首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Nuclear factor (NF)-kappaB regulates a central common signaling for immunity and cell survival. Artemisolide (ATM) was previously isolated as a NF-kappaB inhibitor from a plant of Artemisia asiatica. However, molecular basis of ATM on NF-kappaB activation remains to be defined. Here, we demonstrate that ATM is a typical inhibitor of IkappaB kinase beta (IKKbeta), resulting in inhibition of lipopolysaccharide (LPS)-induced NF-kappaB activation in RAW 264.7 macrophages. ATM inhibited the kinase activity of highly purified IKKbeta and also LPS-induced IKK activity in the cells. Moreover, the effect of ATM on IKKbeta activity was completely abolished by substitution of Cys-179 residue of IKKbeta to Ala residue, indicating direct targeting site of ATM. ATM could inhibit IkappaBalpha phosphorylation in LPS-activated RAW 264.7 cells and subsequently prevent NF-kappaB activation. Further, we demonstrate that ATM down-regulates NF-kappaB-dependent TNF-alpha expression. Taken together, this study provides a pharmacological potential of ATM in NF-kappaB-dependent inflammatory disorders.  相似文献   

3.
4.
5.
6.
7.
Park D  Pandey SK  Maksimova E  Kole S  Bernier M 《Biochemistry》2000,39(41):12513-12521
CHO cells expressing the human insulin receptors (IR) were used to evaluate the effect of the potent farnesyltransferase inhibitor, manumycin, on insulin antiapoptotic function. Cell treatment with manumycin blocked insulin's ability to suppress pro-apoptotic caspase-3 activity which led to time-dependent proteolytic cleavage of two nuclear target proteins. The Raf-1/MEK/ERK cascade and the serine/threonine protein kinase Akt are two survival pathways that may be activated in response to insulin. We tested the hypothesis that inhibition of farnesylated Ras was causally related to manumycin-induced apoptosis and showed that the response to manumycin was found to be independent of K-Ras function because membrane association and activation of endogenous K-Ras proteins in terms of GTP loading and ERK activation were unabated following treatment with manumycin. Moreover, blocking p21Ras/Raf-1/MEK/ERK cascade by the expression of a transdominant inhibitory mSOS1 mutant in CHO-IR cells kept cells sensitive to the antiapoptotic action of insulin. Insulin-dependent activation of Akt was blocked by 4 h treatment with manumycin (P < 0.01), a kinetic too rapid to be explained by Ras inhibition. This study suggests that the depletion of short-lived farnesylated proteins by manumycin suppresses the antiapoptotic action of insulin at least in part by disrupting Akt activation but not that of the K-Ras/Raf-1/ERK-dependent cascade.  相似文献   

8.
9.
Kamata H  Manabe T  Oka Si  Kamata K  Hirata H 《FEBS letters》2002,519(1-3):231-237
The cellular redox state regulates nuclear factor-kappaB (NF-kappaB) signaling systems. We investigated the effects of H2O2 on inhibitor of NF-kappaB (IkappaB) kinases (IKKalpha and IKKbeta), which phosphorylate IkappaB leading to its degradation and NF-kappaB activation. Tumor necrosis factor (TNF) stimulation increased IKK activity within 10 min, and then IKK activity decreased gradually within 30 min in HeLa cells. Stimulation of the cells with H2O2 induced a slight activation of IKK within 30 min. Furthermore, co-stimulation with TNF suppressed the downregulation of IKK and sustained the activation for more than 30 min. H2O2 also markedly activated IKK in cells that were pretreated with TNF or phorbol myristate acetate. Electrophoretic mobility shift assay revealed that H2O2 enhanced TNF-induced NF-kappaB activation. Studies using IKK mutants and an antibody against phosphorylated IKK proteins revealed that phosphorylation of serine residues, Ser180 of IKKalpha and Ser181 of IKKbeta, in the activation loops was essential for the H2O2-mediated activation of IKK. H2O2-induced activation of IKKalpha and IKKbeta was reduced by IKKbeta and IKKalpha kinase-negative mutants, respectively, indicating that IKKalpha and IKKbeta were stimulated by H2O2 in an interdependent manner. These results suggest that oxidative radical stress has stimulatory effects on NF-kappaB through the activation of IKK, which is mediated by the phosphorylation of serine residues in the activation loops.  相似文献   

