首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leung Lai T  Shih MC  Wong SP 《Biometrics》2006,62(1):159-167
To circumvent the computational complexity of likelihood inference in generalized mixed models that assume linear or more general additive regression models of covariate effects, Laplace's approximations to multiple integrals in the likelihood have been commonly used without addressing the issue of adequacy of the approximations for individuals with sparse observations. In this article, we propose a hybrid estimation scheme to address this issue. The likelihoods for subjects with sparse observations use Monte Carlo approximations involving importance sampling, while Laplace's approximation is used for the likelihoods of other subjects that satisfy a certain diagnostic check on the adequacy of Laplace's approximation. Because of its computational tractability, the proposed approach allows flexible modeling of covariate effects by using regression splines and model selection procedures for knot and variable selection. Its computational and statistical advantages are illustrated by simulation and by application to longitudinal data from a fecundity study of fruit flies, for which overdispersion is modeled via a double exponential family.  相似文献   

2.
While ordinary differential equations (ODEs) form the conceptual framework for modelling many cellular processes, specific situations demand stochastic models to capture the influence of noise. The most common formulation of stochastic models for biochemical networks is the chemical master equation (CME). While stochastic simulations are a practical way to realise the CME, analytical approximations offer more insight into the influence of noise. Towards that end, the two-moment approximation (2MA) is a promising addition to the established analytical approaches including the chemical Langevin equation (CLE) and the related linear noise approximation (LNA). The 2MA approach directly tracks the mean and (co)variance which are coupled in general. This coupling is not obvious in CME and CLE and ignored by LNA and conventional ODE models. We extend previous derivations of 2MA by allowing (a) non-elementary reactions and (b) relative concentrations. Often, several elementary reactions are approximated by a single step. Furthermore, practical situations often require the use of relative concentrations. We investigate the applicability of the 2MA approach to the well-established fission yeast cell cycle model. Our analytical model reproduces the clustering of cycle times observed in experiments. This is explained through multiple resettings of M-phase promoting factor (MPF), caused by the coupling between mean and (co)variance, near the G2/M transition.  相似文献   

3.
We recently introduced likelihood-based methods for fitting stochastic integrate-and-fire models to spike train data. The key component of this method involves the likelihood that the model will emit a spike at a given time t. Computing this likelihood is equivalent to computing a Markov first passage time density (the probability that the model voltage crosses threshold for the first time at time t). Here we detail an improved method for computing this likelihood, based on solving a certain integral equation. This integral equation method has several advantages over the techniques discussed in our previous work: in particular, the new method has fewer free parameters and is easily differentiable (for gradient computations). The new method is also easily adaptable for the case in which the model conductance, not just the input current, is time-varying. Finally, we describe how to incorporate large deviations approximations to very small likelihoods. Action Editor: Barry J. Richmond  相似文献   

4.
Stochastic noise at the cellular level has been shown to play a fundamental role in circadian oscillations, influencing how groups of cells entrain to external cues and likely serving as the mechanism by which cell-autonomous rhythms are generated. Despite this importance, few studies have investigated how clock perturbations affect stochastic noise—even as increasing numbers of high-throughput screens categorize how gene knockdowns or small molecules can change clock period and amplitude. This absence is likely due to the difficulty associated with measuring cell-autonomous stochastic noise directly, which currently requires the careful collection and processing of single-cell data. In this study, we show that the damping rate of population-level bioluminescence recordings can serve as an accurate measure of overall stochastic noise, and one that can be applied to future and existing high-throughput circadian screens. Using cell-autonomous fibroblast data, we first show directly that higher noise at the single-cell results in faster damping at the population level. Next, we show that the damping rate of cultured cells can be changed in a dose-dependent fashion by small molecule modulators, and confirm that such a change can be explained by single-cell noise using a mathematical model. We further demonstrate the insights that can be gained by applying our method to a genome-wide siRNA screen, revealing that stochastic noise is altered independently from period, amplitude, and phase. Finally, we hypothesize that the unperturbed clock is highly optimized for robust rhythms, as very few gene perturbations are capable of simultaneously increasing amplitude and lowering stochastic noise. Ultimately, this study demonstrates the importance of considering the effect of circadian perturbations on stochastic noise, particularly with regard to the development of small-molecule circadian therapeutics.  相似文献   

