首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
近年来,研究者从小鼠骨髓和其他组织脏器中分离并纯化了一类数量极其稀少的极小胚胎样干细胞(very small embryonic—like stem cells,VSELs)。VSELs不仅表达多能干细胞的表面分子标记,并能向3个胚层方向分化。有学者推测,VSELs可能是在哺乳动物组织/器官的发育早期迁移并定居下来的,且能在特定情况下向组织特异的单潜能干细胞方向分化。据此,VSELs可能在成体组织的更新和损伤组织的再生修复过程中发挥重要作用。  相似文献   

2.
We carried out an immunohistochemical study on mesenteric guinea pig lymph nodes, from the 10th day prepartum till the 26th day postpartum, to assess the role of fibronectin in their organization during development. This glycoprotein is diffusely distributed in embryonic lymph nodes, suggesting a primer function during organogenesis. After birth, in fact, it is less widespread and is mainly localized around sinuses and vessels. Our data, supporting the important role of this glycoprotein during lymph node organization, are in agreement with the results obtained in other tissues and organs.  相似文献   

3.
Dynamic mechanical processes shape the embryo and organs during development. Little is understood about the basic physics of these processes, what forces are generated, or how tissues resist or guide those forces during morphogenesis. This review offers an outline of some of the basic principles of biomechanics, provides working examples of biomechanical analyses of developing embryos, and reviews the role of structural proteins in establishing and maintaining the mechanical properties of embryonic tissues. Drawing on examples we highlight the importance of investigating mechanics at multiple scales from milliseconds to hours and from individual molecules to whole embryos. Lastly, we pose a series of questions that will need to be addressed if we are to understand the larger integration of molecular and physical mechanical processes during morphogenesis and organogenesis.  相似文献   

4.
The murine epidermal growth factor (EGF) precursor is a 1217 amino acid protein which contains mature EGF (amino acid residues 977-1029) as well as eight EGF-like repeats. Although the highest levels of EGF are found in the adult male mouse submandibular gland, the results of in situ hybridization studies and mRNA analyses suggest that EGF precursor mRNA is synthesized in several adult mouse tissues including the lung and the incisor. To determine if EGF precursor gene expression is intrinsic to the developmental program for either embryonic tooth or lung organogenesis, sense and antisense oligodeoxyribonucleotide probes corresponding to amino acids 1070-1081 of the precursor were used to localize cellular sites of synthesis of EGF precursor mRNA by in situ hybridization. Antibodies directed against amino acid residues 348-691 of the precursor were used in immunodetection techniques to identify either EGF precursor protein or processed derivatives. In contrast to earlier reports indicating that embryonic mouse tissues do not synthesize EGF precursor mRNA, we found that EGF precursor mRNA is present in clusters of ectoderm-, mesoderm-, and ectomesenchyme-derived cells associated with embryonic teeth and lung organs. Moreover, epitopes common to the EGF precursor were immunolocalized in both the epithelial and mesenchymal tissues of embryonic mouse tooth and lung organs. These results suggest that the EGF precursor and/or motifs contained within the precursor molecule, including mature EGF, may play an instructive or permissive role in epithelial-mesenchymal interactions pursuant to organogenesis.  相似文献   

5.
Expanding insights into the role of cell proliferation in plant development   总被引:3,自引:0,他引:3  
Development in plants relies largely on the activity of meristems, which are regions at the apices of shoots and roots that are capable of prolonged organogenesis. Developmental patterning and morphogenesis in plants is principally determined by post-embryonic regulation of the shoot, root and flower meristems, which enable plants to modify their form rapidly in response to different environmental conditions. Because meristems are continually generating new organs and tissues, they provide excellent model systems in which to study the processes of cell division, differentiation and organ formation. Here, we describe recent studies and several classic experiments that are helping to uncover the mechanisms controlling meristem development and the role of cell division in morphogenesis and patterning in plants.  相似文献   

6.
The kidney is widely used to study the mechanisms of organogenesis. Its development involves fundamental processes, such as epithelial branching, induced morphogenesis and cytodifferentiation, which are common to the development of many other organs. Gene-targeting experiments have greatly improved our understanding of kidney development, and have revealed many important genes that regulate early kidney organogenesis, some of which have a role in inherited human kidney disorders. Although our understanding of how the kidney is assembled is still limited, these studies are beginning to provide insights into the genetic and cellular interactions that regulate early organogenesis.  相似文献   