10.
11.
It has been shown that ultrasound (US) stimulation accelerates fracture healing in the animal models and non‐operatively clinical uses. Nitric oxide (NO) is a crucial early mediator in mechanically induced bone formation. Here we found that US‐mediated inducible nitric oxide synthase (iNOS) expression was attenuated by Ras inhibitor (manumycin A), Raf‐1 inhibitor (GW5074), MEK inhibitor (PD98059), NF‐κB inhibitor (PDTC), and IκB protease inhibitor (TPCK). US‐induced Ras activation was inhibited by manumycin A. Raf‐1 phosphorylation at Ser338 by US was inhibited by manumycin A and GW5074. US‐induced MEK and ERK activation was inhibited by manumycin A, GW5074, and PD98059. Stimulation of preosteoblasts with US activated IκB kinase α/β (IKK α/β), IκBαphosphorylation, p65 phosphorylation at Ser276, p65, and p50 translocation from the cytosol to the nucleus, and κB‐luciferase activity. US‐mediated an increase of IKK α/β, IκBα, and p65 phosphorylation, κB‐luciferase activity and p65 and p50 binding to the NF‐κB element was inhibited by manumycin A, GW5074, and PD98059. Our results suggest that US increased iNOS expression in preosteoblasts via the Ras/Raf‐1/MEK/ERK/IKKαβ and NF‐κB signaling pathways. J. Cell. Physiol. 220: 196–203, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
13.
This study presents a molecular inhibitory mechanism by Fas-associated factor 1 (FAF1) on IkappaB kinase (IKK) activation, where divergent NF-kappaB-activating stimuli converge. FAF1 interacts with IKKbeta in response to proinflammatory stimuli (such as tumor necrosis factor-alpha, interleukin-1beta, and lipopolysaccharide) and suppresses IKK activation. Interaction of the leucine-zipper domain of IKKbeta with FAF1 affected the IKK heterocomplex (IKKalpha/beta) and homocomplex (IKKalpha/alpha, IKKbeta/beta) formations and attenuated IKKgamma recruitment to IKKbeta. Overexpression of FAF1 reduced the level of IKKbeta activity, whereas FAF1 depletion increased the activity. These results indicate that FAF1 inhibits IKK activation and its downstream signaling by interrupting the IKK complex assembly through physical interaction with IKKbeta. Taken together, FAF1 robustly suppresses NF-kappaB activation through the inhibition of IKK activation in combination with previously reported cytoplasmic retention of NF-kappaB p65 (Park, M. Y., Jang, H. D., Lee, S. Y., Lee, K. J., and Kim, E. (2004) J. Biol. Chem. 279, 2544-2549). Such redundant suppression would prevent inadvertent activation of the NF-kappaB pathway.  相似文献   

14.
15.
The Nuclear factor (NF)-kappaB signalling pathway plays a critical role in the regulation and coordination of a wide range of cellular events such as cell growth, apoptosis and cell differentiation. Activation of the IKK (inhibitor of NF-kappaB kinase) complex is a crucial step and a point of convergence of all known NF-kappaB signalling pathways. To analyse bovine IKKalpha (IKK1), IKKbeta (IKK2) and IKKgamma (or NF-kappaB Essential MOdulator, NEMO) and their substrate IkappaBalpha (Inhibitor of NF-kappaB), the corresponding cDNAs of these molecules were isolated, sequenced and characterized. A comparison of the amino acid sequences with those of their orthologues in other species showed a very high degree of identity, suggesting that the IKK complex and its substrate IkappaBalpha are evolutionarily highly conserved components of the NF-kappaB pathway. Bovine IKKalpha and IKKbeta are related protein kinases showing 50% identity which is especially prominent in the kinase and leucine zipper domains. Co-immunoprecipitation assays and GST-pull-down experiments were carried out to determine the composition of bovine IKK complexes compared to that in human Jurkat T cells. Using these approaches, the presence of bovine IKK complexes harbouring IKKalpha, IKKbeta, NEMO and the interaction of IKK with its substrate IkappaBalpha could be demonstrated. Parallel experiments using human Jurkat T cells confirmed the high degree of conservation also at the level of protein-protein interactions. Finally, a yeast two-hybrid analysis showed that bovine NEMO molecules, in addition to the binding to IKKalpha and IKKbeta, also strongly interact with each other.  相似文献   

16.
Sun W  Yu Y  Dotti G  Shen T  Tan X  Savoldo B  Pass AK  Chu M  Zhang D  Lu X  Fu S  Lin X  Yang J 《Cellular signalling》2009,21(1):95-102
IKKbeta serves as a central intermediate signaling molecule in the activation of the NF-kappaB pathway. However, the precise mechanism for the termination of IKKbeta activity is still not fully understood. Using a functional genomic approach, we have identified two protein serine/threonine phosphatases, PPM1A and PPM1B, as IKKbeta phosphatases. Overexpression of PPM1A or PPM1B results in dephosphorylation of IKKbeta at Ser177 and Ser181 and termination of IKKbeta-induced NF-kappaB activation. PPM1A and PPM1B associate with the phosphorylated form of IKKbeta, and the interaction between PPM1A/PPM1B and IKKbeta is induced by TNFalpha in a transient fashion in the cells. Furthermore, knockdown of PPM1A and PPM1B expression enhances TNFalpha-induced IKKbeta phosphorylation, NF-kappaB nuclear translocation and NF-kappaB-dependent gene expression. These data suggest that PPM1A and PPM1B play an important role in the termination of TNFalpha-mediated NF-kappaB activation through dephosphorylating and inactivating IKKbeta.  相似文献   

