首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The gut microbiota plays an important yet incompletely understood role in the induction and propagation of ulcerative colitis (UC). Organism-level efforts to identify UC-associated microbes have revealed the importance of community structure, but less is known about the molecular effectors of disease. We performed 16S rRNA gene sequencing in parallel with label-free data-dependent LC-MS/MS proteomics to characterize the stool microbiomes of healthy (n = 8) and UC (n = 10) patients. Comparisons of taxonomic composition between techniques revealed major differences in community structure partially attributable to the additional detection of host, fungal, viral, and food peptides by metaproteomics. Differential expression analysis of metaproteomic data identified 176 significantly enriched protein groups between healthy and UC patients. Gene ontology analysis revealed several enriched functions with serine-type endopeptidase activity overrepresented in UC patients. Using a biotinylated fluorophosphonate probe and streptavidin-based enrichment, we show that serine endopeptidases are active in patient fecal samples and that additional putative serine hydrolases are detectable by this approach compared with unenriched profiling. Finally, as metaproteomic databases expand, they are expected to asymptotically approach completeness. Using ComPIL and de novo peptide sequencing, we estimate the size of the probable peptide space unidentified (“dark peptidome”) by our large database approach to establish a rough benchmark for database sufficiency. Despite high variability inherent in patient samples, our analysis yielded a catalog of differentially enriched proteins between healthy and UC fecal proteomes. This catalog provides a clinically relevant jumping-off point for further molecular-level studies aimed at identifying the microbial underpinnings of UC.  相似文献   

2.
The animal gastrointestinal tract houses a large microbial community, the gut microbiota, that confers many benefits to its host, such as protection from pathogens and provision of essential metabolites. Metagenomic approaches have defined the chicken fecal microbiota in other studies, but here, we wished to assess the correlation between the metagenome and the bacterial proteome in order to better understand the healthy chicken gut microbiota. Here, we performed high-throughput sequencing of 16S rRNA gene amplicons and metaproteomics analysis of fecal samples to determine microbial gut composition and protein expression. 16 rRNA gene sequencing analysis identified Clostridiales, Bacteroidaceae, and Lactobacillaceae species as the most abundant species in the gut. For metaproteomics analysis, peptides were generated by using the Fasp method and subsequently fractionated by strong anion exchanges. Metaproteomics analysis identified 3,673 proteins. Among the most frequently identified proteins, 380 proteins belonged to Lactobacillus spp., 155 belonged to Clostridium spp., and 66 belonged to Streptococcus spp. The most frequently identified proteins were heat shock chaperones, including 349 GroEL proteins, from many bacterial species, whereas the most abundant enzymes were pyruvate kinases, as judged by the number of peptides identified per protein (spectral counting). Gene ontology and KEGG pathway analyses revealed the functions and locations of the identified proteins. The findings of both metaproteomics and 16S rRNA sequencing analyses are discussed.  相似文献   

3.
A well-known mechanism through which new protein-coding genes originate is by modification of pre-existing genes, e.g. by duplication or horizontal transfer. In contrast, many viruses generate protein-coding genes de novo, via the overprinting of a new reading frame onto an existing (“ancestral”) frame. This mechanism is thought to play an important role in viral pathogenicity, but has been poorly explored, perhaps because identifying the de novo frames is very challenging. Therefore, a new approach to detect them was needed. We assembled a reference set of overlapping genes for which we could reliably determine the ancestral frames, and found that their codon usage was significantly closer to that of the rest of the viral genome than the codon usage of de novo frames. Based on this observation, we designed a method that allowed the identification of de novo frames based on their codon usage with a very good specificity, but intermediate sensitivity. Using our method, we predicted that the Rex gene of deltaretroviruses has originated de novo by overprinting the Tax gene. Intriguingly, several genes in the same genomic region have also originated de novo and encode proteins that regulate the functions of Tax. Such “gene nurseries” may be common in viral genomes. Finally, our results confirm that the genomic GC content is not the only determinant of codon usage in viruses and suggest that a constraint linked to translation must influence codon usage.  相似文献   

