首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bis-PLP (P'P2-bis[5'-pyridoxal]diphosphate) was used as a probe of the catalytic site of 4-aminobutyrate aminotransferase. It reacts with lysine residues connected with aminotransferase activity and the binding of 1 mol of reduced bis-PLP/enzyme monomer abrogates catalytic activity. The reactive lysine residues are characterized by low pK values (pK = 7.3). The presence of substrate 2-oxoglutarate (4 mM) prevents inactivation of the aminotransferase treated with bis-PLP. After tryptic digestion of the enzyme modified with bis-PLP and reduced with tritiated NaBH4, a radioactive peptide absorbing at 320 nm was separated by reverse-phase high-performance liquid chromatography. The amino acid sequence of the radioactive peptide, elucidated by Edman degradation, revealed that a specific lysine residue of monomeric 4-aminobutyrate aminotransferase has reacted with bis-PLP. The sequence of the modified peptide differs from the sequence of the peptide bearing the cofactor pyridoxal-5-P covalently attached to a lysine residue. It is postulated that the modified lysine residue is involved in direct interactions with negatively charged carboxylic groups of 2-oxoglutarate.  相似文献   

2.
1. The specific activities of 4-aminobutyrate aminotransferase (EC 2.6.1.19) and succinate semialdehyde dehydrogenase (EC 1.2.1.16) were significantly higher in brain mitochondria of non-synaptic origin (fraction M) than those derived from the lysis of synaptosomes (fraction SM2). 2. The metabolisms of 4-aminobutyrate in both 'free' (non-synaptic, fraction M) and 'synaptic' (fraction SM2) rat brain mitochondria was studied under various conditions. 3. It is proposed that 4-aminobutyrate enters both types of brain mitochondria by a non-carrier-mediated process. 4. The rate of 4-aminobutyrate metabolism was in all cases higher in the 'free' (fraction M) brain mitochondria than in the synaptic (fraction SM2) mitochondria, paralleling the differences in the specific activities of the 4-aminobutyrate-shunt enzymes. 5. The intramitochondrial concentration of 2-oxoglutarate appears to be an important controlling parameter in the rate of 4-aminobutyrate metabolism, since, although 2-oxoglutarate is required, high concentrations (2.5 mM) of extramitochondrial 2-oxoglutarate inhibit the formation of aspartate via the glutamate-oxaloacetate transaminase. 6. The redox state of the intramitochondrial NAD pool is also important in the control of 4-aminobutyrate metabolism; NADH exhibits competitive inhibition of 4-aminobutyrate metabolism by both mitochondrial populations with an apparent Ki of 102 muM. 7. Increased potassium concentrations stimulate 4-aminobutyrate metabolsim in the synaptic mitochondria but not in 'free' brain mitochondria. This is discussed with respect to the putative transmitter role of 4-aminobutyrate.  相似文献   

3.
4-Aminobutyrate:2-oxoglutarate (4-aminobutyrate:2-oxoglutarate amino-transferase, EC 2.6.1.19) from human brain has been purified 2500-fold with respect to the initial homogenate. The enzyme, which appears to be pure by polyacrylamide gel electrophoresis, N-terminal analysis and immunodiffusion, was compared to rat brain 4-aminobutyrate transaminase, purified to the same extent in an earlier study [15]. The two enzymes, which have approximately the same molecular weight, show large differences in their tryptic fingerprints and in the peptides produced by cyanogen bromide cleavage. The Km values (limit) for 4-aminobutyrate are different, the human enzyme having four times greater affinity for this substrate. A series of branched-chain fatty acids (including n-dipropylacetate), which are structural analogues of 4-aminobutyrate and inhibit rat brain 4-aminobutyrate transaminase, are less powerful inhibitors of the human enzyme.  相似文献   

4.
—The distribution, localization and changes in intensity of γ-aminobutyrate transaminase (4-aminobutyrate: 2-oxoglutarate aminotransferase, EC 2.6.1.19) in rat brain have been studied during the first 20 days of postnatal life by a histochemical technique. Enzyme activity at birth was seen only in Purkinje cells of the cerebellar cortex where it increased markedly during the first 20 days. A rapid increase in enzyme activity was seen in regions of the hind-brain after 3 days but a slower increase was apparent in areas of the fore- and mid-brain. The results indicated that by 10 days post-partum nerve cell GABA-T activity had developed in the majority of brain areas studied, while glial cell GABA-T activity developed between 10 and 15 days post-partum. Evidence is presented which indicates that there is a discontinuous function of GABA-T in the developing brain.  相似文献   

