首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Morphometry of the chinchilla organ of Corti and stria vascularis   总被引:1,自引:0,他引:1  
This research describes a procedure for a morphometric analysis of the organ of Corti and stria vascularis in the chinchilla. In nine normal cochleae the length of the basilar membrane and the stria vascularis measured 18.47 and 25.22 mm, respectively. An average of 1910 inner and 7501 outer hair cells were present while an average of 15 inner and 90 outer hair cells were absent. In all cochleae examined there were always some missing hair cells in varying numbers even though the animals had no known ototoxic exposure. Stria area, width and thickness increased from the cochlear apex toward the base. Consistency of changes in stria dimensions among animals was enhanced by expressing position in terms of percentage stria length rather than distance as such. Total stria volume was estimated at 0.15 microliter.  相似文献   

2.
Osseous inner ear structures and hearing in early marsupials and placentals   总被引:2,自引:0,他引:2  
Based on the internal anatomy of petrosal bones as shown in radiographs and scanning electron microscopy, the inner ear structures of Late Cretaceous marsupials and placentals (about 65 Myr ago) from the Bug Creek Anthills locality of Montana, USA, are described. The inner ears of Late Cretaceous marsupials and placentals are similar to each other in having the following tribosphenic therian synapomorphies: a fully coiled cochlea, primary and secondary osseous spiral laminae, the perilymphatic recess merging with the scala tympani of the cochlea, an aqueductus cochleae, a true fenestra cochleae, a radial pattern of the cochlear nerve and an elongate basilar membrane extending to the region between the fenestra vestibuli and fenestra cochleae. The inner ear structures of living therians differ from those of their Late Cretaceous relatives mainly in having a greater number of spiral turns of the cochlea and a longer basilar membrane. Functionally, a coiled cochlea not only permits the development of an elongate basilar membrane within a restricted space in the skull but also allows a centralized nerve system to innervate the elongate basilar membrane. Qualitative and quantitative analyses show that, with a typical therian inner ear, Late Cretaceous marsupials and placentals were probably capable of high-frequency hearing.  相似文献   

3.
The high sensitivity and wide bandwidth of mammalian hearing are thought to derive from an active process involving the somatic and hair-bundle motility of the thousands of outer hair cells uniquely found in mammalian cochleae. To better understand this, a biophysical three-dimensional cochlear fluid model was developed for gerbil, chinchilla, cat, and human, featuring an active “push-pull” cochlear amplifier mechanism based on the cytoarchitecture of the organ of Corti and using the time-averaged Lagrangian method. Cochlear responses are simulated and compared with in vivo physiological measurements for the basilar membrane (BM) velocity, VBM, frequency tuning of the BM vibration, and Q10 values representing the sharpness of the cochlear tuning curves. The VBM simulation results for gerbil and chinchilla are consistent with in vivo cochlea measurements. Simulated mechanical tuning curves based on maintaining a constant VBM value agree with neural-tuning threshold measurements better than those based on a constant displacement value, which implies that the inner hair cells are more sensitive to VBM than to BM displacement. The Q10 values of the VBM tuning curve agree well with those of cochlear neurons across species, and appear to be related in part to the width of the basilar membrane.  相似文献   

4.
Recent evidence shows that the frequency-specific non-linear properties of auditory nerve and inner hair cell responses to sound, including their sharp frequency tuning, are fully established in the vibration of the basilar membrane. In turn, the sensitivity, frequency selectivity and non-linear properties of basilar membrane responses probably result from an influence of the outer hair cells.  相似文献   

5.
We have made a comparative study of the membrane properties of tall and short hair cells isolated from a selected region of the chick's cochlea. Tall hair cells are analogous to inner cochlear hair cells of mammals, and like those, are presynaptic to the majority of afferent neurons in the cochlea. Short hair cells, like mammalian outer hair cells, are the postsynaptic targets of efferent neurons that inhibit the cochlea. Voltage-clamp recordings have revealed that short hair cells have an inactivating potassium (K) current, IA, whereas tall hair cells have little or none. Short hair cells are also sensitive to the cholinergic agonist carbachol, whereas tall hair cells are not. This pattern is in accord with the selective distribution of efferent cholinergic synapses in the cochlea. Although IA is completely inactivated at the resting potential of the short hair cells, cholinergic agonists can hyperpolarize these cells by as much as 30 mV. This hyperpolarization removes inactivation and allows IA to modulate subsequent voltage-dependent processes in short hair cells. It is concluded that IA could increase the high frequency response of the hair cell by decreasing membrane resistance and thus the membrane time constant after inhibition. This will be of particular importance to cochlear function if short hair cells produce voltage-dependent movements, as do mammalian outer hair cells.  相似文献   