5.
6.
On top of the many external perturbations, cellular oscillators also face intrinsic perturbations due the randomness of chemical kinetics. Biomolecular oscillators, distinct in their parameter sets or distinct in their architecture, show different resilience with respect to such intrinsic perturbations. Assessing this resilience can be done by ensemble stochastic simulations. These are computationally costly and do not permit further insights into the mechanistic cause of the observed resilience. For reaction systems operating at a steady state, the linear noise approximation (LNA) can be used to determine the effect of molecular noise. Here we show that methods based on LNA fail for oscillatory systems and we propose an alternative ansatz. It yields an asymptotic expression for the phase diffusion coefficient of stochastic oscillators. Moreover, it allows us to single out the noise contribution of every reaction in an oscillatory system. We test the approach on the one-loop model of the Drosophila circadian clock. Our results are consistent with those obtained through stochastic simulations with a gain in computational efficiency of about three orders of magnitude.  相似文献   

7.
Biological invasions reshape environments and affect the ecological and economic welfare of states and communities. Such invasions advance on multiple spatial scales, complicating their control. When modeling stochastic dispersal processes, intractable likelihoods and autocorrelated data complicate parameter estimation. As with other approaches, the recent synthetic likelihood framework for stochastic models uses summary statistics to reduce this complexity; however, it additionally provides usable likelihoods, facilitating the use of existing likelihood‐based machinery. Here, we extend this framework to parameterize multi‐scale spatio‐temporal dispersal models and compare existing and newly developed spatial summary statistics to characterize dispersal patterns. We provide general methods to evaluate potential summary statistics and present a fitting procedure that accurately estimates dispersal parameters on simulated data. Finally, we apply our methods to quantify the short and long range dispersal of Chagas disease vectors in urban Arequipa, Peru, and assess the feasibility of a purely reactive strategy to contain the invasion.  相似文献   

8.
Unequally spaced longitudinal data with AR(1) serial correlation   总被引:3,自引:0,他引:3  
This paper discusses longitudinal data analysis when each subject is observed at different unequally spaced time points. Observations within subjects are assumed to be either uncorrelated or to have a continuous-time first-order autoregressive structure, possibly with observation error. The random coefficients are assumed to have an arbitrary between-subject covariance matrix. Covariates can be included in the fixed effects part of the model. Exact maximum likelihood estimates of the unknown parameters are computed using the Kalman filter to evaluate the likelihood, which is then maximized with a nonlinear optimization program. An example is presented where a large number of subjects are each observed at a small number of observation times. Hypothesis tests for selecting the best model are carried out using Wald's test on contrasts or likelihood ratio tests based on fitting full and restricted models.  相似文献   

9.
Understanding the inherited nature of how biological processes dynamically change over time and exhibit intra- and inter-individual variability, due to the different responses to environmental stimuli and when interacting with other processes, has been a major focus of systems biology. The rise of single-cell fluorescent microscopy has enabled the study of those phenomena. The analysis of single-cell data with mechanistic models offers an invaluable tool to describe dynamic cellular processes and to rationalise cell-to-cell variability within the population. However, extracting mechanistic information from single-cell data has proven difficult. This requires statistical methods to infer unknown model parameters from dynamic, multi-individual data accounting for heterogeneity caused by both intrinsic (e.g. variations in chemical reactions) and extrinsic (e.g. variability in protein concentrations) noise. Although several inference methods exist, the availability of efficient, general and accessible methods that facilitate modelling of single-cell data, remains lacking. Here we present a scalable and flexible framework for Bayesian inference in state-space mixed-effects single-cell models with stochastic dynamic. Our approach infers model parameters when intrinsic noise is modelled by either exact or approximate stochastic simulators, and when extrinsic noise is modelled by either time-varying, or time-constant parameters that vary between cells. We demonstrate the relevance of our approach by studying how cell-to-cell variation in carbon source utilisation affects heterogeneity in the budding yeast Saccharomyces cerevisiae SNF1 nutrient sensing pathway. We identify hexokinase activity as a source of extrinsic noise and deduce that sugar availability dictates cell-to-cell variability.  相似文献   

10.
This paper presents a new approximation to the likelihood for a pedigree with loops, based on cutting all loops and extending the pedigree at the cuts. An opimum loop-cutting strategy and an iterative extension technique are presented. The likelihood for a pedigree with loops is then approximated by the conditional likelihood for the entire cut-extended pedigree given the extended part. The approximate likelihoods are compared with the exact likelihoods obtained using the program MENDEL for several small pedigrees with loops. The approximation is efficient for large pedigrees with complex loops in terms of computing speed and memory requirements.  相似文献   

