首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's disease neuropathology is characterised by beta-amyloid plaques and neurofibrillary tangles. Inhibition of beta-amyloid accumulation may be essential for effective therapy in Alzheimer's disease. In this study we have treated transgenic mice carrying the Swedish mutation of human amyloid precursor protein [Tg(Hu.APP695.K670N-M671L)2576], which develop brain beta-amyloid deposits, with nicotine in drinking fluid (200 microg/mL) from 9-14.5 months of age (5.5 months). A significant reduction in amyloid beta peptide 1-42 positive plaques by more than 80% (p < 0.03) was observed in the brains of nicotine treated compared to sucrose treated transgenic mice. In addition, there was a selective reduction in extractable amyloid beta peptides in nicotine treated mice; cortical insoluble 1-40 and 1-42 peptide levels were lower by 48 and 60%, respectively (p < 0.005), whilst there was no significant change in soluble 1-40 or 1-42 levels. The expression of glial fibrillary acidic protein was not affected by nicotine treatment. These results indicate that nicotine may effectively reduce amyloid beta peptide aggregation in brain and that nicotinic drug treatment may be a novel protective therapy in Alzheimer's disease.  相似文献   

2.
Strategies for interfering with protein aggregation are important for elucidating and controlling the pathologies of amyloid diseases. We have previously identified compounds that block the cellular toxicity of the beta-amyloid peptide, but the relationship between their ability to inhibit toxicity and their affinity for A beta is unknown. To elucidate this relationship, we have developed an assay capable of measuring the affinities of small molecules for beta-amyloid peptide. Our approach employs immobilized beta-amyloid peptide at low density to minimize the problems that arise from variability in the beta-amyloid aggregation state. We found that low-molecular weight (MW of 700-1700) ligands for beta-amyloid can be identified readily by using surface plasmon resonance. The best of these bound effectively (K(d) approximately 40 microM) to beta-amyloid. The affinities measured for peptides in the SPR assay correspond to results from A beta cell toxicity assays. The most potent ligands for immobilized beta-amyloid are the most potent inhibitors of the neuronal cell toxicity of beta-amyloid. Compounds with dissociation constants above approximately 100 microM did not show significant activity in the cell toxicity assays. Our data support the hypothesis that ligands exhibiting greater affinity for the beta-amyloid peptide are effective at altering its aggregation and inhibiting cell toxicity.  相似文献   

3.
Mounting evidence has shown that dyshomeostasis of the redox-active biometals such as Cuand Fe can lead to oxidative stress,which plays a key role in the neuropathology of Alzheimer's disease(AD).Here we demonstrate that with the formation of Cu(Ⅱ)·Aβ1-40 complexes,copper markedly potentiatesthe neurotoxicity exhibited by β-amyloid peptide (Aβ).A greater amount of hydrogen peroxide was releasedwhen Cu(Ⅱ)·Aβ1-40 complexes was added to the xanthine oxidase/xanthine system detected by potassiumiodide spectrophotometry.Copper bound to Aβ1-40 was observed by electron paramagnetic resonance(EPR) spectroscopy.Circular dichroism (CD) studies indicated that copper chelation could cause a structuraltransition of Aβ.The addition of copper to Aβ introduced an increase on β-sheet as well as α-helix,whichmay be responsible for the aggregation of Aβ.We hypothesized that Aβ aggregation induced by copper maybe responsible for local injury in AD.The interaction between Cu~(2 ) and Aβ also provides a possible mechanismfor the enrichment of metal ions in amyloid plaques in the AD brain.  相似文献   

4.
Alzheimer disease and familial British dementia are neurodegenerative diseases that are characterized by the presence of numerous amyloid plaques in the brain. These lesions contain fibrillar deposits of the beta-amyloid peptide (Abeta) and the British dementia peptide (ABri), respectively. Both peptides are toxic to cells in culture, and there is increasing evidence that early "soluble oligomers" are the toxic entity rather than mature amyloid fibrils. The molecular mechanisms responsible for this toxicity are not clear, but in the case of Abeta, one prominent hypothesis is that the peptide can induce oxidative damage via the formation of hydrogen peroxide. We have developed a reliable method, employing electron spin resonance spectroscopy in conjunction with the spin-trapping technique, to detect any hydrogen peroxide generated during the incubation of Abeta and other amyloidogenic peptides. Here, we monitored levels of hydrogen peroxide accumulation during different stages of aggregation of Abeta-(1-40) and ABri and found that in both cases it was generated as a short "burst" early on in the aggregation process. Ultrastructural studies with both peptides revealed that structures resembling "soluble oligomers" or "protofibrils" were present during this early phase of hydrogen peroxide formation. Mature amyloid fibrils derived from Abeta-(1-40) did not generate hydrogen peroxide. We conclude that hydrogen peroxide formation during the early stages of protein aggregation may be a common mechanism of cell death in these (and possibly other) neurodegenerative diseases.  相似文献   