4.
While some human-specific protein-coding genes have been proposed to originate from ancestral lncRNAs, the transition process remains poorly understood. Here we identified 64 hominoid-specific de novo genes and report a mechanism for the origination of functional de novo proteins from ancestral lncRNAs with precise splicing structures and specific tissue expression profiles. Whole-genome sequencing of dozens of rhesus macaque animals revealed that these lncRNAs are generally not more selectively constrained than other lncRNA loci. The existence of these newly-originated de novo proteins is also not beyond anticipation under neutral expectation, as they generally have longer theoretical lifespan than their current age, due to their GC-rich sequence property enabling stable ORFs with lower chance of non-sense mutations. Interestingly, although the emergence and retention of these de novo genes are likely driven by neutral forces, population genetics study in 67 human individuals and 82 macaque animals revealed signatures of purifying selection on these genes specifically in human population, indicating a proportion of these newly-originated proteins are already functional in human. We thus propose a mechanism for creation of functional de novo proteins from ancestral lncRNAs during the primate evolution, which may contribute to human-specific genetic novelties by taking advantage of existed genomic contexts.  相似文献   

5.

Background

Natural microbial communities are extremely complex and dynamic systems in terms of their population structure and functions. However, little is known about the in situ functions of the microbial communities.

Results

This study describes the application of proteomic approaches (metaproteomics) to observe expressed protein profiles of natural microbial communities (metaproteomes). The technique was validated using a constructed community and subsequently used to analyze Chesapeake Bay microbial community (0.2 to 3.0 μm) metaproteomes. Chesapeake Bay metaproteomes contained proteins from pI 4–8 with apparent molecular masses between 10–80 kDa. Replicated middle Bay metaproteomes shared ~92% of all detected spots, but only shared 30% and 70% of common protein spots with upper and lower Bay metaproteomes. MALDI-TOF analysis of highly expressed proteins produced no significant matches to known proteins. Three Chesapeake Bay proteins were tentatively identified by LC-MS/MS sequencing coupled with MS-BLAST searching. The proteins identified were of marine microbial origin and correlated with abundant Chesapeake Bay microbial lineages, Bacteroides and α-proteobacteria.

Conclusion

Our results represent the first metaproteomic study of aquatic microbial assemblages and demonstrate the potential of metaproteomic approaches to link metagenomic data, taxonomic diversity, functional diversity and biological processes in natural environments.  相似文献   

6.
Our goal is to strengthen the foundations of metaproteomics as a microbial community analysis tool that links the functional identity of actively expressed gene products with host phylogeny. We used shotgun metaproteomics to survey waters in six disparate aquatic habitats (Cayuga Lake, NY; Oneida Lake, NY; Gulf of Maine; Chesapeake Bay, MD; Gulf of Mexico; and the South Pacific). Peptide pools prepared from filter-gathered microbial biomass, analyzed by nano-liquid chromatography–mass spectrometry (MS/MS) generating 9,693?±?1,073 mass spectra identified 326?±?107 bacterial proteins per sample. Distribution of proteobacterial (Alpha and Beta) and cyanobacterial (Prochlorococcus and Synechococcus spp.) protein hosts across all six samples was consistent with the previously published biogeography for these microorganisms. Marine samples were enriched in transport proteins (TRAP-type for dicarboxylates and ATP binding cassette (ABC)-type for amino acids and carbohydrates) compared with the freshwater samples. We were able to match in situ expression of many key proteins catalyzing C-, N-, and S-cycle processes with their bacterial hosts across all six habitats. Pelagibacter was identified as the host of ABC-type sugar-, organic polyanion-, and glycine betaine-transport proteins; this extends previously published studies of Pelagibacter's in situ biogeochemical role in marine C- and N-metabolism. Proteins matched to Ruegeria confirmed these organism's role in marine waters oxidizing both carbon monoxide and sulfide. By documenting both processes expressed in situ and the identity of host cells, metaproteomics tested several existing hypotheses about ecophysiological processes and provided fodder for new ones.  相似文献   

