首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oridonin, an active diterpenoid isolated from Rabdosia rubescens, has been reported for its antitumor activity on several cancers. However, its effect on human esophageal cancer remains unclear. In this study, we demonstrated that oridonin could inhibit the growth of human esophageal cancer cells both in vitro and in vivo. Oridonin not only suppressed the proliferation, but also induced cell cycle arrest and mitochondrial-mediated apoptosis in KYSE-30, KYSE-150, and EC9706 cells with dose-dependent manner. Further mechanism studies revealed that oridonin led cell cycle arrest in esophageal cancer cells via downregulating cell cycle-related proteins, such as cyclin B1 and CDK2, while upregulating p53 and p21. Oridonin also increased proapoptotic protein Bax and reduced antiapoptotic protein Bcl-2, as well as the increased expression of cleaved caspase-3, -8, and -9. In addition, oridonin treatment could significantly inhibit the PI3K/Akt/mTOR and Ras/Raf signaling pathway. In vivo results further demonstrated that oridonin treatment markedly inhibited tumor growth in the esophageal cancer xenograft mice model. Taken together, these results suggest that oridonin may be a potential anticancer agent for the treatment of esophageal cancer.  相似文献   

2.
This study aimed to investigate the anti-cervical cancer effects of everolimus (Eve) and paclitaxel (Pac) when used alone or in combination. Human cervical cancer cells HeLa and SiHa were divided into four group: Blank control group (control), everolimus group (Eve), paclitaxel group (Pac) and combined therapy group (Eve?+?Pac). The cell viability was detected by CCK-8 assay and the cell cloning ability was detected by clonegenic assay. Flow cytometry was used to detect cell apoptosis. Meanwhile, the expression of phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), mammalian target of rapamycin (mTOR) and their phosphorylated proteins were studied by western blot. The HeLa and SiHa cells proliferation and cloning ability were significantly inhibited in drug treatment groups compared with control group (p?相似文献   

3.
RNF7 has been reported to play critical roles in various cancers. However, the underlying mechanisms of RNF7 in glioma development remain largely unknown. Herein, the expression level of RNF7 was examined in tissues by quantitative real-time PCR, Western blotting and immunohistochemistry. The effect of RNF7 on glioma progression was measured by performing CCK-8 and apoptosis assays, cell cycle-related experiments and animal experiments. The effect of RNF7 on PI3K/AKT signalling pathway was tested by Western blotting. First, we found that RNF7 was upregulated in tumour tissue compared with normal brain tissue, especially in high-grade glioma, and the high expression of RNF7 was significantly related to tumour size, Karnofsky Performance Scale score and a poor prognosis. Second, RNF7 overexpression facilitated tumour cell cycle progression and cell proliferation and suppressed apoptosis. Conversely, RNF7 knockdown suppressed tumour cell cycle progression and cell proliferation and facilitated apoptosis. Furthermore, follow-up mechanistic studies indicated that RNF7 could facilitate glioma cell proliferation and cell cycle progression and inhibit apoptosis by activating the PI3K/AKT signalling pathway. This study shows that RNF7 can clearly promote glioma cell proliferation by facilitating cell cycle progression and inhibiting apoptosis by activating the PI3K/AKT signalling pathway. Targeting the RNF7/PI3K/AKT axis may provide a new perspective on the prevention or treatment of glioma.  相似文献   

4.
Novel drugs are required for non-small cell lung cancer (NSCLC) treatment urgently. Repurposing old drugs as new treatments is a practicable approach with time and cost savings. Some studies have shown that carrimycin, a Chinese Food and Drug Administration (CFDA)-approved macrolide antibiotic, possesses potent anti-tumor effects against oral squamous cell carcinoma. However, its detailed component and underlying mechanisms in anti-NSCLC remain unknown. In our study, isovalerylspiramycin I (ISP-I) was isolated from carrimycin and demonstrated a remarkable anti-NSCLC efficacy in vitro and in vivo with a favorable safety profile. It has been proven that in NSCLC cell lines H460 and A549, ISP-I could induce G2/M arrest and apoptosis, which was mainly attributed to ROS accumulation and subsequently PI3K/AKT signaling pathway inhibition. Numerous downstream genes including mTOR and FOXOs were also changed correspondingly. An observation of NAC-induced reverse effect on ISP-I-leading cell death and PI3K/AKT pathway inhibition, emphasized the necessity of ROS signaling in this event. Moreover, we identified ROS accumulation and PI3K/AKT pathway inhibition in tumor xenograft models in vivo as well. Taken together, our study firstly reveals that ISP-I is a novel ROS inducer and may act as a promising candidate with multi-target and low biological toxicity for anti-NSCLC treatment.  相似文献   