5.
beta-amyloid peptide (A beta) is the major protein component of senile plaques and cerebrovascular amyloid deposits in Alzheimer's patients. Several researchers have demonstrated that A beta is neurotoxic in in vitro and in vivo systems. Peptide aggregation state and/or conformation might play a significant role in determining the toxicity of the peptide. The size and flexibility of fibrils formed from the synthetic peptide beta (1-39), corresponding to the first 39 residues of A beta, were determined. Samples were prepared either directly from lyophilized peptide or diluted from a 10 mg/ml stock solution in 0.1% trifluoroacetic acid (TFA). All samples had a final peptide concentration of 0.5 mg/ml, a final pH of 7.4, and a final NaCl concentration of 0.14 M. The molecular weight and linear density of the fibrils increased with increasing pre-incubation time in TFA, based on static light scattering measurements. Analysis of the angular dependence of the intensity of scattered light indicated that the fibrils were semi-flexible chains and that the fibril flexibility decreased with increasing pre-incubation time in TFA. There was a concomitant change in phase behavior from precipitation to gelation with the decrease in fibril flexibility.  相似文献   

6.
Díaz-Nido J  Wandosell F  Avila J 《Peptides》2002,23(7):1323-1332
Protein aggregation into dense filamentous inclusions is a characteristic feature of many etiologically diverse neurodegenerative disorders including Alzheimer's disease (AD), spongiform encephalopathies, and tauopathies. Thus, beta-amyloid peptide (Abeta) accumulates within senile amyloid plaques in AD, protease-resistant prion protein constitutes the amyloid deposits in spongiform encephalopathies and tau protein gives rise to neurofibrillary tangles (NFT) both in AD and in tauopathies. Curiously, these abnormal protein inclusions contain, in addition to their major peptide components, some associated sulfated glycosaminoglycans (sGAG). Here we discuss the proposal that the binding of sGAG to aggregate-forming peptides may modify the pathogenic process depending on their subcellular localization.  相似文献   

7.
Alzheimer's disease (AD) is characterized by the deposition of amyloid beta-peptide (A beta) and neuronal degeneration in brain regions involved in learning and memory. One of the leading etiologic hypotheses regarding AD is the involvement of free radical-mediated oxidative stress in neuronal degeneration. Recent evidence suggests that metals concentrated in amyloid deposits may contribute to the oxidative insults observed in AD-affected brains. We hypothesized that A beta peptide in the presence of copper enhances its neurotoxicity generating free radicals via copper reduction. In the present study, we have examined the effect of the aggregation state of amyloid-beta-peptide on copper reduction. In independent experiments we measured the copper-reducing ability of soluble and fibrillar A beta(1-40) forms by bathocuproine assays. As it was previously observed for the amyloid precursor protein (APP), the A beta peptide showed copper-reducing ability. The capacity of A beta to reduce copper was independent of the aggregation state. Finally, the A beta peptide derived from the human sequence has a greater effect than the A beta peptide derived from the rat sequence, suggesting that histidine 13 may play a role in copper reduction. In agreement with this possibility, the A beta peptide reduces less copper in the presence of exogenous histidine.  相似文献   

8.
Alzheimer disease (AD) is a heterogeneous disorder with a variety of molecular pathologies converging predominantly on abnormal amyloid deposition particularly in the brain. beta-Amyloid aggregation into senile plaques is one of the pathological hallmarks of AD. beta-Amyloid is generated by a proteolytic cleavage of a large membrane protein, amyloid precursor protein (APP). We have observed a new property of beta-amyloid. The amyloid 1-42 beta fragment, when aggregated, possesses proteolytic and esterase-like activity, in vitro. Three independent methods were used to test the new property of beta-amyloid. While esterase activity involves imidazole catalysis, proteolytic activity is consistent with participation of a serine peptidase triad: catalytic Ser, His and Glu (or Asp). Although the amino acid triad is a necessary requirement for the protease reactivity, it is not sufficient since the secondary structure of the protein significantly contributes to the proteolytic activity. The ability of beta-amyloid to cleave peptide or ester bonds could be thus responsible for either inactivation of other proteins and/or APP proteolysis itself. This property may be responsible for early pathogenesis of AD since there is emerging evidence that non-plaque amyloid is elevated in Alzheimer patients.  相似文献   

