首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: Plug flow cytometry is a recently developed system for the automated delivery of multiple small boluses or "plugs" of cells or particles to the flow cytometer for analysis. Important system features are that sample plugs are of precisely defined volume and that the sample vessel need not be pressurized. We describe how these features enable direct cell concentration determinations and novel ways to integrate flow cytometers with other analytical instruments. METHODS: Adhesion assays employed human polymorphonuclear neutrophils (PMNs) loaded with Fura Red and Chinese hamster ovary (CHO) cells cotransfected with genes for green fluorescent protein (GFP) and human P-selectin. U937 cells expressing the human 7-transmembrane formyl peptide receptor were loaded with the fluorescent probe indo-1 for intracellular ionized calcium determinations. A computer-controlled syringe or peristaltic pump loaded the sample into a sample loop of the plug flow coupler, a reciprocating eight-port valve. When the valve position was switched, the plug of sample in the sample loop was transported to the flow cytometer by a pressure-driven fluid line. RESULTS: In stirred mixtures of PMNs and CHO cells, we used plug flow cytometry to directly quantify changes in concentrations of nonadherent singlet PMNs. This approach enabled accurate quantification of adherent PMNs in multicell aggregates. We constructed a novel plug flow interface between the flow cytometer and a cone-plate viscometer to enable real-time flow cytometric analysis of cell-cell adhesion under conditions of uniform shear. The High Throughput Pharmacology System (HTPS) is an instrument used for automated programming of complex pharmacological cell treatment protocols. It was interfaced via the plug flow coupling device to enable rapid (< 5 min) flow cytometric characterization of the intracellular calcium dose-response profile of U937 cells to formyl peptide. CONCLUSIONS: By facilitating the coupling of flow cytometers to other fluidics-based analytical instruments, plug flow cytometry has extended analytical capabilities in cell adhesion and pharmacological characterization of receptor-ligand interactions.  相似文献   

2.
BACKGROUND: Regular phytoplankton monitoring in Dutch coastal waters is performed as an indicator of the ecological state of these waters. The monitoring program is focused on temporal and spatial changes of species composition and abundance. Flow cytometry has been introduced to provide additional information, to improve ecosystem understanding, and to increase the efficiency of analysis and reportage. METHODS: Phytoplankton community abundance and composition were routinely determined by flow cytometry and microscopy at six locations in the North Sea over three annual cycles between 2000 and 2003. Supplementary measurements were also made for fluorescence (chlorophyll-a and other pigments) and, in combination with flow cytometric and microscopic data, were used to determine phytoplankton abundance and composition as a function of their size distribution. Real-time imaging of species was also used to identify species on the basis of their flow cytometric optical characteristics. RESULTS: Flow cytometric analysis took 15 min on average. Analysis including data processing, and Web site reportage took less than 1 h. Phytoplankton concentrations (cells/ml), biomass (fluorescence/ml), and concentration of phycoerythrin- or phycocyanin-containing cells (cells/ml) as a function of their algal size were produced every 2 weeks on average. The phytoplankton integrated annual concentration and biomass were used as ecological indicators for overall phytoplankton status. Real-time imaging of cells in flow enabled the identification of dominant species and was applied as an early warning system for Phaeocystis spp. CONCLUSIONS: The reproducibility and count precision due to the large number of observations of the flow cytometric technique provided reliable data for monitoring long-term trends. Flow cytometrically based analyses extended the lower detection limit (<0.5 microm) of analysis beyond the capabilities of other techniques such as the relation between small and larger phytoplankton, the relation between cell counts and biomass as a function of cell size, but also the ability to monitor and report on blooms of harmful algae. A good correlation was found between concentrations (cells/ml) measured by flow cytometry and microscopy. In practice, flow cytometric analysis of a single marine sample took 15 min on average.  相似文献   