5.
卵巢癌是女性生殖系统常见的恶性肿瘤,发病率居于妇科恶性肿瘤第三位,死亡率居于妇科恶性肿瘤之首。目前对卵巢癌的标准治疗包括肿瘤细胞减灭术及卡铂和紫杉醇的联合化疗。PI3K/AKT/mTOR信号通路在卵巢癌的细胞增殖、侵袭、细胞周期进展、血管生成及耐药中发挥重要作用,是卵巢癌中最常发生改变的细胞内途径。本文对PI3K/AKT/mTOR信号通路及其在卵巢癌增殖和进展中的影响、PI3K/AKT/mTOR信号通路抑制剂在卵巢癌中的治疗应用做简要综述。  相似文献   

6.
Abstract

To investigate the effect of microRNA 21 (miR-21) on hepatic stellate cells (HSCs) proliferation and apoptosis, and further to study its potential mechanisms. LX-2 cells were divided into miR-21 mimic group (Mimic), miR-21 mimic negative control group (NM), miR-21 inhibitor group (Inhibitor), miR-21 inhibitor negative control group (NC), and blank control group (Control). The cell proliferation was detected by CCK-8 assay and the cell migration and invasion were detected by scratch and transwell assay. Cell cycle and apoptosis were detected by flow cytometry. The levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, and transforming growth factor (TGF)-β1 were detected by enzyme-linked immunosorbent assay (ELISA). Proliferation, apoptosis, and phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway related genes and proteins were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot, respectively. The cells proliferation, migration, and invasion were promoted in Mimic group. The levels of IL-6, TNF-α, and TGF-β1 were increased after miR-21 administration. The expression of α-smooth muscle actin (SMA) and collagen 1 (Colla1) were increased, while Bax/B-cell lymphoma (Bcl)-2 ratio and programed cell death 4 (PDCD4) were reduced after miR?21 treatment. Meanwhile, the mRNA and protein expression of PTEN were reduced and PI3K/AKT pathway been promoted. Our study demonstrated that miR-21 could promote proliferation and inhibit apoptosis of HSCs, and its mechanism may be related to PTEN/PI3K/AKT pathway.  相似文献   

7.
8.
9.
Application of a certain concentration of local anesthetics during tumor resection inhibits the progression of tumor. The effects of ropivacaine in bladder cancer (BC) have never been explored. We explored the effects of ropivacaine on the progression of BC in vitro and in vivo. CCK8 assay and EDU staining was conducted to examine cell proliferation. Flow cytometry and transwell assay were performed to evaluate apoptosis and invasion, respectively. Expression of light chain 3 (LC3) was observed through immunofluorescence. Furthermore, the xenograft tumor model of BC was built to detect the effects of ropivacaine in vivo. IHC and TUNEL assay were conducted to detect cell proliferation and apoptosis in vivo. Ropivacaine inhibited the proliferation of T24 and 5639 cells with the 50% inhibitory concentration (IC50) of 20.08 and 31.86 µM, respectively. Ropivacaine suppressed the invasion ability and induces the apoptosis of cells. Besides, ropivacaine triggers obvious autophagy in BC cells. Moreover, ropivacaine blocks the PI3K/AKT signal pathway in BC cells. The impact of ropivacaine on cell viability, motility, and autophagy was reversed by 740 Y-P, the activator of PI3K/AKT signal pathway. The in vivo experiments demonstrated that ropivacaine inhibited the proliferation and mobility of BC. Ropivacaine has anti-carcinoma effects in BC via inactivating PI3K/AKT pathway, providing a new theoretical reference for the use of local anesthetics in the treatment of BC.  相似文献   