7.
Studies performed in Drosophila melanogaster embryos and larvae provide crucial insight into developmental processes such as cell fate specification and organogenesis. Immunostaining allows for the visualization of developing tissues and organs. However, a protective cuticle that forms at the end of embryogenesis prevents permeation of antibodies into late-stage embryos and larvae. While dissection prior to immunostaining is regularly used to analyze Drosophila larval tissues, it proves inefficient for some analyses because small tissues may be difficult to locate and isolate. Sonication provides an alternative to dissection in larval Drosophila immunostaining protocols. It allows for quick, simultaneous processing of large numbers of late-stage embryos and larvae and maintains in situ morphology. After fixation in formaldehyde, a sample is sonicated. Sample is then subjected to immunostaining with antigen-specific primary antibodies and fluorescently labeled secondary antibodies to visualize target cell types and specific proteins via fluorescence microscopy. During the process of sonication, proper placement of a sonicating probe above the sample, as well as the duration and intensity of sonication, is critical. Additonal minor modifications to standard immunostaining protocols may be required for high quality stains. For antibodies with low signal to noise ratio, longer incubation times are typically necessary. As a proof of concept for this sonication-facilitated protocol, we show immunostains of three tissue types (testes, ovaries, and neural tissues) at a range of developmental stages.  相似文献   

8.
In vitro organogenesis is well-controlled and thus provides an ideal system to study mechanisms of plant organ development. Although it has been well investigated for a long time that exogenous hormones play important roles in determining the types of organs regenerated in vitro, there is currently limited information available for other key factors that mediate de novo organ regeneration. Here, we reported simple and efficient one-step processes for evaluating capacities of inflorescence stem-derived in vitro organogenesis between two different ecotypes in Arabidopsis. Different types of organs, including shoots and roots were initiated from inflorescence stem explants cultured on the media containing 216 combinations of exogenous auxin and cytokinin. Further, we showed that Wassilewskija ecotype had the much higher shoot regeneration capacity than Columbia with different combinations of hormones, indicating that the ecotype is an essential factor determining de novo organogenesis. Our results also suggested that the defined expression patterns of genes involved in auxin and cytokinin biosynthesis were correlated with the variations in organogenesis capacities between the two ecotypes. Thus, in vitro organogenesis is likely regulated by ecotypes through mediating endogenous hormonal biosynthesis.  相似文献   

9.
Plant somatic cells have the capability to switch their cell fates from differentiated to undifferentiated status under proper culture conditions, which is designated as totipotency. As a result, plant cells can easily regenerate new tissues or organs from a wide variety of explants. However, the mechanism by which plant cells have such remarkable regeneration ability is still largely unknown. In this study, we used a set of meristem-specific marker genes to analyze the patterns of stem cell differentiation in the processes of somatic embryogenesis as well as shoot or root organogenesis in vitro. Our studies furnish preliminary and important information on the patterns of the de novo stem cell differentiation during various types of in vitro organogenesis.  相似文献   

10.
Epithelial-mesenchymal transition (EMT), crucial during embryogenesis for new tissue and organ formation, is also considered to be a prerequisite to cancer metastasis. We report here that the protein tyrosine phosphatase Pez is expressed transiently in discrete locations in developing brain, heart, pharyngeal arches, and somites in zebrafish embryos. We also find that Pez knock-down results in defects in these organs, indicating a crucial role in organogenesis. Overexpression of Pez in epithelial MDCK cells causes EMT, with a drastic change in cell morphology and function that is accompanied by changes in gene expression typical of EMT. Transfection of Pez induced TGFbeta signaling, critical in developmental EMT with a likely role also in oncogenic EMT. In zebrafish, TGFbeta3 is co- expressed with Pez in a number of tissues and its expression was lost from these tissues when Pez expression was knocked down. Together, our data suggest Pez plays a crucial role in organogenesis by inducing TGFbeta and EMT.  相似文献   