3.
Steen HB 《Cytometry》2002,49(2):70-72
BACKGROUND: The sample injection systems of flow cytometers employ either a pressure differential between the sample vial and the sheath fluid reservoir or volumetric injection of the sample from a syringe. The pressure differential method facilitates rapid and efficient flushing to eliminate carryover between samples, but does not allow accurate determination of the rate of sample flow and cell concentration. Volumetric injection, which comprises a valve for switching the sample flow, facilitates highly accurate measurement of the cell concentration, but requires a less efficient and more time-consuming flushing procedure. METHODS: Applying a removable syringe, which connects to the inlet of the sample tubing via a tight sealing, we eliminate the valve and obtain efficient flushing while maintaining the advantage of volumetric sample injection. RESULTS: This device gives highly constant sample flow rates strictly proportional to syringe velocity over the range 0.2-50 microl/min with a settling time of about 2 sec. CONCLUSION: This device has the same precision as the conventional sample injection system, whereas the speed and efficiency of flushing are improved greatly.  相似文献   

4.
BACKGROUND: The development of inexpensive small flow cytometers is recognized as an important goal for many applications ranging from medical uses in developing countries for disease diagnosis to use as an analytical platform in support of homeland defense. Although hydrodynamic focusing is highly effective at particle positioning, the use of sheath fluid increases assay cost and reduces instrument utility for field and autonomous remote operations. METHODS: This work presents the creation of a novel flow cell that uses ultrasonic acoustic energy to focus small particles to the center of a flowing stream for analysis by flow cytometry. Experiments using this flow cell are described wherein its efficacy is evaluated under flow cytometric conditions with fluorescent microspheres. RESULTS: Preliminary laboratory experiments demonstrate acoustic focusing of flowing 10-microm latex particles into a tight sample stream that is approximately 40 microm in diameter. Prototype flow cytometer measurements using an acoustic-focusing flow chamber demonstrated focusing of a microsphere sample to a central stream approximately 40 microm in diameter, yielding a definite fluorescence peak for the microspheres as compared with a broad distribution for unfocused microspheres. CONCLUSIONS: The flow cell developed here uses acoustic focusing, which inherently concentrates the sample particles to the center of the sample stream. This method could eliminate the need for sheath fluid, and will enable increased interrogation times for enhanced sensitivity, while maintaining high particle-analysis rates. The concentration effect will also enable the analysis of extremely dilute samples on the order of several particles per liter, at analysis rates of a few particles per second. Such features offer the possibility of a truly versatile low-cost portable flow cytometer for field applications.  相似文献   

5.
Flow cytometry: instrumentation and application in phytoplankton research   总被引:1,自引:0,他引:1  
In flow cytometry, light scattering and fluorescence of individual particles in suspension is measured at high speed. When applied to planktonic particles, the light scattering and (auto-)fluorescence properties of algal cells can be used for cell identification and counting. Analysis of the wide size spectrum of phytoplankton species, generally present in eutrophic inland and coastal waters, requires flow cytometers specially designed for this purpose. This paper compares the performance in phytoplankton research of a commercial flow cytometer to a purpose built instrument. It reports on the identification of phytoplankton and indicates an area where flow cytometry may supersede more conventional techniques: the analysis of morphological and physiological characteristics of subpopulations in phytoplankton samples.  相似文献   

6.
AIMS: To test Fountain Flow Cytometry (FFC) for the rapid and sensitive detection of Naegleria lovaniensis amoebae (an analogue for Naegleria fowleri) in natural river waters. METHODS AND RESULTS: Samples were incubated with one of two fluorescent labels to facilitate detection: ChemChrome V6, a viability indicator, and an R-phycoerytherin (RPE) immunolabel to detect N. lovaniensis specifically. The resulting aqueous sample was passed as a stream in front of a light-emitting diode, which excited the fluorescent labels. The fluorescence was detected with a digital camera as the sample flowed toward the imager. Detections of N. lovaniensis were made in inoculated samples of natural water from eight rivers in France and the United States. FFC enumeration yielded results that are consistent with other counting methods: solid-phase cytometry, flow cytometry, and hemocytometry, down to concentrations of 0.06 amoebae ml(-1), using a flow rate of 15 ml min(-1). CONCLUSIONS: This study supports the efficacy of using FFC for the detection of viable protozoa in natural waters and indicates that use of RPE illuminated at 530 nm and detected at 585 nm provides a satisfactory means of attenuating background. SIGNIFICANCE AND IMPACT OF THE STUDY: Because of the severe global public health issues with drinking water and sanitation, there is an urgent need to develop a technique for the real-time detection of viable pathogens in environmental samples at low concentrations. FFC addresses this need.  相似文献   