9.
Abnormal proteinaceous deposits are found in the brain of patients with many different neurodegenerative diseases. In many of these diseases, the production of the deposits is probably associated with disease pathogenesis. In Alzheimer's disease (AD), the amyloid protein (A beta), is produced by the action of enzymes known as secretases, which cleave the beta-amyloid protein precursor. A beta is secreted from cells in the brain, after which it oligomerizes and is deposited in the extracellular compartment of the brain to form amyloid plaques and amyloid angiopathy. Targeting the production of A beta and its aggregation is now a key strategy in the development of novel therapeutic agents for the treatment of AD. This review examines the potential of immunization strategies, cholesterol-lowering drugs, protease inhibitors and nicotinic drugs for the treatment of AD.  相似文献   

10.
Solvent effects on self-assembly of beta-amyloid peptide.   总被引:5,自引:2,他引:3       下载免费PDF全文
beta-amyloid peptide (A beta) is the primary protein component of senile plaques in Alzheimer's disease patients. Synthetic A beta spontaneously assembles into amyloid fibrils and is neurotoxic to cortical cultures. Neurotoxicity has been associated with the degree of peptide aggregation, yet the mechanism of assembly of A beta into amyloid fibrils is poorly understood. In this work, A beta was dissolved in several different solvents commonly used in neurotoxicity assays. In pure dimethylsulfoxide (DMSO), A beta had no detectable beta-sheet content; in 0.1% trifluoroacetate, the peptide contained one-third beta-sheet; and in 35% acetonitrile/0.1% trifluoroacetate, A beta was two-thirds beta-sheet, equivalent to the fibrillar peptide in physiological buffer. Stock solutions of peptide were diluted into phosphate-buffered saline, and fibril growth was followed by static and dynamic light scattering. The growth rate was substantially faster when the peptide was predissolved in 35% acetonitrile/0.1% trifluoroacetate than in 0.1% trifluoroacetate, 10% DMSO, or 100% DMSO. Differences in growth rate were attributed to changes in the secondary structure of the peptide in the stock solvent. These results suggest that formation of an intermediate with a high beta-sheet content is a controlling step in A beta self-assembly.  相似文献   

11.
The formation of extracellular or intracellular deposits of amyloid-like protein fibrils is a prominent pathological feature of many different neurodegenerative diseases, including Alzheimer's disease (AD) and Parkinson's disease (PD). In AD, the beta-amyloid peptide (A(beta)) accumulates mainly extracellularly at the center of senile plaques, whereas, in PD, the alpha-synuclein protein accumulates within neurons inside the Lewy bodies and Lewy neurites. We have shown recently that solutions of A(beta) 1-40, A(beta) 1-42, A(beta) 25-35, alpha-synuclein and non-A(beta) component (NAC; residues 61-95 of alpha-synuclein) all liberate hydroxyl radicals upon incubation in vitro followed by the addition of small amounts of Fe(II). These hydroxyl radicals were readily detected by means of electron spin resonance spectroscopy, employing 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as a spin trapping agent. Hydroxyl radical formation was inhibited by the inclusion of catalase or metal-chelators during A(beta) or alpha-synuclein incubation. Our results suggest that hydrogen peroxide accumulates during the incubation of A(beta) or alpha-synuclein, by a metal-dependent mechanism, and that this is subsequently converted to hydroxyl radicals, on addition of Fe (II), by Fenton's reaction. Consequently, one of the fundamental molecular mechanisms underlying the pathogenesis of cell death in AD and PD, and possibly other neurodegenerative or amyloid diseases, could be the direct production of hydrogen peroxide during formation of the abnormal protein aggregates.  相似文献   