6.
A detailed morphometric study of the basilar membrane was made from serial sections and graphic reconstructions of the cochlea of three little brown bats. Four distinct morphometric changes were observed within the basilar membrane. First, between 0-1.4 mm from the basal end of the cochlea, there is a rapid increase in width and cross-sectional area of the basilar membrane. Secondly, between 1.4-2.5 mm, there is little change in width of the basilar membrane (its cross-sectional area is at its greatest in this region). Thirdly, between 2.7-3.1 mm, there is a sudden decrease in cross-sectional area concomitant with an increase in the width of the basilar membrane. Finally, between 3.1 mm and the apex, there is a gradual decrease in cross-sectional area concomitant with an increase in the width of the basilar membrane. The magnitudes of the cross-sectional areas of the scalae media and vestibuli decrease from base to apex, but this is not true for the scala tympani. The cross-sectional area of the scala tympani appears to decrease from the base to 0.7 mm, then it increases up to 1.4 mm, and then it decreases to the apex. These morphometric changes in the basilar membrane of the little brown bat are compared to those in other echolocating and non-echolocating mammals. The significance of these changes is discussed in relation to the range of hearing in the little brown bat.  相似文献   

7.
Canonical transient receptor potential (TRPC) subunits assemble as tetramers to form ion channels with high calcium (Ca2+) permeability. Here, we investigated the possibility that TRPC3 ion channels are broadly expressed in the adult guinea pig and mouse cochleae. Using immunofluorescence, pronounced labeling occurred in the spiral ganglion (SG) neurons, inner hair cells (IHC), outer hair cells (OHC) and epithelial cells lining scala media. TRPC3 expression was homogeneous in the SG throughout the cochlea. In contrast, there was marked spatial variation in the immunolabeling in the cochlear hair cells with respect to location. This likely relates to the tonotopy of these cells. TRPC3 immunolabeling was more pronounced in the IHC than OHC. Both basal region IHC and OHC had higher TRPC3 expression levels than the corresponding cells from the apical region of the cochlea. These data suggest that TRPC3 ion channels contribute to Ca2+ homeostasis associated with the hair cells, with higher ion fluxes in more basal regions of the cochlea, and may also be a significant pathway for Ca2+ entry associated with auditory neurotransmission via the SG neurons. TRPC3 expression was also identified within the spiral limbus region, inner and outer sulcus, but without evidence for spatial variation in expression level. Expression in these gap junction-coupled epithelial cells lining scala media is indicative of a contribution of TRPC3 channels to cochlear electrochemical homeostasis.  相似文献   

8.
The cochlea performs frequency analysis and amplification of sounds. The graded stiffness of the basilar membrane along the cochlear length underlies the frequency-location relationship of the mammalian cochlea. The somatic motility of outer hair cell is central for cochlear amplification. Despite two to three orders of magnitude change in the basilar membrane stiffness, the force capacity of the outer hair cell’s somatic motility, is nearly invariant over the cochlear length. It is puzzling how actuators with a constant force capacity can operate under such a wide stiffness range. We hypothesize that the organ of Corti sets the mechanical conditions so that the outer hair cell’s somatic motility effectively interacts with the media of traveling waves—the basilar membrane and the tectorial membrane. To test this hypothesis, a computational model of the gerbil cochlea was developed that incorporates organ of Corti structural mechanics, cochlear fluid dynamics, and hair cell electro-physiology. The model simulations showed that the micro-mechanical responses of the organ of Corti are different along the cochlear length. For example, the top surface of the organ of Corti vibrated more than the bottom surface at the basal (high frequency) location, but the amplitude ratio was reversed at the apical (low frequency) location. Unlike the basilar membrane stiffness varying by a factor of 1700 along the cochlear length, the stiffness of the organ of Corti complex felt by the outer hair cell remained between 1.5 and 0.4 times the outer hair cell stiffness. The Y-shaped structure in the organ of Corti formed by outer hair cell, Deiters cell and its phalange was the primary determinant of the elastic reactance imposed on the outer hair cells. The stiffness and geometry of the Deiters cell and its phalange affected cochlear amplification differently depending on the location.  相似文献   