7.
Traditionally, many cell-based assays that analyze cell populations and functionalities have been performed using flow cytometry. However, flow cytometers remain relatively expensive and require highly trained operators for routine maintenance and data analysis. Recently, an image cytometry system has been developed by Nexcelom Bioscience (Lawrence, MA, USA) for automated cell concentration and viability measurement using bright-field and fluorescent imaging methods. Image cytometry is analogous to flow cytometry in that gating operations can be performed on the cell population based on size and fluorescent intensity. In addition, the image cytometer is capable of capturing bright-field and fluorescent images, allowing for the measurement of cellular size and fluorescence intensity data. In this study, we labeled a population of cells with an enzymatic vitality stain (calcein-AM) and a cell viability dye (propidium iodide) and compared the data generated by flow and image cytometry. We report that measuring vitality and viability using the image cytometer is as effective as flow cytometric assays and allows for visual confirmation of the sample to exclude cellular debris. Image cytometry offers a direct method for performing fluorescent cell-based assays but also may be used as a complementary tool to flow cytometers for aiding the analysis of more complex samples.  相似文献   

8.
Geng T  Zhan Y  Wang J  Lu C 《Nature protocols》2011,6(8):1192-1208
Electroporation is a high-efficiency and low-toxicity physical gene transfer method. Classical electroporation protocols are limited by the small volume of cell samples processed (less than 10(7) cells per reaction) and low DNA uptake due to partial permeabilization of the cell membrane. Here we describe a flow-through electroporation protocol for continuous transfection of cells, using disposable devices, a syringe pump and a low-cost power supply that provides a constant voltage. We show transfection of cell samples with rates ranging from 40 μl min(-1) to 20 ml min(-1) with high efficiency. By inducing complex migrations of cells during the flow, we also show permeabilization of the entire cell membrane and markedly increased DNA uptake. The fabrication of the devices takes 1 d and the flow-through electroporation typically takes 1-2 h.  相似文献   

9.
The analysis of marine phytoplankton using flow cytometry has enabled the discovery of new taxa and has contributed new understanding to the dynamics and ecological contributions of phytoplankton to the global carbon cycle. Marine phytoplankton are uniquely suited to analysis by flow cytometry because of their size, pigment content, and ability to remain in suspension. Cytometric analysis of marine populations is not without challenges. Phytoplankton communities span a broad range of sizes. The smallest microbes are a few tenths of a micron, while the largest are a few tenths of a millimeter. The improvement of cytometric measurements of scattered laser light allows one to investigate marine microbes whose sizes span several orders of magnitude. To effectively leverage the advantages that marine microbes possess, cytometers have to be carefully engineered for marine use.  相似文献   

10.
BACKGROUND: The tools for high throughput flow cytometry have been limited in part because of the requirement that the samples must flow under pressure. We describe a simple system for sampling repetitively from an open vessel. METHODS: Under computer control, the sample is loaded into a sample loop in a reciprocating eight-way valve by the action of a syringe. When the valve position is switched, the plug of sample in the sample loop is transported to the flow cytometer by a pressure-driven fluid line. By coupling the plug-forming capability to a second multi-port valve, samples can be delivered sequentially from separate vessels. RESULTS: The valve is able to deliver samples at rates ranging up to about 9 samples per minute. Each plug of sample has uniform delivery characteristics with a reproducible coefficient of variation (CV). Even at the highest sampling rate, carryover between samples is limited. CONCLUSIONS: Plug-flow flow cytometry has the potential to automate the delivery of small samples from unpressurized sources at rates compatible with many screening and assay applications.  相似文献   