5.
Conformational changes induced in 4-aminobutyrate aminotransferase (4-aminobutyrate:2-oxoglutarate aminotransferase, EC 2.6.1.19) by conversion of pyridoxal-5-P to pyridoxyl-5-P were examined by two independent methods. The reactivity of the SH groups of the reduced enzyme is increased by chemical modification of the cofactor. 1.8 SH per dimer of modified enzyme react with DTNB, whereas 1.2 SH per dimer of the native enzyme react with the attacking reagent under identical experimental conditions. The modified and native forms of the enzyme bind the fluorescent probe ANS, but the number of binding sites for ANS is increased as result of conversion of P-pyridoxal to P-pyridoxyl. After the conformational changes onset by reduction of the cofactor, the modified enzyme binds one molecule of pyridoxal-5-P with a Kd of 0.1 microM to become catalytically competent. The catalytic site of the reduce enzyme was probed with P-pyridoxal analogs. Like resolved 4-aminobutyrate aminotransferase, the reduced species recognize the phosphorothioate analog and regain 40% of the total enzymatic activity. Since the catalytic parameters of reduced and native 4-aminobutyrate aminotransferase are indistinguishable, it is concluded that the additional catalytic site of the reduced enzyme is functionally identical to that of the native enzyme.  相似文献   

6.
We present genetic evidence for the enzymes 4-aminobutyrate: 2-oxoglutarate aminotransferase (EC 2.6.1.19) and succinate-semialdehyde dehydrogenase [NAD(P)+] (EC 1.2.1.16) constituting the functional pathway for the utilization of 4-aminobutyric acid as a nitrogen source by Saccharomyces cerevisiae. We show that the pathway is induced by 4-aminobutyric acid and that the presence of the pathway enzymes probably requires the integrity of a positive control element.  相似文献   

7.
Effect of L-cycloserine on brain GABA metabolism   总被引:6,自引:0,他引:6  
The administration of L-cycloserine to mice resulted in a dramatic decrease in the activities of 4-aminobutyrate:2-oxoglutarate aminotransferase (GABA-T) and L-alanine:2-oxoglutarate aminotransferase (ALA-T) in both brain and liver. L-Aspartate:2-oxoglutarate aminotransferase was inhibited only slightly, and brain glutamic acid decarboxylase not at all. Liver ALA-T activity returned to near normal levels within 24 h of L-cycloserine administration whereas liver GABA-T and brain ALA-T activities had returned only halfway to normal levels in the same time period. The recovery in the activity of brain GABA-T was even slower. A consequence of the inhibition of brain GABA-T activity was an elevation in the GABA content of the tissue which was maximal 3 h after L-cycloserine administration and which was still noticeable 8 h after the drug treatment. L-Cycloserine was also a potent in vitro inhibitor of brain GABA-T activity. The inhibition was competitive with respect to GABA, the Ki value being 3.1 X 10(-5) M. The prior administration of L-cycloserine to mice significantly delayed the onset of isonicotinic acid hydrazide induced convulsions.  相似文献   

8.
4-Aminobutyrate aminotransferase (GABAT) from Pseudomonas aeruginosa was purified 64-fold to apparent electrophoretic homogeneity from cells grown with 4-aminobutyrate as the only source of carbon and nitrogen. Purified GABAT catalyzed the transamination of 4-aminobutyrate, N2-acetyl-L-ornithine, L-ornithine, putrescine, L-lysine, and cadaverine with 2-oxoglutarate (listed in order of decreasing activity). The enzyme is induced in cells grown on 4-guanidinobutyrate, 4-aminobutyrate, or putrescine as the only carbon and nitrogen source. Cells grown on arginine or on glutamate contained low levels of the enzyme. The regulation of the synthesis of GABAT as well as the properties of the mutant with an inactive N2-acetyl-L-ornithin 5-aminotransferase suggest that GABAT functions in the biosynthesis of arginine by convertine N2-acetyl-L-glutamate 5-semialdehyde to N2-acetyl-Lornithine as well as in catabolic reactions during growth on putrescine or 4-guanidinobutyrate but not during growth on arginine.  相似文献   