9.
Ade  Pye 《Journal of Zoology》1977,182(3):309-321
The structure of the cochlea has been studied in 26 species of feral rodents from the Sub-Orders Myomorpha and Caviomorpha. The specimens were all intravitally perfused to obtain good preservation of the internal ear. The following measurements were made on the cochleae: the height and width of the cochlea, the number of half-turns, the width and thickness of the basilar membrane, the height of the cells of Claudius and the size of the spiral ligament; other special features were also noted.  相似文献   

10.
A three-dimensional finite element model is developed for the simulation of the sound transmission through the human auditory periphery consisting of the external ear canal, middle ear and cochlea. The cochlea is modelled as a straight duct divided into two fluid-filled scalae by the basilar membrane (BM) having an orthotropic material property with dimensional variation along its length. In particular, an active feed-forward mechanism is added into the passive cochlear model to represent the activity of the outer hair cells (OHCs). An iterative procedure is proposed for calculating the nonlinear response resulting from the active cochlea in the frequency domain. Results on the middle-ear transfer function, BM steady-state frequency response and intracochlear pressure are derived. A good match of the model predictions with experimental data from the literatures demonstrates the validity of the ear model for simulating sound pressure gain of middle ear, frequency to place map, cochlear sensitivity and compressive output for large intensity input. The current model featuring an active cochlea is able to correlate directly the sound stimulus in the ear canal with the vibration of BM and provides a tool to explore the mechanisms by which sound pressure in the ear canal is converted to a stimulus for the OHCs.  相似文献   

11.
Macrophages are the primary effector cells of the innate immune system and are also activated in response to tissue injury. The avian cochlea contains a population of resident macrophages, but the precise function of those cells is not known. The present study characterized the behavior of cochlear macrophages after aminoglycoside ototoxicity and also examined the possible role of macrophages in sensory regeneration. We found that the undamaged chick cochlea contains a large resting population of macrophages that reside in the hyaline cell region, immediately outside the abneural (inferior) border of the sensory epithelium. Following ototoxic injury, macrophages appear to migrate out of the hyaline cell region and towards the basilar membrane, congregating immediately below the lesioned sensory epithelium. In order to determine whether recruited macrophages contribute to the regeneration of sensory receptors, we quantified supporting cell proliferation and hair cell recovery after the elimination of most resident macrophages via application of liposomally-encapsulated clodronate. Examination of macrophage-depleted specimens at two days following ototoxic injury revealed no deficits in hair cell clearance, when compared to normal controls. In addition, we found that elimination of macrophages did not affect either regenerative proliferation of supporting cells or the production of replacement hair cells. However, we did find that macrophage-depleted cochleae contained reduced numbers of proliferative mesothelial cells below the basilar membrane. Our data suggest that macrophages are not required for normal debris clearance and regeneration, but that they may play a role in the maintenance of the basilar membrane.  相似文献   