11.
T L Cucci  M E Sieracki 《Cytometry》2001,44(3):173-178
BACKGROUND: Forward-angle light scatter, as measured by flow cytometry, can be used to estimate the size spectra of cell assemblages from natural waters. The refractive index of water samples from aquatic environments can differ because of a variety of factors such as dissolved organic content, aldehyde preservative, sample salinity, and temperature. In flow cytometric analyses, mismatch between the refractive indices of the sheath fluid and the sample causes distortion of the forward-angle light scatter signal. We measured the effect of this mismatch on cell size measurements. METHODS: We examined the error by measuring the scatter signal of a variety of particle types and sizes and changing the sheath-to-sample salinity ratio. The effects were characterized for standard microspheres, cultured phytoplankton cells of different sizes, and natural populations from an estuarine river. RESULTS: We found that the distorted scatter signals resulted in an increase in the apparent size of small cells (1--2 microm) by a factor of 4.5 times. Cells in the size range of 3--5 microm were less affected by the salinity differences, and cells larger than 5 microm were not affected. Chlorophyll and phycoerythrin fluorescences and 90 degrees light scatter signals were not changed by sheath and sample salinity differences. CONCLUSIONS: Care must be taken to ensure that the sheath and sample refractive index are matched when using forward light scatter to measure cell size spectra, especially in estuarine studies, where salinity can vary greatly. Of the factors considered that can change the sample refractive index, salinity gradients in an estuary cause the largest index mismatch and, consequently, the largest error in scatter.  相似文献   

12.
Optimization of procedures for counting viruses by flow cytometry   总被引:3,自引:0,他引:3  
The development of sensitive nucleic acid stains, in combination with flow cytometric techniques, has allowed the identification and enumeration of viruses in aquatic systems. However, the methods used in flow cytometric analyses of viruses have not been consistent to date. A detailed evaluation of a broad range of sample preparations to optimize counts and to promote the consistency of methods used is presented here. The types and concentrations of dyes, fixatives, dilution media, and additives, as well as temperature and length of incubation, dilution factor, and storage conditions were tested. A variety of different viruses, including representatives of phytoplankton viruses, cyanobacteriophages, coliphages, marine bacteriophages, and natural mixed marine virus communities were examined. The conditions that produced optimal counting results were fixation with glutaraldehyde (0.5% final concentration, 15 to 30 min), freezing in liquid nitrogen, and storage at -80 degrees C. Upon thawing, samples should be diluted in Tris-EDTA buffer (pH 8), stained with SYBR Green I (a 5 x 10(-5) dilution of commercial stock), incubated for 10 min in the dark at 80 degrees C, and cooled for 5 min prior to analysis. The results from examinations of storage conditions clearly demonstrated the importance of low storage temperatures (at least -80 degrees C) to prevent strong decreases (occasionally 50 to 80% of the total) in measured total virus abundance with time.  相似文献   