9.
Using various chromatographic procedures, 4-aminobutyrate : 2-oxoglutarate transaminase from rat brain has been purified 2400 times with respect to the initial brain homogenate. The purified protein, which has a specific activity of 10 mumol times min -1, x mg-1 gave a single band by acrylamide gel electrophoresis and isoelectric focusing. It has a molecular weight of 105000 +/- 5000 and an isoelectric point of 6.8. In the presence of 0.1% sodium dodecylsulphate, a single protein band is seen on polyacrylamide gel, corresponding to a molecular weight of 57000 +/- 5000. N-terminal analysis reveals two chains with the same N-terminal amino acid, thus the enzyme may be considered as a dimer consisting of two identical subunits. The pH optimum for enzyme activity is 8.5. Studies of the enzymic reaction show that the general mechanism is of the ping-pong bi-bi model. The Km for 2-oxoglutarate at saturating 4-aminobutyrate extrapolated to saturating 2-oxoglutarate concentration is 4 mM. 2-Oxoglutarate competitively inhibits the enzyme with respect to 4-aminobutyrate, with a Ki of 1.8 times 10(-4) M. The same phenomenon is seen for the reverse reaction where the Ki is 6.6 times 10(-4) M for succinic semi-aldehyde.  相似文献   

10.
A rapid and specific method for assaying 4-aminobutyrate-2-oxoglutarate aminotransferase was developed. The method was based on the selectivity of ion exchange resin and the speed of vacuum filtration. With this new method, the aminotransferase activity in various tissues has been determined as follows: brain, 10.2; spinal cord, 11.8; liver, 5.7; kidney, 4.6; heart, 0.5; lung, 0.4 nmol glutamate formed/min/mg. No activity could be detected in muscle preparations. When the aminotransferases were tested with the antibody, against the purified 4-aminobutyrate aminotransferase from brain, no difference could be detected among brain, spinal cord, and kidney preparations as judged from the results of immunodiffusion, inhibition of enzyme activity by antibody, and microcomplement fixation. It is concluded that 4-aminobutyrate aminotransferases from various tissues of the mouse are probably identical or closely related.This work was supported in part by Grant No. NS 13224 and P01 NS 12116 from the National Institutes of Health, U.S.A. and Grant from Huntington's Chorea Foundation.All correspondence should be addressed to Dr. Wu.  相似文献   

11.
4-Aminobutyrate aminotransferase is inactivated by preincubation with iodosobenzoate at pH 7. The reaction of 2 SH residues/dimer resulted in formation of an oligomeric species of Mr = 100,000 detectable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The subunits cross-linked via a disulfide bond are dissociated by addition of 2-mercaptoethanol which also restores full catalytic activity (Choi, S. Y., and Churchich, J.E. (1985) J. Biol. Chem. 260, 993-997). The substrate 2-oxoglutarate prevents inactivation of the enzyme by iodosobenzoate and the subsequent formation of one disulfide bond, whereas 4-aminobutyrate has no effect on the reactivity of SH groups with iodosobenzoate. Modified 4-aminobutyrate aminotransferase (containing 1 disulfide bond) catalyzes a half-transamination reaction; but it is unable to react with 2-oxoglutarate to generate the aldimine form of the enzyme. The spectroscopic properties (fluorescence yield and polarization of fluorescence) of PMP bound to the modified enzyme are different from those of pyridoxamine phosphate (PMP) bound to the native enzyme. The polarization of fluorescence values of PMP bound to the cross-linked enzyme, excited over the spectral range 310-370 nm, are greater (25%) than those of the cofactor of the native enzyme. An increase in the polarization values implies that the motion of PMP is restricted when the subunits are cross-linked via a disulfide bond.  相似文献   

12.
Candida tropicalis was found to contain high levels of the following enzymes after growth in defined medium on L-lysine as sole nitrogen source: L-lysine N6-acetyltransferase, N6-acetyl-lysine aminotransferase, and aminotransferase activity for 5-aminovalerate and 4-aminobutyrate. Extracts were also capable of converting 5-acetamidovalerate (and 4-acetamidobutyrate) to acetate. N6-Acetyllysine however, only gave rise to acetate in the presence of 2-oxoglutarate, NAD+ and thiamine pyrophosphate. These activities were undetectable or present in much lower concentrations in cells that had been grown on ammonium sulphate as sole nitrogen source. It is concluded that L-lysine is degraded in this organism via N6-acetyllysine, 5-acetamidovalerate and 5-aminovalerate, both nitrogen atoms being removed by transamination.  相似文献   