12.
Located on the sensory epithelium of the sickle-shaped cochlea of a 7- to 10-d-old chick are approximately 5,000 hair cells. When the apical surface of these cell is examined by scanning microscopy, we find that the length, number, width, and distribution of the stereocilia on each hair cell are predetermined. Thus, a hair cell located at the distal end of the cochlea has 50 stereocilia, the longest of which are 5.5 microns in length and 0.12 microns in width, while those at the proximal end number 300 and are maximally 1.5 microns in length and 0.2 micron in width. In fact, if we travel along the cochlea from its distal to proximal end, we see that the stereocilia on successive hair cells gradually increase in number and width, yet decrease in length. Also, if we look transversely across the cochlea where adjacent hair cells have the same length and number of stereocilia (they are the same distance from the distal end of the cochlea), we find that the stereocilia of successive hair cells become thinner and that the apical surface area of the hair cell proper, not including the stereocilia, decreases from a maximum of 80 microns2 to 15 microns2. Thus, if we are told the length of the longest stereocilium on a hair cell and the width of that stereocilium, we can pinpoint the position of that hair cell on the cochlea in two axes. Likewise, if we are told the number of stereocilia and the apical surface of a hair cell, we can pinpoint the location of that cell in two axes. The distribution of the stereocilia on the apical surface of the cell is also precisely determined. More specifically, the stereocilia are hexagonally packed and this hexagonal lattice is precisely positioned relative to the kinocilium. Because of the precision with which individual hair cells regulate the length, width, number, and distribution of their cell extensions, we have a magnificent object with which to ask questions about how actin filaments that are present within the cell are regulated. Equally interesting is that the gradient in stereociliary length, number, width, and distribution may play an important role in frequency discrimination in the cochlea. This conclusion is amplified by the information presented in the accompanying paper (Tilney, L.G., E.H. Egelman, D.J. DeRosier, and J.C. Saunders, 1983, J. Cell Biol., 96:822- 834) on the packing of actin filaments in this stereocilia.  相似文献   

13.
The high sensitivity and sharp frequency selectivity of acoustical signal transduction in the cochlea suggest that an active process pumps energy into the basilar membrane's oscillations. This function is generally attributed to outer hair cells, but its exact mechanism remains uncertain. Several classical models of amplification represent the load upon the basilar membrane as a single mass. Such models encounter a fundamental difficulty, however: the phase difference between basilar-membrane movement and the force generated by outer hair cells inhibits, rather than amplifies, the modeled basilar-membrane oscillations. For this reason, modelers must introduce artificially either negative impedance or an appropriate phase shift, neither of which is justified by physical analysis of the system. We consider here a physical model based upon the recent demonstration that the basilar membrane and reticular lamina can move independently, albeit with elastic coupling through outer hair cells. The mechanical model comprises two resonant masses, representing the basilar membrane and the reticular lamina, coupled through an intermediate spring, the outer hair cells. The spring's set point changes in response to displacement of the reticular lamina, which causes deflection of the hair bundles, variation of outer hair cell length and, hence, force production. Depending upon the frequency of the acoustical input, the basilar membrane and reticular lamina can oscillate either in phase or in counterphase. In the latter instance, the force produced by hair cells leads basilar-membrane oscillation, energy is pumped into basilar-membrane movement, and an external input can be strongly amplified. The model is also capable of producing spontaneous oscillation. In agreement with experimental observations, the model describes mechanical relaxation of the basilar membrane after electrical stimulation causes outer hair cells to change their length.  相似文献   

14.
Pigment-epithelium-derived factor (PEDF) is a 50-kDa glycoprotein with well-recognised expression in various mammalian organs showing diverse (e.g. anti-angiogenic and neuroprotective) activities. However, at present, no information is available regarding the potential function of this cytokine in the inner ear. As a first approach to investigating whether PEDF is involved in cochlear function, we have explored its protein expression in the rat cochlea by immunocytochemistry. Our results show that PEDF expression in the cochlea is most prominent in the basilar membrane below the organ of Corti, in the lateral wall (especially in the stria vascularis), in ganglion neurons, and in the endothelia of blood vessels. Our findings on its distribution in the cochlea suggest that PEDF in the basilar membrane prevents blood vessel formation that would disturb cochlear micromechanics and would interfere with the mechano-electrical transduction in the organ of Corti. In cochlear ganglion neurons, PEDF might serve a neuroprotective function possibly protecting these neurons from excessive glutamate released by the inner hair cells. Our data constitute the first report on the morphological protein distribution of this multifunctional molecule in the rat cochlea and suggest its role in important functions of the internal ear. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorised users.  相似文献   