13.
FLOW CYTOMETRY AND THE SINGLE CELL IN PHYCOLOGY   总被引:1,自引:0,他引:1  
Flow cytometers measure light scattering and fluorescence characteristics from individual particles in a fluid stream as they cross one or more light beams at rates of up to thousands of events per second. Flow cytometrically detectable optical signals may arise naturally from algae, reflecting cell size, structure, and endogenous pigmentation, or may be generated by fluorescent stains that report the presence of otherwise undetected cellular constituents. Some flow cytometers can physically sort particles with desired optical characteristics out of the flow stream and collect them for subsequent culture or other analyses. The statistically rigorous, cell‐level perspective provided by flow cytometry has been advantageous in experimental investigations of phycological problems, such as the regulation of cell cycle progression. The capacity of flow cytometry to measure large numbers of cells in large numbers of samples rapidly and quantitatively has been used extensively by biological oceanographers to define the distributions and dynamics of marine picophytoplankton. Recent work has shown that flow cytometry can be used to elucidate relationships between the optical properties of individual cells and the bulk optical properties of the water they live in, and thereby may provide an explicit link between algal physiology and global biogeochemistry. Unfortunately, commercially available flow cytometers that are optimized for biomedical applications have a limited capacity to analyze larger phytoplankton. To circumvent these limitations, many investigators are developing flow cytometers specifically designed for analyzing the broad range of sizes, shapes, and pigments found among algae. These new instruments can perform some novel measurements, including simple fluorescence excitation spectra, detailed angular scattering measurements, and in‐flow digital imaging. The growing accessibility and power of flow cytometers may allow the technology to be applied to a wider array of problems in phycology, including investigations of nonplanktonic and multicellular algae, but also presents new challenges for effectively analyzing the large quantity of multiparameter data produced. Ultimately, the detection of molecular probes by flow cytometry may allow single‐cell taxonomic and physiological information to be garnered for a variety of algae, both in culture and in nature.  相似文献   

14.
The present work reports capillary liquid chromatographic column switching methodology tailored for fast, sensitive and selective determination of 1-hydroxypyrene (1-OHP) in human urine using micro-electrospray ionization time-of-flight mass spectrometric detection. Samples (100 microl) of deconjugated, water diluted and filtered urine samples were loaded onto a 150 microm I.D.x 30 mm 10 microm Kromasil C(18) pre-column, providing on-line sample clean-up and analyte enrichment, prior to back flushed elution onto a 150 microm I.D.x 100 mm 3.5 microm Kromasil C(18) analytical column. Loading flow rates up to 100 microl/min in addition to the use of isocratic elution by a mobile phase composition of acetonitrile/water (70/30, v/v) containing 5 mM ammonium acetate provided elution of 1-OHP within 5.5 min and a total analysis time of less than 15 min with manual operation. Ionization was performed in the negative mode and 1-OHP was observed as [M-H](-) at m/z 217.08. The method was validated over the concentration range 0.2-40 ng/ml 1-OHP in pre-treated urine, yielding a coefficient of correlation of 0.997. The within-assay (n=6) and between-assay (n=6) precisions were in the range 6.4-7.3 and 7.0-8.1%, respectively, and the recoveries were in the range 96.2-97.5 within the investigated concentration range. The method mass limit of detection was 2 pg, corresponding to a 1-OHP concentration limit of detection of 20 pg/ml (0.09 nmol/l) diluted urine or 0.3 ng/ml (1.35 nmol/l) urine.  相似文献   

15.
BACKGROUND: Conventional flow cytometry does not allow the rapid analysis of multiple samples. This has limited its uses in drug discovery, for which the standard for throughput is 100,000 samples per day. METHODS: We describe a simple method in which commercial peristaltic tubing is connected from a commercial autosampler to a flow cytometer. The samples are delivered via a peristaltic pump from source wells in a multiwell plate. The samples are separated by air bubbles. RESULTS: Throughput rates approach the limit of the autosampler (up to 100 wells per minute). Using optimal tubing and flow rates, particles remain within appropriate light scatter and fluorescence gates. The carryover between wells is typically less than 5% without and 1% with a wash step. The volumes of sample delivered are in the microliter scale. The approach has been validated with instruments from three manufacturers. CONCLUSIONS: Flow cytometry has potential throughput of 100,000 samples or more per day starting with the method described. The method is currently best suited to end-point assays. However, combined with high-speed sorting and single- cell assays, the number of assays could approach 1 billion per day.  相似文献   