7.
Over the past decade, evidence has accumulated that new protein‐coding genes can emerge de novo from previously non‐coding DNA. Most studies have focused on large scale computational predictions of de novo protein‐coding genes across a wide range of organisms. In contrast, experimental data concerning the folding and function of de novo proteins are scarce. This might be due to difficulties in handling de novo proteins in vitro, as most are short and predicted to be disordered. Here, we propose a guideline for the effective expression of eukaryotic de novo proteins in Escherichia coli. We used 11 sequences from Drosophila melanogaster and 10 from Homo sapiens, that are predicted de novo proteins from former studies, for heterologous expression. The candidate de novo proteins have varying secondary structure and disorder content. Using multiple combinations of purification tags, E. coli expression strains, and chaperone systems, we were able to increase the number of solubly expressed putative de novo proteins from 30% to 62%. Our findings indicate that the best combination for expressing putative de novo proteins in E. coli is a GST‐tag with T7 Express cells and co‐expressed chaperones. We found that, overall, proteins with higher predicted disorder were easier to express.StatementToday, we know that proteins do not only evolve by duplication and divergence of existing proteins but also arise from previously non‐coding DNA. These proteins are called de novo proteins. Their properties are still poorly understood and their experimental analysis faces major obstacles. Here, we aim to present a starting point for soluble expression of de novo proteins with the help of chaperones and thereby enable further characterization.  相似文献   

8.
9.
All genomes include gene families with very limited taxonomic distributions that potentially represent new genes and innovations in protein-coding sequence, raising questions on the origins of such genes. Some of these genes are hypothesized to have formed de novo, from noncoding sequences, and recent work has begun to elucidate the processes by which de novo gene formation can occur. A special case of de novo gene formation, overprinting, describes the origin of new genes from noncoding alternative reading frames of existing open reading frames (ORFs). We argue that additionally, out-of-frame gene fission/fusion events of alternative reading frames of ORFs and out-of-frame lateral gene transfers could contribute to the origin of new gene families. To demonstrate this, we developed an original pattern-search in sequence similarity networks, enhancing the use of these graphs, commonly used to detect in-frame remodeled genes. We applied this approach to gene families in 524 complete genomes of Escherichia coli. We identified 767 gene families whose evolutionary history likely included at least one out-of-frame remodeling event. These genes with out-of-frame components represent ∼2.5% of all genes in the E. coli pangenome, suggesting that alternative reading frames of existing ORFs can contribute to a significant proportion of de novo genes in bacteria.  相似文献   

10.
Neonatal jaundice is a common disease that affects up to 60% of newborns. Herein, we performed a comparative analysis of the gut microbiome in neonatal jaundice and non-neonatal jaundice infants (NJIs) and identified gut microbial alterations in neonatal jaundice pre- and post-treatment. We prospectively collected 232 fecal samples from 51 infants at five time points (0, 1, 3, 6, and 12 months). Finally, 114 samples from 6 NJIs and 19 non-NJI completed MiSeq sequencing and analysis. We characterized the gut microbiome and identified microbial differences and gene functions. Meconium microbial diversity from NJI was decreased compared with that from non-NJI. The genus Gemella was decreased in NJI versus non-NJI. Eleven predicted microbial functions, including fructose 1,6-bisphosphatase III and pyruvate carboxylase subunit B, decreased, while three functions, including acetyl-CoA acyltransferase, increased in NJI. After treatments, the microbial community presented significant alteration-based β diversity. The phyla Firmicutes and Actinobacteria were increased, while Proteobacteria and Fusobacteria were decreased. Microbial alterations were also analyzed between 6 recovered NJI and 19 non-NJI. The gut microbiota was unique in the meconium microbiome from NJI, implying that early gut microbiome intervention could be promising for the management of neonatal jaundice. Alterations of gut microbiota from NJI can be of great value to bolster evidence-based prevention against ‘bacterial dysbiosis’.  相似文献   

