have been characterized by electronic absorption, infrared, and 1H NMR spectroscopy. The interaction of these complexes with calf thymus DNA has been studied using fluorescence spectroscopy. They inhibit the intercalation of ethidium bromide in DNA by intercalative binding at low concentrations and show nonintercalative binding at higher concentrations.  相似文献   

18.
A reconstituted zinc-myoglobin (ZnMb) dyad, ZnMb-[Pt(bpy)(en)]2+, has been prepared by incorporating chemically-modified zinc-porphyrin, being capable of DNA-binding of the Pt complex, [Pt(bpy)(en)]2+, where bpy and en are 2,2'-bipyridine and ethylenediamine, respectively. The steady-state fluorescence of the cofactor, [Pt(bpy)(mu-enPP)Zn]Cl2, in MeOH indicates that the excited singlet state of zinc--porphyrin was almost quenched, probably because of the strong hydrophobic and pi-pi stacking interactions between the [Pt(bpy)(mu-enPP)Zn]2+ ions. In the reconstituted ZnMb-[Pt(bpy)(en)]2+, the quenching reaction of 1(ZnMb)* with the [Pt(bpy)(en)]2+ moiety does not occur, indicating apo-Mb matrix is essential. On the other hand, when the [Pt(bpy)(en)]2+ moiety was excited, the enhancement of the fluorescence from ZnMb unit was observed. It is suggested that the energy transfer from (1)([Pt(bpy)(en)]2+)* to ZnMb occurs. The spectroscopic changes of ZnMb-[Pt(bpy)(en)]2+ in the presence of calf-thymus DNA were also provided. Soret band at 428 nm gradually decreased, and isosbestic points at 321, 414, and 432 nm were observed with increasing the DNA concentration. When the Pt(II) moiety was excited at lambda(ex) 321 nm, the fluorescence signal around 600 nm similarly decreased. The synthetic manipulation of ZnMb by using a DNA-binding Pt(II) complex demonstrates sensitive fluorescent signal for DNA and valuable information to study photoinduced electron transfer within a Mb-DNA complex.  相似文献   

19.
Centrifuge transport, equilibrium dialysis, and electron paramagnetic resonance studies on the binding of Mn2+ to myosin revealed two sets of noninteracting binding sites which are characterized at low ionic strength (0.016 M KCl) by affinity constants of 10(6) M-1 (Class I) and 10(3) M-1 (Class II), respectively. At 0.6 M KCl concentration, the affinity of Mn2+ for both sets of sites is reduced. The maximum number of binding sites is 2 for the high affinity and 20 to 25 for the low affinity set. Other divalent metal ions displace Mn2+ from the high affinity sites in the following order of effectiveness: Ca greater than Mg = Zn = Co greater than Sr greater than Ni. The inhibitory effects of Mg2+ and Ca2+ upon the Mn2+ binding are competitive with inhibitor constants of 0.75 to 1 mM which is similar to that of the low affinity divalent metal ion binding sites. Exposure of myosin to 37 degrees partially inhibits Mn2+ binding to Class I parallel with inhibition of ATPase activity. The binding of Mn2+ to the high affinity binding sites is not significantly influenced by ADP or PPi, although Mn2+ increases the affinity of ADP binding to myosin at high ionic strength.  相似文献   

20.
G H Shimer  A R Wolfe  T Meehan 《Biochemistry》1988,27(20):7960-7966
We have investigated the equilibrium binding of racemic 7r,8t,9t,10c-tetrahydroxy-7,8,9,10-tetrahydrobenzo[a]pyrene to the double-stranded, synthetic polynucleotides poly[d(A-T)], poly[d(G-C)], and poly[d(G-m5C)] at low binding ratios. Difference absorption spectroscopy shows a 10-nm red shift for binding to poly[d(A-T)] and an 11-nm red shift for binding to either poly[d(G-C)] or poly[d(G-m5C)]. The value of delta epsilon for binding is approximately the same for all three hydrocarbon-polynucleotide complexes. Binding of this neutral polycyclic aromatic hydrocarbon derivative to these polynucleotides is dependent upon ionic strength and temperature. Analysis of complex formation employing polyelectrolyte theory shows a greater release of counterions associated with binding to poly[d(A-T)] than with the other two polynucleotides (0.5 and ca. 0.36, respectively). Thus, sequence-selective binding of this hydrocarbon in DNA would be expected to change depending on salt concentration. The temperature dependence of binding was studied at 100 mM Na+ where the equilibrium binding constants for poly[d(A-T)] and poly[d(G-m5C)] are roughly equivalent and 6-fold greater than the binding affinity for poly[d(G-C)]. The binding to poly[d(A-T)] and poly[d(G-C)] is characterized by a delta H omicron = -7.0 kcal/mol, and the large difference in affinity constants arises from differences in negative entropic contributions. Formation of hydrocarbon-poly[d(G-m5C)] complexes is accompanied by a delta H = -9.1 kcal/mol. However, the affinity for poly[d-(G-m5C)] is the same as that for poly[d(A-T)] due to the much more negative entropy associated with binding to poly[d(G-m5C)].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号