16.
A procedure for optimizing the configuration of flow cytometers for enumerating micronucleated erythrocytes is described. The method is based on the use of a biological model for micronucleated erythrocytes, the malaria parasite Plasmodium berghei. P. berghei endows target cells of interest (erythrocytes) with a micronucleus-like DNA content. Unlike micronuclei, parasitized red blood cells have a homogenous DNA content, and can be very prevalent in circulation. These characteristics make malaria-infected erythrocytes extremely well suited for optimizing instrument setup on a daily basis. The experiment described herein was designed to test the hypothesis that malaria-infected erythrocytes can greatly enhance the consistency with which flow cytometers are configured for micronucleus analyses, and thereby minimize intra- and interexperimental variation. Data collected over the course of several months, on two different flow cytometers, supports the premise that malaria-infected blood represents a useful biological standard which helps ensure reliable and consistent flow cytometric enumeration of rare micronucleated erythrocytes.  相似文献   

17.
We developed a flow cytometric method for the enumeration and classification of nonmalignant immature granulocytes (IG). In this study, IG are defined as most immature (IG stage 1: promyelocytes and myelocytes) and as more mature (IG stage 2: metamyelocytes). Blood specimens from 46 patients with documented infectious or inflammatory disease and known presence of IG (by routine manual microscopy) were analyzed. For a reference manual differential count, we used a 400 white blood cell (WBC) differential and separated granulocytes into promyelocytes and myelocytes combined, metamyelocytes, and included band cells in the mature, segmented neutrophil population. The flow cytometric method is based on three-color staining of whole, anticoagulated blood with CD45-PerCP, CD16-FITC, and CD11b-PE-labeled monoclonal antibodies and a three-step gating procedure. The flow cytometric results were confirmed by cell sorting and microscopic evaluation of the sorted cells. A total of 10,000 events, excluding debris, were recorded per specimen and IG stage 1 (CD16-/CD11b-), IG stage 2 (CD16-/CD11b+), and mature neutrophils (CD16+/CD11b+) were categorized. Regression and correlation between flow cytometric IG and the manual differential showed y = 1.34x + 0.95, r(2) = 0.86 for IG stages 1 and 2 combined versus promyelocytes, myelocytes, and metamyelocytes. For IG stage 1 versus microscopic counts of promyelocytes and myelocytes, the results were y = 1.53x + 1.24, r(2) = 0.76; for IG stage 2 versus manual metamyelocyte count, y = 0.77x + 0.21, r(2) = 0.58. Reproducibility of the flow cytometric method showed a coefficient of variation (CV) of 6.8% for all IG combined compared with a CV of 50.2% for manual differential IG count (based on a routine 100 WBC count). Samples were found stable at least 12 h at 25 degrees C and at least 48 h at 4 degrees C for flow cytometry. After staining and lysing, the sample was stable for at least 120 min at room temperature. We analyzed samples from patients with myelodysplastic and myeloproliferative disease separately. We found that CD16- mature neutrophils falsely elevated the flow cytometric IG count. Similar results were obtained in blood from patients treated with granulocyte-colony stimulating factor (G-CSF). Although this restricts the use of the method somewhat, we believe that this flow cytometric method is useful for enumerating reactive IG, as well as for evaluating automated methods for IG identification by hematology analyzers.  相似文献   

18.
We describe a micromixing approach that is compatible with commercial autosamplers, flow cytometry, and other detection schemes that require the mixing of components that have been introduced into laminarflow. The scheme is based on high-throughput flow cytometry (HyperCyt) where samples from multi-well plates that have been picked up by an autosampler can be separated during delivery by the small air bubbles introduced during the transit of the autosampler probe from well to well. Here, either cell or particle samplesflowing continuously and driven by a syringe are brought together in a Y with reagent samples from wells driven by a peristaltic pump. The mixing is driven by a magnetic microstirrer contained within the sample line. The mixing is assessed using fluorescence of both cell calcium responses and bead-based fluorescence unquenching. In the analysis stream, the particles and reagents are mixed with eithera "wire" or "bar". The bar is more efficient than the wire, and the efficiency of either depends on the spinning action. The high-throughput approach and mixing in HyperCyt integrate autosamplers with submicroliter detection volumes for analysis in flow cytometry or in microfluidic channels.  相似文献   