13.
Laboratory cultures of cowpea Rhizobium MNF2030 grew on 4-aminobutyrate (GABA) as sole source of carbon and nitrogen. GABA transport was active since it was inhibited by carbonyl cyanide mchlorophenyl hydrazone and 2,4-dinitrophenol and cells developed a 400-fold concentration gradient across the cell membrane. Arsenite treatment of GABA-grown cells revealed stoichiometric conversion of GABA to pyruvate, indicating that 2-oxoglutarate is not an intermediate in GABA catabolism. GABA catabolism by cells of strain MNF2030 grown on GABA appreared to involve GABA transaminase, succinic semialdehyde dehydrogenase and malic enzyme; the first two enzymes were specifically induced by growth on GABA. The deamination process and removal of NH3 in cells catabolizing GABA involved GABA: 2-oxoglutarate transaminase; glutamate: oxaloacetate aminotransferase; asparate: pyruvate aminotransferase and alanine dehydrogenase.Isolated snakebean bacteroids of strain MNF2030 transported only small amounts of GABA and had uninduced levels of GABA catabolic enzymes, even though the nodules contained significant levels of GABA. The data suggest that GABA is not available to snakebean nodule bacteroids, presumably because of a control imposed by the peribacteroid membrane.Abbreviations CCCP Carbonyl cyanide m-chlorophenyl hydrazone - HEPES N-hydroxyethylpiperazine-N-2-ethanesulphonic acid - DTT dithiothreitol - SSAD succinic semialdehyde dehydrogenase - GABAT 4-aminobutyrate transaminase - GABA 4-aminobutyrate  相似文献   

14.
Alanine aminotransferase (EC 2.6.1.2) was obtained from the fungus Leptosphaeria michotii (West) Sacc, and enriched 714-fold by a 5-step purification procedure as a dimer of Mr 110000, associated with a polypeptide of Mr 25000. Its isoelectric point was 5.25. The enzyme was active from pH 3.5 to 9.5 with a maximum at pH 7.5. Its specific activity was 6000 nkat (mg protein)−1; the Km was 6.85 m M for L-alanine and 0.2 m M for 2-oxoglutarate. The enzyme did not show any detectable activity in the presence of L-aspartate, cysteine sulfinate, α-aminobutyrate or cyclic amino acids as substrates. It did not express alanine:glyoxylate aminotransferase activity. Alanine aminotransferase in L. michotii has previously been shown to have an activity rhythm in constant temperature and darkness. The enzyme level was quantified along the activity rhythm by enzyme-linked immunosorbent assay (ELISA), using a monospecific polyclonal antibody against the purified enzyme. The cyclic variations of alanine aminotransferase activity were correlated with cyclic variations in the enzyme level.  相似文献   

15.
—Aromatic: 2-oxoglutarate aminotransferase has been purified about 950-fold from rat brain mitochondria. The purified enzyme was homogeneous in polyacrylamide gel electrophoresis and had a molecular weight of approx 63,000. On the basis of substrate specificity, substrate inhibition, purification ratio, yield, polyacrylamide gel electrophoresis and some other properties of the enzyme it has been suggested that brain mitochondrial tyrosine:2-oxoglutarate aminotransferase (l -tyrosine: 2-oxoglutarate aminotransferase, EC 2.6.1.5) is identical with brain mitochondrial phenylalanine and kynurenine: 2-oxoglutarate aminotransferases (l -kynurenine: 2-oxoglutarate aminotransferase, EC 2.6.1.7), and also with aspartate: 2-oxoglutarate aminotransferase (l -aspartate: 2-oxoglutarate aminotransferase, EC 2.6.1.1).  相似文献   

16.
Propionibacterium freudenreichii strain DSM 20271 was grown in a mineral medium containing 0.1% (w/v) yeast extract. Acetate was oxidized by growing cells with potassium hexacyanoferrate as electron acceptor, which was oxidized by a three-electrode poised-potential system at a redox potential of +510 mV. Growth with acetate under these conditions followed linear rather than expenential kinetics, whereas growth with other substrates such as lactate under the same conditions was exponential. Cell-free extracts of P. freudenreichii cells grown with acetate contained all enzymes of the classical citric acid cycle except 2-oxoglutarate-oxidizing activity. No activity of anaplerotic reactions such as isocitrate lyase or malate synthase was found. Instead, moderate activities of glutamate decarboxylase, 4-aminobutyrate:2-oxoglutarate aminotransferase, and succinate semialdehyde dehydrogenase were detected. In short-term radiolabeling experiments with U-14C-acetate, 4-aminobutyrate was identified as a major early intermediate in acetate oxidation by these cells. These findings allow the construction of a modified citric acid cycle that compensates the lack of 2-oxoglutarate dehydrogenase by a subcycle through glutamate, 4-aminobutyrate, and succinate semialdehyde. Lack of anaplerotic reactions explains subexponential growth kinetics during growth with acetate.  相似文献   