10.
Sapylin (OK-432) revealed biological properties in cancers. In this study, the effect of sapylin on lung cancer cell A549 was investigated. A549 cell lines were treated with sapylin (0.1, 0.5, and 1 KE/mL) for different time intervals. A549 cell proliferation and apoptosis was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide/Ki67 assay and flow cytometry, respectively. Western blot was used to determine the expressions of proteins involved in proliferation, apoptosis, and phosphoinositide 3-kinase/serine/threonine kinase (PI3K/AKT), Wnt3a/β-catenin signaling pathway. Level of intracellular reactive oxygen species (ROS) was insured by using the ROS kit. Sapylin inhibited A549 cell viability and the expressions of proliferation-related proteins (cyclin E1 and D1) in dose- and time-dependent manners. Sapylin promoted apoptosis in a dose- and time-dependent manners. Sapylin also promoted the expressions of apoptotic proteins (cleaved caspase-3 and 8) in dose- and time-dependent manners. Furthermore, sapylin increased the intracellular concentration of ROS in a dose-dependent manner. Besides, the high expression of ROS level might induce inhibition of cell viability and increase cell apoptosis. The mechanistic study revealed that sapylin inactivated the PI3K/AKT and Wnt3a/β-catenin signaling pathways. Our findings suggest that sapylin inhibits proliferation and promotes apoptosis in lung cancer cells, thus providing a new theoretical basis for the treatment of lung cancer.  相似文献   

11.
为探讨NEAT1在骨质疏松症中的作用以及可能的病理机制,本研究通过建立卵巢去势和鼠尾悬挂2种骨质疏松的小鼠模型,将C57BL/6分为假手术组(Sham组)、OVX组和TS组;经过PCR测定小鼠NEAT1的表达;Elisa法检测小鼠E2、ALP和TRACP水平;Western blotting检测细胞凋亡因子PI3K/AKT/Bcl-2的蛋白水平。结果显示,建模4周后,3组小鼠体重没有显著变化;与Sham组相比,OVX组和TS组小鼠的骨密度值显著降低,骨生化指标ALP和TRACR水平明显升高;OVX组小鼠的E2水平与Sham组相比明显降低;与Sham组相比,OVX组和TS组小鼠的NEAT1表达显著下调;与Sham组相比,OVX组和TS组小鼠p-AKT和Bcl-2蛋白水平明显降低。本研究结果表明,NEAT1可能通过抑制PI3K/AKT/Bcl-2细胞凋亡途径诱导骨质疏松。  相似文献   

12.
Growth hormone receptor (GHR), the cognate receptor of growth hormone (GH), is a membrane bound receptor that belongs to the class I cytokine receptor superfamily. GH binding GHR induces cell differentiation and maturation, initiates the anabolism inside the cells and promotes cell proliferation. Recently, GHR has been reported to be associated with various types of cancer. However, the underlying mechanism of GHR in gastric cancer has not been defined. Our results showed that silence of GHR inhibited the growth of SGC-7901 and MGC-803 cells, and tumour development in mouse xenograft model. Flow cytometry showed that GHR knockout significantly stimulated gastric cancer cell apoptosis and caused G1 cell cycle arrest, which was also verified by Western blot that GHR deficiency induced the protein level of cleaved-PARP, a valuable marker of apoptosis. In addition, GHR deficiency inhibited the activation of PI3K/AKT signalling pathway. On the basis of the results, that GHR regulates gastric cancer cell growth and apoptosis through controlling G1 cell cycle progression via mediating PI3K/AKT signalling pathway. These findings provide a novel understanding for the role of GHR in gastric cancer.  相似文献   

13.
Myocardial infarction (MI) leads to cardiac remodelling and heart failure. Cardiomyocyte apoptosis is considered a critical pathological phenomenon accompanying MI, but the pathogenesis mechanism remains to be explored. MicroRNAs (miRs), with the identity of negative regulator of gene expression, exist as an important contributor to apoptosis. During the experiment of this study, MI mice models were successfully established and sequencing data showed that the expression of miR-23a-5p was significantly enhanced during MI progression. Further steps were taken and it showed that apoptosis of cardiac cells weakened as miR-23a-5p was downregulated and on the contrary that apoptosis strengthened with the overexpression of miR-23a-5p. To explore its working mechanisms, bioinformatics analysis was conducted by referring to multi-databases to predict the targets of miR-23a-5p. Further analysis suggested that those downstream genes enriched in several pathways, especially in the PI3K/Akt singling pathway. Furthermore, it demonstrated that miR-23a-5p was negatively related to the phosphorylation of PI3K/Akt, which plays a critical role in triggering cell apoptosis during MI. Recilisib-activated PI3K/Akt singling pathway could restrain apoptosis from inducing miR-23a-5p overexpression, and Miltefosine-blocked PI3K/Akt singling pathway could restrict apoptosis from inhibiting miR-23a-5p reduction. In conclusion, these findings revealed the pivotal role of miR-23a-5p-PI3K/Akt axis in regulating apoptosis during MI, introducing this novel axis as a potential indicator to detect ischemic heart disease and it could be used for therapeutic intervention.  相似文献   