17.
18.
IKKgamma/NEMO is a protein that is critical for the assembly of the high molecular weight IkappaB kinase (IKK) complex. To investigate the role of IKKgamma/NEMO in the assembly of the IKK complex, we conducted a series of experiments in which the chromatographic distribution of extracts prepared from cells transiently expressing epitope-tagged IKKgamma/NEMO and the IKKs were examined. When expressed alone following transfection, IKKalpha and IKKbeta were present in low molecular weight complexes migrating between 200 and 400 kDa. However, when coexpressed with IKKgamma/NEMO, both IKKalpha and IKKbeta migrated at approximately 600 kDa which was similar to the previously described IKK complex that is activated by cytokines such as tumor necrosis factor-alpha. When either IKKalpha or IKKbeta was expressed alone with IKKgamma/NEMO, IKKbeta but not IKKalpha migrated in the higher molecular weight IKK complex. Constitutively active or inactive forms of IKKbeta were both incorporated into the high molecular weight IKK complex in the presence of IKKgamma/NEMO. The amino-terminal region of IKKgamma/NEMO, which interacts directly with IKKbeta, was required for formation of the high molecular weight IKK complex and for stimulation of IKKbeta kinase activity. These results suggest that recruitment of the IKKs into a high molecular complex by IKKgamma/NEMO is a crucial step involved in IKK function.  相似文献   

19.
The signaling pathway involved in tumor necrosis factor-alpha (TNF-alpha)-induced intercellular adhesion molecule-1 (ICAM-1) expression was further studied in human A549 epithelial cells. TNF-alpha- or 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ICAM-1 promoter activity was inhibited by a protein kinase C (PKC) inhibitor (staurosporine), tyrosine kinase inhibitors (genistein and herbimycin A), or an Src-specific tyrosine kinase inhibitor (PP2). TNF-alpha- or TPA-induced IkappaBalpha kinase (IKK) activation was also blocked by these inhibitors, which slightly reversed TNF-alpha-induced but completely reversed TPA-induced IkappaBalpha degradation. c-Src and Lyn, two members of the Src kinase family, were abundantly expressed in A549 cells, and their activation by TNF-alpha or TPA was inhibited by the same inhibitors. Furthermore, the dominant-negative c-Src (KM) mutant inhibited induction of ICAM-1 promoter activity by TNF-alpha or TPA. Overexpression of the constitutively active PKC or wild-type c-Src plasmids induced ICAM-1 promoter activity, this effect being inhibited by the dominant-negative c-Src (KM) or IKKbeta (KM) mutant but not by the nuclear factor-kappaB-inducing kinase (NIK) (KA) mutant. The c-Src (KM) mutant failed to block induction of ICAM-1 promoter activity caused by overexpression of wild-type NIK. In co-immunoprecipitation and immunoblot experiments, IKK was found to be associated with c-Src and to be phosphorylated on tyrosine residues after TNF-alpha or TPA treatment. Two tyrosine residues, Tyr188 and Tyr199, near the activation loop of IKKbeta, were identified as being important for NF-kappaB activation. Substitution of these residues with phenylalanines abolished ICAM-1 promoter activity and c-Src-dependent phosphorylation of IKKbeta induced by TNF-alpha or TPA. These data suggest that, in addition to activating NIK, TNF-alpha also activates PKC-dependent c-Src. These two pathways converge at IKKbeta and go on to activate NF-kappaB, via serine phosphorylation and degradation of IkappaB-alpha, and, finally, to initiate ICAM-1 expression.  相似文献   

20.
In this study, we investigated the signaling pathway involved in cyclooxygenase-2 (COX-2) expression and prostaglandin E2 (PGE2) release by phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, in human pulmonary epithelial cells (A549). PMA-induced COX-2 expression was attenuated by PKC inhibitors (Go 6976 and Ro 31-8220), a Ras inhibitor (manumycin A), a Raf-1 inhibitor (GW 5074), a MEK inhibitor (PD 098059), and an NF-kappaB inhibitor (PDTC), but not by a tyrosine kinase inhibitor (genistein) or a p38 MAPK inhibitor (SB 203580). PMA also caused the activation of Ras, Raf-1, and ERK1/2. PMA-induced activation of Ras and Raf-1 was inhibited by Ro 31-8220 and manumycin A. PMA-mediated activation of ERK1/2 was inhibited by Ro 31-8220, manumycin A, GW 5074, and PD 098059. Stimulation of cells with PMA caused IkappaBalpha phosphorylation, IkappaBalpha degradation, and the formation of a NF-kappaB-specific DNA-protein complex. The PMA-mediated increase in kappaB-luciferase activity was inhibited by Ro 31-8220, manumycin A, GW5074, PD 098059, and PDTC. Taken together, these results indicate that PMA might activate PKC to elicit activation of the Ras/Raf-1/ERK1/2 pathway, which in turn initiates NF-kappaB activation, and finally induces COX-2 expression and PGE2 release in A549 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号