12.
Kim JR  Murphy RM 《Biophysical journal》2004,86(5):3194-3203
Extracellular senile plaques are a central pathological feature of Alzheimer's disease. At the core of these plaques are fibrillar deposits of beta-amyloid peptide (Abeta). In vitro, Abeta spontaneously assembles into amyloid fibrils of cross-beta sheet structure. Although it was once believed that the fibrils themselves were toxic, more recent data supports the hypothesis that aggregation intermediates, rather than fully formed fibrils, are the most damaging to neuronal tissue. In previously published work, we identified several small peptides that interact with Abeta and increase its aggregation rate while decreasing its toxicity. In this work, we examined in detail the interaction between Abeta and one of these peptides. Using a mathematical model of Abeta aggregation kinetics, we show that the dominant effect of the peptide is to accelerate lateral association of Abeta filaments into fibrils.  相似文献   

13.
We have demonstrated that the angiotensin-converting enzyme (ACE) genotype is associated with Alzheimer's disease (AD) in the Japanese population (). To determine why ACE affects susceptibility to AD, we examined the effect of purified ACE on aggregation of the amyloid beta-peptide (A beta) in vitro. Surprisingly, ACE was found to significantly inhibit A beta aggregation in a dose response manner. The inhibition of aggregation was specifically blocked by preincubation of ACE with an ACE inhibitor, lisinopril. ACE was confirmed to retard A beta fibril formation with electron microscopy. ACE inhibited A beta deposits on a synthaloid plate, which was used to monitor A beta deposition on autopsied brain tissue. ACE also significantly inhibited A beta cytotoxicity on PC12 h. The most striking fact was that ACE degraded A beta by cleaving A beta-(1-40) at the site Asp(7)-Ser(8). This was proven with reverse-phase HPLC, amino acid sequence analysis, and MALDI-TOF/MS. Compared with A beta-(1-40), aggregation and cytotoxic effects of the degradation products A beta-(1-7) and A beta-(8-40) peptides were reduced or virtually absent. These findings led to the hypothesis that ACE may affect susceptibility to AD by degrading A beta and preventing the accumulation of amyloid plaques in vivo.  相似文献   

14.
Proteoglycans and their constituent glycosaminoglycans are associated with all amyloid deposits and may be involved in the amyloidogenic pathway. In Alzheimer's disease, plaques are composed of the amyloid-beta peptide and are associated with at least four different proteoglycans. Using CD spectroscopy, fluorescence spectroscopy and electron microscopy, we examined glycosaminoglycan interaction with the amyloid-beta peptides 1-40 (Abeta40) and 1-42 (Abeta42) to determine the effects on peptide conformation and fibril formation. Monomeric amyloid-beta peptides in trifluoroethanol, when diluted in aqueous buffer, undergo a slow random to amyloidogenic beta sheet transition. In the presence of heparin, heparan sulfate, keratan sulfate or chondroitin sulfates, this transition was accelerated with Abeta42 rapidly adopting a beta-sheet conformation. This was accompanied by the appearance of well-defined amyloid fibrils indicating an enhanced nucleation of Abeta42. Incubation of preformed Abeta42 fibrils with glycosaminoglycans resulted in extensive lateral aggregation and precipitation of the fibrils. The glycosaminoglycans differed in their relative activities with the chondroitin sulfates producing the most pronounced effects. The less amyloidogenic Abeta40 isoform did not show an immediate structural transition that was dependent upon the shielding effect by the phosphate counter ion. Removal or substitution of phosphate resulted in similar glycosaminoglycan-induced conformational and aggregation changes. These findings clearly demonstrate that glycosaminoglycans act at the earliest stage of fibril formation, namely amyloid-beta nucleation, and are not simply involved in the lateral aggregation of preformed fibrils or nonspecific adhesion to plaques. The identification of a structure-activity relationship between amyloid-beta and the different glycosaminoglycans, as well as the condition dependence for glycosaminoglycan binding, are important for the successful development and evaluation of glycosaminoglycan-specific therapeutic interventions.  相似文献   