19.
Flow cytometry specializes in high-content measurements of cells and particles in suspension. Having long excelled in analytical throughput of single cells and particles, only recently with the advent of HyperCyt sampling technology, flow cytometry's multiexperiment throughput has begun to approach the point of practicality for efficiently analyzing hundreds-of-thousands of samples, the realm of high-throughput screening (HTS). To extend performance and automation compatibility, we built a HyperCyt-linked Cluster Cytometer platform, a network of flow cytometers for analyzing samples displayed in high-density, 1,536-well plate format. To assess the performance, we used cell- and microsphere-based HTS assays that had been well characterized in the previous studies. Experiments addressed important technical issues: challenges of small wells (assay volumes 10 μL or less, reagent mixing, cell and particle suspension), detecting and correcting for differences in performance of individual flow cytometers, and the ability to reanalyze a plate in the event of problems encountered during the primary analysis. Boosting sample throughput an additional fourfold, this platform is uniquely positioned to synergize with expanding suspension array and cell barcoding technologies in which as many as 100 experiments are performed in a single well or sample. As high-performance flow cytometers shrink in cost and size, cluster cytometry promises to become a practical, productive approach for HTS, and other large-scale investigations of biological complexity.  相似文献   

20.
BACKGROUND: In contrast to large, high-efficiency cytometers, mechanically sorting benchtop instruments provide a feasible alternative for shipboard cell sorting of oceanic microbial communities. However, sorting efficiency of these instruments is constrained by their maximum sorting rate of approximately 300 cells/s and by constant dilution of sorted samples by sheath flow. These factors often render too low sorted cell concentrations for postsorting experiments of oceanic phytoplankton populations of low natural abundance. A Cell Concentrator module has been marketed to overcome these dilution effects. Postsorting experiments also have to consider potential physiologic effects of cell sorting. Short-term physiologic effects on phytoplankton photosynthetic rates and esterase activities by mechanical flow sorting and cell concentration and on the efficiency of the Cell Concentrator module are evaluated. METHODS: Increasing numbers of the oceanic phytoflagellates Micromonas pusilla and Emiliania huxleyi were sorted and concentrated, and recovery in the concentrated samples was compared with the sorted-only samples (concentration rate) and the total number of sorted cells (recovery rate). Photosynthetic rates and metabolic activities of sorted and sorted/concentrated cells were compared with unsorted cells. Photosynthetic rates were estimated from 14CO2 uptake experiments and metabolic activity quantified cytometrically after cleavage of fluorescein diacetate. RESULTS: Irrespective of the total number of sorted cells, concentration rates between concentrated and sorted cells remained mostly below 10-fold and did not increase with the number of concentrated cells. Recovery rates in the concentrated samples amounted to fewer than 10% of total sorted cells, except for forceful resuspension attempts in the Concentrator insert (25-44%), which might be unsuitable for delicate species. Cell sorting resulted in a 24-49% decrease in photosynthetic rates. Metabolic activity within metabolically active cells was not affected by cell sorting, but the share of metabolically active cells decreased by 32-37%. Cell concentration did not affect metabolic activity or the fraction of active cells but did increase photosynthetic rate several-fold compared with unsorted cells. CONCLUSION: Low recovery of concentrated cells, probably due to cell adhesion to the filer bottom of the Concentrator insert, render the Cell Concentrator of limited use to overcome dilution problems of mechanical flow sorting, particularly when results are extrapolated to natural, low-abundance populations. Severe changes in photosynthetic rates also render concentrated cells suspicious for subsequent physiologic experiments. Mechanical sorting alone also exhibited significant physiologic effects on sorted cells, some of which might not be temporary. Comparable effects between mechanical sorting and droplet sorting as previously reported confirm that physiologic effects might be caused predominantly by shear stress and laser exposure during cytometric analysis rather than the sorting process. Sufficient recovery time must be allowed before postsorting experiments, but potential changes in cell physiology from the natural conditions during postsorting recovery must be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号