11.
The gut microbiome has been shown to play a significant role in human healthy and diseased states. The dynamic signaling that occurs between the host and microbiome is critical for the maintenance of host homeostasis. Analyzing the human microbiome with metaproteomics, metabolomics, and integrative multi‐omics analyses can provide significant information on markers for healthy and diseased states, allowing for the eventual creation of microbiome‐targeted treatments for diseases associated with dysbiosis. Metaproteomics enables functional activity information to be gained from the microbiome samples, while metabolomics provides insight into the overall metabolic states affecting/representing the host–microbiome interactions. Combining these functional ‐omic platforms together with microbiome composition profiling allows for a holistic overview on the functional and metabolic state of the microbiome and its influence on human health. Here the benefits of metaproteomics, metabolomics, and the integrative multi‐omic approaches to investigating the gut microbiome in the context of human health and diseases are reviewed.  相似文献   

12.
Opportunistic microbes are able to exist as commensals or pathogens depending on local environmental conditions. The bacterial microbiome at mucosal sites (gut, oral and vaginal) has been well characterized but there has been less focus on the fungal component of the microbiome, the “mycobiome”, especially of the oral mucosa. Genomic characterization studies have shown that Candida species are the most prevalent fungal species in the mycobiomes of the murine gut and human oral cavity, with C. albicans being the most abundant fungal species in the oral cavity. In this review, we outline recent advances in the characterization of the oral mycobiome, how different Candida species colonize, invade and infect the oral cavity, and how epithelial surfaces play a key role in antifungal activity and discriminate between commensal and pathogenic Candida.  相似文献   

13.
Aims: The objective of this work was to provide functional evidence of key metabolic pathways important for anaerobic digestion processes through the identification of highly expressed proteins in a mixed anaerobic microbial consortium. Methods and Results: The microbial communities from an anaerobic industrial‐like wastewater treatment bioreactor were characterized using phylogenetic analyses and metaproteomics. Clone libraries indicated that the bacterial community in the bioreactor was diverse while the archaeal population was mainly composed of Methanocorpusculum‐like (76%) micro‐organisms. Three hundred and eighty‐eight reproducible protein spots were obtained on 2‐D gels, of which 70 were excised and 33 were identified. The putative functions of the proteins detected in the anaerobic bioreactor were related to cellular processes, including methanogenesis from CO2 and acetate, glycolysis and the pentose phosphate pathway. Metaproteomics also indicated, by protein assignment, the presence of specific micro‐organisms in the bioreactor. However, only a limited overlap was observed between the phylogenetic and metaproteomic analyses. Conclusions: This study provides some direct evidence of the microbial activities taking place during anaerobic digestion. Significance and Impact of Study: This study demonstrates metaproteomics as a useful tool to uncover key biochemical pathways underpinning specific anaerobic bioprocesses.  相似文献   

14.
In response to herbivores, plants produce a variety of natural compounds. Many beetle species have developed ingenious strategies to cope with these substances, including colonizing habitats not attractive for other organisms. Leaf beetle larvae of the subtribe Chrysomelina, for example, sequester plant-derived compounds and use them for their own defense against predators. Using systematically modified structural mimics of plant-derived glucosides, we demonstrated that all tested Chrysomelina larvae channel compounds from the gut lumen into the defensive glands, where they serve as intermediates in the synthesis of deterrents. Detailed studies of the sequestration process revealed a functional network of transport processes guiding phytochemicals through the larval body. The initial uptake by the larvae’s intestine seems to be fairly unspecific, which contrasts sharply with the specific import of precursors into the defensive glands. The Malpighian tubules and hind-gut organs facilitate the rapid clearing of body fluid from excess or unusable compounds. The network exists in both sequestering species and species producing deterrents de novo. Transport proteins are also required for de novo synthesis to channel intermediates from the fat body to the defensive glands for further conversion. Thus, all the tools needed to exploit host plants’ chemistry by more derived Chrysomelina species are already developed by iridoid–de novo producers. Early intermediates from the iridoid–de novo synthesis which also can be sequestered are able to regulate the enzyme activity in the iridoid metabolism.  相似文献   