15.
Aggregated amyloid beta-peptide (A beta) is the primary constituent of the extracellular plaques and perivascular amyloid deposits associated with Alzheimer's disease (AD). Deposition of the cerebral amyloid plaques is thought to be central to the disease progression. One such molecule that has previously been shown to 'dissolve' deposited amyloid in post-mortem brain tissue is bathocuproine (BC). In this paper 1H NMR chemical shift analysis and pulsed field gradient NMR diffusion measurements were used to study BC self-association and subsequent binding to A beta. The results show that BC undergoes self-association as its concentration increases. The association constant of BC dimerization, Ka, was estimated to be 0.64 mM(-1) at 25 degrees C from 1H chemical shift analysis. It was also found that dimerization of BC appeared to be essential for its binding to A beta. From the self-association constant of BC, Ka, the fraction of dimeric BC in the complex was obtained and the dissociation constant, Kd, of BC bound to A beta40 peptide was then determined to be approximately 1 mM.  相似文献   

16.
We reported previously that stabilized beta-amyloid peptide dimers were derived from mutant amyloid precursor protein with a single cysteine in the ectodomain juxtamembrane position. In vivo studies revealed that two forms of SDS-stable A beta homodimers exist, species ending at A beta 40 and A beta 42. The phenomenon of the transformation of the initially deposited 42-residue beta-amyloid peptide into the amyloid fibrils of Alzheimer's disease plaques remains to be explained in physical terms, i.e. energetically and structurally. We therefore performed spectroscopic analyses revealing that engineered dimeric peptides ending at residue 42 displayed a much more pronounced beta-structural transition than corresponding monomers. Specifically, the single chemically induced dimerization of A beta peptides significantly increased the beta-sheet content by a factor of 2. The C-terminal residues Ile-41 and Ala-42 of dimeric forms further increased the beta-sheet content by roughly one-third. In contrast to A beta 42, the beta-sheet content of the alpha- and gamma-secretase-generated p3 fragments did not necessarily correlate with the tendency to form fibrils, although p3/17-42 had a pronounced thread forming character with fibril lengths of up to 2.5 microM. Electron microscopic images show that forms of p3/17-42 generated smaller granular particles than forms ending at residue 40. We discuss these findings in terms of A beta 1-42 dimers representing paranuclei, which self-aggregate into ribbon-like ordered fibrils by elongation. Based on A beta 42 dimer-specific titers of a polyclonal antiserum we propose that the A beta homodimer represents a nidus for plaque formation and a well defined novel therapeutic target.  相似文献   

17.
Alzheimer's disease is the commonest form of senile dementia, affecting almost 20 million people worldwide. This neurodegenerative disorder is characterized by amyloid deposition in senile plaques, composed primarily of fibrils of an aggregated peptide, beta-amyloid. Fibrillation of beta-amyloid is a nucleation-dependent polymerization process, which is controlled by two kinetics parameters: the nucleation rate and the elongation or growth rate. As the kinetics of fibrillation is strongly dependent on the presence of trace amounts of fibrils, we suggest that the aggregation of beta-amyloid is a model of autocatalytic reaction. A mathematical analysis, permitting quantitative monitoring of the kinetics of fibrillogenesis of beta-amyloid, nucleation, and elongation constants, is presented. The model was checked by applying it to the aggregation of the fragment 1-40 of the beta-amyloid. Understanding of these rate constants may facilitate the study of the effect of substances used for controlling fibril creation and growth. The disaggregating effect of dodecyl trimethylammonium bromide, a cationic surfactant, was easily quantified by means of the model.  相似文献   

18.
Mass spectrometry of purified amyloid beta protein in Alzheimer's disease.   总被引:7,自引:0,他引:7  
The amyloid beta-protein (A beta) that is progressively deposited in Alzheimer's disease (AD) arises from proteolysis of the integral membrane protein, beta-amyloid precursor protein (beta APP). Although A beta formation appears to play a seminal role in AD, only a few studies have examined the chemical structure of A beta purified from brain, and there are discrepancies among the findings. We describe a new method for the rapid extraction and purification of A beta that minimizes artifactual proteolysis. A beta purified by two-dimensional reverse-phase HPLC was analyzed by combined amino acid sequencing and mass spectrometry after digestion with a lysylendopeptidase. The major A beta peptide in the cerebral cortex of all five AD brains examined was aspartic acid 1 to valine 40. A minor species beginning at glutamic acid 3 but blocked by conversion to pyroglutamate was also found in all cases. A species ending at threonine 43 was detected, varying from approximately 5 to 25% of total A beta COOH-terminal fragments. Peptides ending with valine 39, isoleucine 41, or alanine 42 were not detected, except for one brain with a minor peptide ending at valine 39. Our findings suggest that A beta 1-40 is the major species of beta-protein in AD cerebral cortex. A beta 1-40 and A beta 1-43 peptides could arise independently from beta APP, or A beta 1-43 could be the initial excised fragment, followed by digestion to yield A beta 1-40. These analyses of native A beta in AD brain recommend the use of synthetic A beta 1-40 peptide to model amyloid fibrillogenesis and toxicity in vitro.  相似文献   