11.
CXCR4–SDF-1 Signalling, Locomotion, Chemotaxis and Adhesion   总被引:23,自引:0,他引:23  
Chemokines, small pro-inflammatory chemoattractant cytokines, that bind to specific G-protein-coupled seven-span transmembrane receptors present on plasma membranes of target cells are the major regulators of cell trafficking. In addition some chemokines have been reported to modulate cell survival and growth. Moreover, compelling evidence is accumulating that cancer cells may employ several mechanisms involving chemokine-chemokine receptor axes during their metastasis that also regulate the trafficking of normal cells. Of all the chemokines, stromal-derived factor-1 (SDF-1), an alpha-chemokine that binds to G-protein-coupled CXCR4, plays an important and unique role in the regulation of stem/progenitor cell trafficking. First, SDF-1 regulates the trafficking of CXCR4+ haemato/lymphopoietic cells, their homing/retention in major haemato/lymphopoietic organs and accumulation of CXCR4+ immune cells in tissues affected by inflammation. Second, CXCR4 plays an essential role in the trafficking of other tissue/organ specific stem/progenitor cells expressing CXCR4 on their surface, e.g., during embryo/organogenesis and tissue/organ regeneration. Third, since CXCR4 is expressed on several tumour cells, these CXCR4 positive tumour cells may metastasize to the organs that secrete/express SDF-1 (e.g., bones, lymph nodes, lung and liver). SDF-1 exerts pleiotropic effects regulating processes essential to tumour metastasis such as locomotion of malignant cells, their chemoattraction and adhesion, as well as plays an important role in tumour vascularization. This implies that new therapeutic strategies aimed at blocking the SDF-1-CXCR4 axis could have important applications in the clinic by modulating the trafficking of haemato/lymphopoietic cells and inhibiting the metastatic behaviour of tumour cells as well. In this review, we focus on a role of the SDF-1-CXCR4 axis in regulating the metastatic behaviour of tumour cells and discuss the molecular mechanisms that are essential to this process.  相似文献   

12.
The uridylic acid rich nuclear RNAs (U1-U6 snRNAs) are involved mainly in the processing of pre-mRNA and pre-rRNA. So, any control of cell growth through pre-mRNA/pre-rRNA processing may have some regulation through altered UsnRNAs metabolism. With this idea, attempts have been made to see how the metabolism of the six major UsnRNAs' changed during the normal process of cellular proliferation associated with differentiation from pluripotent/totipotent stem cells of early embryonic stage to much more differentiated state of different cell/tissue lineages in different tissues/organs during the fetal and neonatal stages of growth. It has been seen that the levels of the six major UsnRNAs were high in day 8 embryo when the cells were mainly pluripotent/totipotent in nature, and during the progression of embryonic development the levels of these UsnRNAs gradually decreased (35-65%) up to the midgestational period (day 13) with some exception, when the organogenesis has already been started. However in the fetal life, the levels of these UsnRNAs were maximum or comparable around 18 ± 2 days of gestation in comparison to that in day 8 embryo when the kinetics of the maturational status of the different organs were quite high. But, the levels of these UsnRNAs' became low during day 21 of fetal life or in day 0 of birth (perturation period) in all the tissues/organs except high UsnRNAs' level in spleen. In the neonatal life, around 3 ± 1 days of birth these UsnRNAs' levels again became maximum in all the tissues/organs (except in thymus) followed by decrease up to 5/6 days, and to become steady with slight increase within one to two weeks, when the kinetics of the organ maturation reached to a steady state. In case of thymus, the levels of the U3-U6 snRNAs were high on day 0 of birth followed by decrease in their level on day 1/2 and then increased to become steady within 2-4 weeks; whereas the U1 and U2 snRNAs' levels were high on day 3 of birth and the subsequent changes were similar to that in other tissues/organs.Thus the different UsnRNAs' metabolism in the perturation period and in the early stages of neonatal life has indicated the differential cellular functions in these two stages of development. These alterations in the metabolism of these UsnRNAs might be due to the differential changes in the rate of synthesis of these UsnRNAs and/or with their differential turnover rate in the different stages of development. Also, the differential variations of these UsnRNAs' levels have been observed among the different tissues/organs at the respective stages of development indicating the differences in the UsnRNAs' metabolism among the different cell/tissue lineages. Thus, it can be concluded that the metabolism of these UsnRNAs were developmentally regulated with some cell/tissue lineage variations, which might have some role in the developmentally regulated cellular process of proliferation and differentiation, through altered RNA splicing and processing.  相似文献   