14.
There is now increasing evidence which suggests a key role for osteoblast apoptosis in the pathogenesis of postmenopausal osteoporosis. Here, we evaluated the role and mechanism of proteasome 26S subunit, ATPase (PSMC) 6, a protein that is highly expressed in bone. Gene expression pattern had been extracted based on database of Gene Expression Omnibus (GEO). GEO2R was employed for analyses, while the DAVID database was adopted to further analyze the gene ontology (GO) as well as Kyoto Encyclopedia of Genomes pathway (KEGG) enrichment. Then, the Search Tool Retrieval of Interacting Genes (STRING) was utilized to carry out interaction regulatory network for the top 200 differentially expressed genes (DEGs). A key gene, called PSMC6, was identified by Cytoscape 3.6.0. The OVX osteoporosis model was established in female C57BL/6 mice by full bilateral ovariectomy. According to our findings, PSMC6 gene knockout would elevate bone mineral density (BMD) and the phosphorylation level of PI3K protein and increased the protein level of cleaved caspase-3/-9 in OVX osteoporosis mice. Further, MTT, bromodeoxyuridine, and flow cytometry assays revealed that PSMC6 inhibition promoted the progression of cell cycle and cell proliferation, whereas, PSMC6 overexpression promoted the apoptosis and inhibited cell cycle progression and cell proliferation in vitro. Besides, we found that PI3K activation significantly decreased PSMC6-induced osteoblast apoptosis and promoted cell proliferation through regulating the protein levels of p53, cyclinD1, and cleaved caspase-3/9. In conclusion, PSMC6 aggravated the degree of OVX-induced osteoporosis by inhibiting the PI3K/AKT signal transduction pathway, thereby promoting the apoptosis of osteoblasts.  相似文献   

15.
本文探讨巨噬细胞集落刺激因子(M-CSF)对人乳腺癌MCF-7细胞糖代谢的影响及其机制. 构建胞质稳定转染 M-CSF的MCF-7细胞(MCF-7-M);ATP检测试剂盒检测MCF-7和MCF-7-M细胞的ATP生成;葡萄糖测定试剂盒、乳酸测试盒检测MCF-7和MCF-7-M细胞的葡萄糖摄取和乳酸分泌情况;蛋白质印迹法检测在糖酵解抑制剂2-脱氧葡萄糖(2-DG)和氧化磷酸化抑制剂OLIG处理后,M-CSF对MCF-7细胞的糖酵解关键酶:己糖激酶2(HK2)、丙酮酸激酶M2(PKM2)及葡萄糖转运体1(GLUT-1)表达的影响;MTT法检测在ATP消耗剂3-溴丙酮酸(3-BrPA)处理后,MCF-7和MCF-7-M细胞对5-FU敏感性的变化. 结果发现:MCF-7-M细胞的ATP水平显著高于MCF-7细胞(P<0.05);2-DG降低了MCF-7和MCF-7-M细胞的ATP水平,并且降低MCF-7-M细胞ATP的效果更明显(P<0.01);MCF-7-M细胞的糖摄取能力和乳酸分泌量显著高于MCF-7细胞(P<0.01),经API-2处理后,MCF-7和MCF-7-M细胞葡萄糖消耗和乳酸分泌量均显著减少(P<0.01);MCF-7-M细胞GLUT-1、HK2和PKM2的表达显著高于MCF-7细胞(P<0.01);LY294002和API-2均可抑制MCF-7-M细胞GLUT-1的表达(P<0.05);用3-BrPA处理后,MCF-7-M和MCF-7细胞对5-FU的药物敏感性显著增强(P<0.01). 综上,得出结论: 胞质M-CSF通过诱导GLUT-1、HK2和PKM2的表达,活化MCF-7细胞糖酵解途径;PI3K/AKT信号通路参与胞质M-CSF活化MCF-7细胞的糖酵解途径.  相似文献   