19.
Familial Danish dementia is an early onset autosomal dominant neurodegenerative disorder linked to a genetic defect in the BRI2 gene and clinically characterized by dementia and ataxia. Cerebral amyloid and preamyloid deposits of two unrelated molecules (Danish amyloid (ADan) and beta-amyloid (Abeta)), the absence of compact plaques, and neurofibrillary degeneration indistinguishable from that observed in Alzheimer disease (AD) are the main neuropathological features of the disease. Biochemical analysis of extracted amyloid and preamyloid species indicates that as the solubility of the deposits decreases, the heterogeneity and complexity of the extracted peptides exponentially increase. Nonfibrillar deposits were mainly composed of intact ADan-(1-34) and its N-terminally modified (pyroglutamate) counterpart together with Abeta-(1-42) and Abeta-(4-42) in approximately 1:1 mixture. The post-translational modification, glutamate to pyroglutamate, was not present in soluble circulating ADan. In the amyloid fractions, ADan was heavily oligomerized and highly heterogeneous at the N and C terminus, and, when intact, its N terminus was post-translationally modified (pyroglutamate), whereas Abeta was mainly Abeta-(4-42). In all cases, the presence of Abeta-(X-40) was negligible, a surprising finding in view of the prevalence of Abeta40 in vascular deposits observed in sporadic and familial AD, Down syndrome, and normal aging. Whether the presence of the two amyloid subunits is imperative for the disease phenotype or just reflects a conformational mimicry remains to be elucidated; nonetheless, a specific interaction between ADan oligomers and Abeta molecules was demonstrated in vitro by ligand blot analysis using synthetic peptides. The absence of compact plaques in the presence of extensive neuro fibrillar degeneration strongly suggests that compact plaques, fundamental lesions for the diagnosis of AD, are not essential for the mechanism of dementia.  相似文献   

20.
To model the possible involvement of sulfated proteoglycans in amyloidogenesis, we examined the influence of sulfate ions, heparan, and Congo red on the conformation and morphology of peptides derived from the Alzheimer beta/A4 amyloid protein. The peptides included residues 11-28, 13-28, 15-28, and 11-25 of beta/A4. Negative-stain electron microscopy revealed a sulfate-specific tendency of the preformed peptide fibrillar assemblies of beta(11-28), beta(13-28), and beta(11-25), but not beta(15-28), to undergo extensive lateral aggregation and axial growth into "macrofibers" that were approximately 0.1-0.2 micron wide by approximately 20-30 microns long. Such effects were observed at low sulfate concentrations (e.g., 5-50 mM) and could not be reproduced under comparable conditions with Na2HPO4, Na2SeO4, or NaCl. Macrofibers in NaCl were only observed at 1,000 mM. At physiological ionic strength of NaCl, fibril aggregation was observed only with addition of sulfate ions at 5-50 mM. Selenate ions, by contrast with sulfate ions, induced only axial and not substantial lateral aggregation of fibrils. X-ray diffraction indicated that the original cross-beta peptide conformation remained unchanged; however, sulfate binding did produce an intense approximately 65 A meridional reflection not recorded with control peptides. This new reflection probably arises from the periodic deposition of the electron-dense sulfate along the (long) axis of the fibril. The sulfate binding could provide sites for the binding of additional fibrils that generate the observed lateral and axial aggregation. The binding of heparan to beta(11-28) also produced extensive aggregation, suggesting that in vivo sulfated compounds can promote macrofibers. The amyloid-specific, sulfonated dye Congo red, even in the presence of sulfate ions, produced limited aggregation and reduced axial growth of the fibrils. Therefore, electrostatic interactions are important in the binding of exogenous compounds to amyloid fibrils. Our findings suggest that the sulfate moieties of certain molecules, such as glycosaminoglycans, may affect the aggregation and deposition of amyloid fibrils that are observed as extensive deposits in senile plaques and cerebrovascular amyloid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号