11.
12.
The fidelity of the trajectories obtained from video-based particle tracking determines the success of a variety of biophysical techniques, including in situ single cell particle tracking and in vitro motility assays. However, the image acquisition process is complicated by system noise, which causes positioning error in the trajectories derived from image analysis. Here, we explore the possibility of reducing the positioning error by the application of a Kalman filter, a powerful algorithm to estimate the state of a linear dynamic system from noisy measurements. We show that the optimal Kalman filter parameters can be determined in an appropriate experimental setting, and that the Kalman filter can markedly reduce the positioning error while retaining the intrinsic fluctuations of the dynamic process. We believe the Kalman filter can potentially serve as a powerful tool to infer a trajectory of ultra-high fidelity from noisy images, revealing the details of dynamic cellular processes.  相似文献   

13.
Wang J 《Genetics》2012,191(1):183-194
Quite a few methods have been proposed to infer sibship and parentage among individuals from their multilocus marker genotypes. They are all based on Mendelian laws either qualitatively (exclusion methods) or quantitatively (likelihood methods), have different optimization criteria, and use different algorithms in searching for the optimal solution. The full-likelihood method assigns sibship and parentage relationships among all sampled individuals jointly. It is by far the most accurate method, but is computationally prohibitive for large data sets with many individuals and many loci. In this article I propose a new likelihood-based method that is computationally efficient enough to handle large data sets. The method uses the sum of the log likelihoods of pairwise relationships in a configuration as the score to measure its plausibility, where log likelihoods of pairwise relationships are calculated only once and stored for repeated use. By analyzing several empirical and many simulated data sets, I show that the new method is more accurate than pairwise likelihood and exclusion-based methods, but is slightly less accurate than the full-likelihood method. However, the new method is computationally much more efficient than the full-likelihood method, and for the cases of both sexes polygamous and markers with genotyping errors, it can be several orders faster. The new method can handle a large sample with thousands of individuals and the number of markers limited only by the computer memory.  相似文献   

14.
In this paper we have extended the model of HIV pathogenesis under treatment by anti-viral drugs given by Perelson et al. [A.S. Perelson et al., Science 271 (1999) 1582] to a stochastic model. By using this stochastic model as the stochastic system model, we have developed a state space model for the HIV pathogenesis under treatment by anti-viral drugs. In this state space model, the observation model is a statistical model based on the observed numbers of RNA virus copies over different times. For this model we have developed procedures for estimating and predicting the numbers of infectious free HIV and non-infectious free HIV as well as the numbers of different types of T cells through extended Kalman filter method. As an illustration, we have applied the method of this paper to the data of patient Nos. 104, 105 and 107 given by Perelson et al. [A.S. Perelson et al., Science 271 (1999) 1582] under treatment by Ritonavir. For these individuals, it is shown that within two weeks since treatment, most of the free HIV are non-infectious, indicating the usefulness of the treatment. Furthermore, the Kalman filter method revealed a much stronger effect of the treatment within the first 10 to 20 h than that predicted by the deterministic model.  相似文献   

15.
16.
On the application of linear relative risk regression models   总被引:1,自引:0,他引:1  
R L Prentice  M W Mason 《Biometrics》1986,42(1):109-120
Motivations for considering linear relative risk models are described. These include covariate data reduction and the testing of additivity of covariate effects on the relative risk. A simulation study was conducted in order to study properties of asymptotic distributional approximations and iterative convergence properties. Parameter transformations and likelihood ratio approximations are considered for confidence interval calculation.  相似文献   

17.
We describe a new multivariate gamma distribution and discuss its implication in a Poisson-correlated gamma-frailty model. This model is introduced to account for between-subjects correlation occurring in longitudinal count data. For likelihood-based inference involving distributions in which high-dimensional dependencies are present, it may be useful to approximate likelihoods based on the univariate or bivariate marginal distributions. The merit of composite likelihood is to reduce the computational complexity of the full likelihood. A 2-stage composite-likelihood procedure is developed for estimating the model parameters. The suggested method is applied to a meta-analysis study for survival curves.  相似文献   

18.
AgentCell: a digital single-cell assay for bacterial chemotaxis   总被引:5,自引:0,他引:5  
MOTIVATION: In recent years, single-cell biology has focused on the relationship between the stochastic nature of molecular interactions and variability of cellular behavior. To describe this relationship, it is necessary to develop new computational approaches at the single-cell level. RESULTS: We have developed AgentCell, a model using agent-based technology to study the relationship between stochastic intracellular processes and behavior of individual cells. As a test-bed for our approach we use bacterial chemotaxis, one of the best characterized biological systems. In this model, each bacterium is an agent equipped with its own chemotaxis network, motors and flagella. Swimming cells are free to move in a 3D environment. Digital chemotaxis assays reproduce experimental data obtained from both single cells and bacterial populations.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号