15.
Immunoreactions to a monoclonal antibody raised against parvalbumin, a calcium-binding protein, have been detected in the inner hair cells of the organ of Corti and in the spiral ganglion neurons connected to them (type I neurons). Both cell types probably use an excitatory amino acid as a neurotransmitter (glutamate and/or aspartate). No immunoreactivity was found within the second sensory cell type (outer hair cells) nor in the olivocochlear (efferent) fibers or endings in the cochlea. In the central nervous system, parvalbumin may be involved in calcium-dependent mechanisms leading to neurotransmitter release. It could thus be hypothesized that parvalbumin also have similar implications at the level of the inner hair cell and type I neuron synapses. Additional functions could also be hypothesized for this protein in the cochlea. Within the inner hair cells, parvalbumin may be involved in the ionic regulation following potassium entry during the transduction process. Within type I neurons, by buffering sudden increases in the intracellular calcium concentration, it may allow an adaptation of the firing rate to variations in the intensity of sound stimuli.  相似文献   

16.
The responses to sound of mammalian cochlear neurons exhibit many nonlinearities, some of which (such as two-tone rate suppression and intermodulation distortion) are highly frequency specific, being strongly tuned to the characteristic frequency (CF) of the neuron. With the goal of establishing the cochlear origin of these auditory-nerve nonlinearities, mechanical responses to clicks and to pairs of tones were studied in relatively healthy chinchilla cochleae at a basal site of the basilar membrane with CF of 8-10 kHz. Responses were also obtained in cochleae in which hair cell receptor potentials were reduced by systemic furosemide injection. Vibrations were recorded using either the M?ssbauer technique or laser Doppler-shift velocimetry. Responses to tone pairs contained intermodulation distortion products whose magnitudes as a function of stimulus frequency and intensity were comparable to those of distortion products in cochlear afferent responses. Responses to CF tones could be selectively suppressed by tones with frequency either higher or lower than CF; in most respects, mechanical two-tone suppression resembled rate suppression in cochlear afferents. Responses to clicks displayed a CF-specific compressive nonlinearity, similar to that present in responses to single tones, which could be profoundly and selectively reduced by furosemide. The present findings firmly support the hypothesis that all CF-specific nonlinearities present in the auditory nerve originate in analogous phenomena of basilar membrane vibration. However, because of their lability, it is almost certain that the mechanical nonlinearities themselves originate in outer hair cells.  相似文献   

17.
WE have already outlined the principles of a theory of cochlear organization1, 2 whereby acoustic signal components in the low and mid frequency range—-that is to say, frequencies for which good or moderate phase locking of unit response is possible—are detected by the cochlea using an approximate cross-correlation mechanism which operates on the time varying signal displayed along the basilar membrane, the latter acting as an acoustic exponential delay line. The running correlations are performed using fixed patterns of control fibres addressed to the outer hair cells, the pattern of addressing for each control fibre group corresponding to an instantaneous wave pattern for a specific frequency defined by the location of the fibre system along the length of the membrane. The fibres of each control system synapse with the afferent dendrites associated with a definite inner hair cell and act as a frequency sensitive gate, the inner hair cell of the assembly providing generator current related to signal amplitude.  相似文献   

18.
Auditory discrimination is limited by the performance of the cochlea whose acute sensitivity and frequency tuning are underpinned by electromechanical feedback from the outer hair cells. Two processes may underlie this feedback: voltage-driven contractility of the outer hair cell body and active motion of the hair bundle. Either process must exert its mechanical effect via deformation of the organ of Corti, a complex assembly of sensory and supporting cells riding on the basilar membrane. Using finite element analysis, we present a three-dimensional model to illustrate deformation of the organ of Corti by the two active processes. The model used available measurements of the properties of structural components in low-frequency and high-frequency regions of the rodent cochlea. The simulations agreed well with measurements of the cochlear partition stiffness, the longitudinal space constant for point deflection, and the deformation of the organ of Corti for current injection, as well as displaying a 20-fold increase in passive resonant frequency from apex to base. The radial stiffness of the tectorial membrane attachment was found to be a crucial element in the mechanical feedback. Despite a substantial difference in the maximum force generated by hair bundle and somatic motility, the two mechanisms induced comparable amplitudes of motion of the basilar membrane but differed in the polarity of their feedback on hair bundle position. Compared to the hair bundle motor, the somatic motor was more effective in deforming the organ of Corti than in displacing the basilar membrane.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号