13.
The growing recognition that faulty maternal metabolism during early organogenesis may be implicated in the increased incidence of birth defects in pregnancies complicated by diabetes has prompted worldwide efforts to institute improved preconceptional metabolic regulation. However, the failure to identify the periods of greatest risk for diabetic embryopathy, the mediating teratogen(s), and the underlying mechanisms have complicated attempts to establish precise therapeutic guidelines and targets. Some of the reported in vivo and in vitro experiences with rodent models have been reviewed to derive relevant insights. Substantial literature indicates that diabetes (experimental as well as spontaneous) in pregnant rats and mice is attended by retardation of growth and developmental delay during embryogenesis, and a variable incidence of birth defects. Poor metabolic regulation of the diabetic mother during early organogenesis may also be followed by subsequent resorption of the conceptus at the site of implantation. Vulnerability to diabetes-related resorptions and all other forms of embryopathy appears to begin during the early postimplantation period and is greatest near the onset of neurolation. Overall susceptibility is markedly influenced by genetic factors and may be modified by the antecedent metabolic exposures of the conceptus ("carry-over effects"). Mediation for the anomalous embryo development in pregnancies of diabetic rodents appears to be multifactorial; all the aberrant fuels and fuel-related components of "the diabetic state" (e.g. high glucose; ketones; somatomedin inhibitor(s); osmolality, etc.) which have been tested to date display dysmorphogenic potential ("fuel-mediated organ terato-genesis") in vitro. All tissues in the conceptus appear to be at risk. Dose-response relationships for the individual metabolic teratogens may be influenced by additive and synergistic interactions so that the integrated possibilities cannot be assessed fully by measurements confined to a single fuel or fuel-related component. In the context of the day-to-day variability in diabetes "control" of the poorly regulated mother, and the relatively longer duration of organogenesis, these multifactorial possibilities may account for the multiple birth defects that can occur in individual offspring, and the seemingly non-specific pattern of diabetic embryopathy. Insulin therapy diminishes the dysmorphogenic effects of "the diabetic state" in rodents with experimental or spontaneous diabetes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Proenkephalin A (PEA) encodes several neuropeptides with an opioid activity, as well as other peptides with as yet unknown functions. As an initial step toward finding possible roles for PEA gene products in non-neuronal tissues, we have determined sites of PEA expression during mouse embryonic development, employing in situ hybridization. We report here the unexpected observation that in addition to its abundance in brain, PEA RNA is expressed in non-differentiated mesodermal cells of diverse lineages in the process of their development into several adult tissues and organs; it drops to undetectable levels upon terminal differentiation of these tissues. In a particular example of differentiating mesoderm, the developing kidney, the transient expression of PEA mRNA and of its encoded peptide Met-enkephalin was demonstrated by both in situ and Northern blot hybridizations, as well as by a radioimmunoassay. These findings suggest a novel role for PEA-derived peptide(s) in mesoderm growth or differentiation during organogenesis.  相似文献   

15.
16.
All solid organs contain resident monocyte-derived cells that appear early in organogenesis and persist throughout life. These cells are critical for normal development in some organs. Here we report the use of a previously described transgenic line, with EGFP driven by the macrophage-restricted Csf1r (c-fms) promoter, to image macrophage production and infiltration accompanying organogenesis in many tissues. Using microarray analysis of FACS-isolated EGFP-positive cells, we show that fetal kidney, lung and brain macrophages show similar gene expression profiles irrespective of their tissue of origin. EGFP-positive cells appeared in the renal interstitium from 12 days post coitum, prior to nephrogenesis, and maintain a close apposition to renal tubules postnatally. CSF-1 added to embryonic kidney explants increased overall renal growth and ureteric bud branching. Expression profiling of tissue macrophages and of CSF-1-treated explants showed evidence of the alternate, pro-proliferative (M2) activation profile, including expression of macrophage mannose receptor (CD206), macrophage scavenger receptor 2 (Msr2), C1q, CD163, selenoprotein P, CCL24 and TREM2. This response has been associated with the trophic role of tumour-associated macrophages. These findings suggest a trophic role of macrophages in embryonic kidney development, which may continue to play a similar role in postnatal repair.  相似文献   