17.
4-Aminobutyrate: 2-oxoglutarate aminotransferase of Streptomyces griseus was purified to homogeneity on disc electrophoresis. The relative molecular mass of the enzyme was found to be 100 000 +/- 10 000 by a gel filtration method. The enzyme consists of two subunits identical in molecular mass (Mr 50 000 +/- 1000). The transaminase is composed of 486 amino acids/subunit containing 10 and 12 residues of half-cystine and methionine respectively. The NH2-terminal amino acid sequence of the enzyme was determined to be Thr-Ala-Phe-Pro-Gln. The enzyme exhibits absorption maxima at 278 nm, 340 nm and 415 nm with a molar absorption coefficient of 104 000, 11 400 and 7280 M-1 cm-1 respectively. The pyridoxal 5'-phosphate content was calculated to be 2 mol/mol enzyme. The enzyme has a maximum activity in the pH range of 7.5-8.5 and at 50 degrees C. The enzyme is stable at pH 6.0-10.0 and at temperatures up to 50 degrees C. Pyridoxal 5'-phosphate protects the enzyme from thermal inactivation. The enzyme catalyzes the transamination of omega-amino acids with 2-oxoglutarate; 4-aminobutyrate is the best amino donor. The Michaelis constants are 3.3 mM for 4-aminobutyrate and 8.3 mM for 2-oxoglutarate. Low activity was observed with beta-alanine. In addition to omega-amino acids the enzyme catalyzes transamination with ornithine and lysine; in both cases the D isomer is preferred. Carbonyl reagents and sulfhydryl reagents inhibit the enzyme activity. Chelating agents, non-substrate L and D-2-amino acids, and metal ions except cupric ion showed no effect on the enzyme activity.  相似文献   

18.
4-Aminobutyrate aminotransferase (EC 2.6.1.19, 4 aminobutyrate:2-oxoglutarate aminotransferase) is cleaved by trypsin, yielding an enzymatically active species which can be separated from the split peptides by gel filtration. The shortened enzyme derivative gives one band (Mr = 95,000) on polyacrylamide gradient gel electrophoresis. Changes in protein conformation induced by tryptic digestion were studied by fluorescence spectroscopy. The native enzyme tagged with the chromophore fluorescein yields a rotational relaxation time of 106 ns, whereas the trypsin-digested enzyme gives a rotational relaxation time of 33 ns. The decrease in rotational relaxation time is attributed to flexibility of the polypeptide chain with enhanced rotational freedom of the probe covalently linked to one thiol group. The reactivity of sulfhydryl groups toward 5,5'-dithiobis(2-nitrobenzoic acid) is also affected by trypsin cleavage. More--SH groups (2.6/dimer) become reactive toward 5,5'-dithiobis(2-nitrobenzoic acid) as a result of trypsin digestion. Local conformational fluctuations are induced as a result of tryptic cleavage, but the catalytic sites remain intact. The peptides released from 4-aminobutyrate aminotransferase were characterized by fingerprint analysis and their amino acid composition determined.  相似文献   

19.
Rat liver tyrosine aminotransferase was purified by chromatography on CM-Sephadex C-50 and DEAE-cellulose, (NH4)2SO4 fractionation and gel filtration on Sephadex G-200. Livers from 400 rats can be easily worked up by this procedure. Furthermore, this purification method has the advantage that hepatic tryptophan 2,3-dioxygenase, which, like tyrosine aminotransferase, is induced by glucocorticosteroids, can be purified from the same homogenate. Tyrosine aminotransferase purified by this method was shown to be specific for 2-oxoglutarate. Its subunits have a molecular weight of 45 000. The following "apparent" Michaelis constants were determined: L-tyrosine, 1.7 X 10(-3) M; 2-oxoglutarate, 5.9 X 10(-4) M; and pyridoxal 5'-phosphate, 2.1 X 10(-6) M. Tyrosine aminotransferase, depleted of its cofactors, binds 4 molecules of pyridoxal 5'-phosphate per 90 000 daltons with a KA of 2.2 X 10(5) M-1.  相似文献   

20.
Aromatic: 2-oxoglutarate aminotransferase has been purified about 680-fold from the extracts of rat small intestine. The purified enzyme was homogeneous as judged by polyacrylamide gel electrophoresis. On the basis of substrate specificity, substrate inhibition, polyacrylamide gel electrophoresis and other some properties of this enzyme, it has been suggested that tyrosine: 2-oxoglutarate aminotransferase is identical with phenylalanine and kynurenine: 2-oxoglutarate amino-transferases, and also with aspartate: 2-oxoglutarate aminotransferase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号