15.
16.
17.
《遗传学报》2021,48(11):972-983
Understanding the micro-coevolution of the human gut microbiome with host genetics is challenging but essential in both evolutionary and medical studies. To gain insight into the interactions between host genetic variation and the gut microbiome, we analyzed both the human genome and gut microbiome collected from a cohort of 190 students in the same boarding college and representing 3 ethnic groups, Uyghur, Kazakh, and Han Chinese. We found that differences in gut microbiome were greater between genetically distinct ethnic groups than those genetically closely related ones in taxonomic composition, functional composition, enterotype stratification, and microbiome genetic differentiation. We also observed considerable correlations between host genetic variants and the abundance of a subset of gut microbial species. Notably, interactions between gut microbiome species and host genetic variants might have coordinated effects on specific human phenotypes. Bacteroides ovatus, previously reported to modulate intestinal immunity, is significantly correlated with the host genetic variant rs12899811 (meta-P = 5.55 × 10−5), which regulates the VPS33B expression in the colon, acting as a tumor suppressor of colorectal cancer. These results advance our understanding of the micro-coevolution of the human gut microbiome and their interactive effects with host genetic variation on phenotypic diversity.  相似文献   

18.
Animals often exhibit distinct microbial communities when maintained in captivity as compared to when in the wild. Such differentiation may be significant in headstart and reintroduction programs where individuals spend some time in captivity before release into native habitats. Using 16S rRNA gene sequencing, we (i) assessed differences in gut microbial communities between captive and wild Fijian crested iguanas (Brachylophus vitiensis) and (ii) resampled gut microbiota in captive iguanas released onto a native island to monitor microbiome restructuring in the wild. We used both cloacal swabs and fecal samples to further increase our understanding of gut microbial ecology in this IUCN Critically Endangered species. We found significant differentiation in gut microbial community composition and structure between captive and wild iguanas in both sampling schemes. Approximately two months postrelease, microbial communities in cloacal samples from formerly captive iguanas closely resembled wild counterparts. Interestingly, microbial communities in fecal samples from these individuals remained significantly distinct from wild conspecifics. Our results indicate that captive upbringings can lead to differences in microbial assemblages in headstart iguanas as compared to wild individuals even after host reintroduction into native conditions. This investigation highlights the necessity of continuous monitoring of reintroduced animals in the wild to ensure successful acclimatization and release.  相似文献   

19.
20.
The bacteria that colonize the gastrointestinal tracts of mammals represent a highly selected microbiome that has a profound influence on human physiology by shaping the host''s metabolic and immune system activity. Despite the recent advances on the biological principles that underlie microbial symbiosis in the gut of mammals, mechanistic understanding of the contributions of the gut microbiome and how variations in the metabotypes are linked to the host health are obscure. Here, we mapped the entire metabolic potential of the gut microbiome based solely on metagenomics sequencing data derived from fecal samples of 124 Europeans (healthy, obese and with inflammatory bowel disease). Interestingly, three distinct clusters of individuals with high, medium and low metabolic potential were observed. By illustrating these results in the context of bacterial population, we concluded that the abundance of the Prevotella genera is a key factor indicating a low metabolic potential. These metagenome-based metabolic signatures were used to study the interaction networks between bacteria-specific metabolites and human proteins. We found that thirty-three such metabolites interact with disease-relevant protein complexes several of which are highly expressed in cells and tissues involved in the signaling and shaping of the adaptive immune system and associated with squamous cell carcinoma and bladder cancer. From this set of metabolites, eighteen are present in DrugBank providing evidence that we carry a natural pharmacy in our guts. Furthermore, we established connections between the systemic effects of non-antibiotic drugs and the gut microbiome of relevance to drug side effects and health-care solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号