17.
We here report essential roles of the Bmp-binding protein crossveinless 2 (Cv2; Bmper) in mouse organogenesis. In the null Cv2 mutant mouse, gastrulation occurs normally, but a number of defects are found in Cv2-expressing tissues such as the skeleton. Cartilage differentiation by Bmp4 treatment is reduced in cultured Cv2(-/-) fibroblasts. Moreover, the defects in the vertebral column and eyes of the Cv2(-/-) mouse are substantially enhanced by deleting one copy of the Bmp4 gene, suggesting a pro-Bmp role of Cv2 in the development of these organs. In addition, the Cv2(-/-) mutant exhibits substantial defects in Bmp-dependent processes of internal organ formation, such as nephron generation in the kidney. This kidney hypoplasia is synergistically enhanced by the additional deletion of Kcp (Crim2) which encodes a pro-Bmp protein structurally related to Cv2. This study demonstrates essential pro-Bmp functions of Cv2 for locally restricted signal enhancement in multiple aspects of mammalian organogenesis.  相似文献   

18.
The primary cilium is a small microtubule-based organelle projecting from the plasma membrane of practically all cells in the mammalian body. In the past 8 years, a flurry of papers has indicated a crucial role of this long-neglected organelle in the development of a wide variety of organs, including derivatives of all three germ layers. A common theme of these studies is the critical dependency of signal transduction of the Hedgehog pathway upon functionally intact cilia to regulate organogenesis. Another common theme is the role that the cilium plays, not necessarily in the determination of the embryonic anlagen of these organs, although this too occurs but rather in the proliferation and morphogenesis of the previously determined organ. We outline the various organ systems that are dependent upon primary cilia for their proper development and we discuss the cilia-dependent roles that Sonic and Indian Hedgehog play in these processes. In addition and most importantly for the field, we discuss the controversial involvement of another major developmental pathway, Wnt signaling, in cilia-dependent organogenesis.  相似文献   

19.
生长素的运输及其在信号转导及植物发育中的作用   总被引:2,自引:0,他引:2  
生长素作为一种重要的植物激素,参与调节植物生长发育的诸多过程,如器官发生、形态建成、向性反应、顶端优势及组织分化等,其作用机理长期以来备受人们关注。生长素的极性运输能使生长素积累在植物体某些特定部位,从而形成生长素浓度梯度,生长素对植物生长发育的调节主要依赖于这一特性。系统阐述生长素的运输特点、运输机理和相关生长素极性运输载体的研究进展;并对生长素信号转导途径中的重要组分及其机理进行了总结;同时较系统地对生长素参与植物体各器官发育过程及调节情况进行综述。  相似文献   

20.
A particle-rich cytoplasmic structure (PaCS) concentrating ubiquitin–proteasome system (UPS) components and barrel-like particles in clear, cytoskeleton- and organelle-free areas has recently been described in some neoplasms and in genetic or infectious diseases at risk of neoplasia. Ultrastructurally similar particulate cytoplasmic structures, interpreted as glycogen deposits, have previously been reported in clear-cell neoplasms and some fetal tissues. It remains to be investigated whether the two structures are the same, colocalize UPS components and polysaccharides, and have a role in highly proliferative cells such as fetal and neoplastic cells. We used immunogold electron microscopy and confocal immunofluorescence microscopy to examine human and mouse fetal tissues and human neoplasms. Fetal and neoplastic cells both showed colocalization of polyubiquitinated proteins, 19S and 20S proteasomes, and polysaccharides, both glycogen and chondroitin sulfate, inside cytoplasmic structures showing all distinctive features of PaCSs. Poorly demarcated and/or hybrid (ribosomes admixed) UPS- and glycogen-enriched areas, likely stages in PaCS development, were also seen in some fetal cells, with special reference to those, like primary alveolar pulmonary cells or pancreatic centroacinar cells, having a crucial role in organogenesis. UPS- and glycogen-rich PaCSs developed extensively in clear-cell neoplasms of the kidney, ovary, pancreas, and other organs, as well as, in infantile, development-related tumors replicating fetal patterns, such as choroid plexus papilloma. UPS-mediated, ATP-dependent proteolysis and its potential energy source, glycogen metabolism, may have a crucial, synergic role in embryo-/organogenesis and carcinogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号