16.
LncRNAs exhibit crucial roles in various pathological diseases, including hepatocellular carcinoma (HCC). Therefore, it is significant to recognize the dysregulated lncRNAs in HCC progression. Recently, LINC01133 has been identified in several tumors. However, the biological role of LINC01133 in HCC remains poorly understood. Currently, we focused on the function of LINC01133 in HCC development. We observed that LINC01133 was significantly increased in HCC cells including HepG2, Hep3B, MHCC-97L, SK-Hep-1, and MHCC-97H cells compared with the normal human liver cell line HL-7702. In addition, PI3K/AKT signaling was highly activated in HCC cells. Knockdown of LINC01133 was able to inhibit HCC cell proliferation, cell colony formation, cell apoptosis, and blocked cell cycle arrest in the G1 phase. For another, downregulation of LINC01133 repressed HCC cell migration and invasion. Subsequently, the PI3K/AKT signaling pathway was strongly suppressed by silence of LINC01133 in Hep3B and HepG2 cells. Then, in vivo tumor xenografts models were established using Hep3B cells to explore the function of LINC01133 in HCC progression. Consistently, our study indicated that knockdown of LINC01133 dramatically repressed HCC tumor progression through targeting the PI3K/AKT pathway in vivo. Taken these together, we revealed that LINC01133 contributed to HCC progression by activating the PI3K/AKT pathway.  相似文献   

17.
18.
Tumor cell can be significantly influenced by various chemical groups of the extracellular matrix proteins. However, the underlying molecular mechanisms involved in the interaction between cancer cells and functional groups in the extracellular matrix remain unknown. Using chemically modified surfaces with biological functional groups (CH3, NH2, OH), it was found that hydrophobic surfaces modified with CH3 and NH2 suppressed cell proliferation and induced the number of apoptotic cells. Mitochondrial dysfunction, cytochrome c release, Bax upregulation, cleaved caspase-3 and PARP, and Bcl-2 downregulation indicated that hydrophobic surfaces with CH3 and NH2 triggered the activation of intrinsic apoptotic signaling pathway. Cells on the CH3- and NH2-modified hydrophobic surfaces showed downregulated expression and activation of integrin β1, with a subsequent decrease of focal adhesion kinase (FAK) activity. The RhoA/ROCK/PTEN signaling was then activated to inhibit the phosphorylation of PI3K and AKT, which are essential for cell proliferation. However, pretreatment of MDA-MB-231 cells with SF1670, a PTEN inhibitor, abolished the hydrophobic surface-induced activation of the intrinsic pathway. Taken together, the present results indicate that CH3- and NH2-modified hydrophobic surfaces induce mitochondria-mediated apoptosis by suppressing the PTEN/PI3K/AKT pathway, but not OH surfaces. These findings are helpful to understand the interaction between extracellular matrix and cancer cells, which might provide new insights into the mechanism potential intervention strategies for tumor prognosis.  相似文献   

19.
20.
Plastin-3 plays a key role in cancer cell proliferation and invasion, but its prognostic value in pancreatic cancer (PACA) remains poorly defined. In this study, we show that PLS3 messenger RNA is overexpressed in PACA tissue compared with normal tissue. We accumulated 207 cases of PACA specimens to perform immunohistochemical analysis and demonstrated that PLS3 levels correlate with T-classification (p < .001) and pathology (p < .001). Furthermore, overall survival rates (p < .001) in tumors with high PLS3 expression were poor, as assessed through Kaplan–Meier survival analysis. PLS3 was found to be an independent prognostic factor for PACA through multivariate Cox regression analysis. Moreover, we found that PLS3 enhances the proliferation and invasion of tumor cells as assessed through Cell Counting Kit-8, wounding healing assays, and Transwell assays. The upregulation of PLS3 also led to enhanced phosphatidylinositol-3 kinase/protein kinase B signaling in PACA cells. These data suggest that PLS3 is a biomarker to estimate PACA progression and represents a molecular target for PACA therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号