首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
High sequence divergence, evolutionary mobility, and superfold topology characterize the ACT domain. Frequently found in multidomain proteins, these domains induce allosteric effects by binding a regulatory ligand usually to an ACT domain dimer interface. In mammalian phenylalanine hydroxylase (PAH), no contacts are formed between ACT domains, and the domain promotes an allosteric effect despite the apparent lack of ligand binding. The increased functional scenario of this abundant domain encouraged us to search for distant homologs, aiming to enhance the understanding of the ACT domain in general and the ACT domain of PAH in particular. The PDB was searched using the FATCAT server with the ACT domain of PAH as a query. The hits that were confirmed by the SSAP algorithm were divided into known ACT domains (KADs) and potential ACT domains (PADs). The FATCAT/SSAP procedure recognized most of the established KADs, as well 18 so far unrecognized non-redundant PADs with extremely low sequence identities and high divergence in functionality and oligomerization. However, analysis of the structural similarity provides remarkable clustering of the proteins according to similarities in ligand binding. Despite enormous sequence divergence and high functional variability, there is a common regulatory theme among these domains. The results reveal the close relationships of the ACT domain of PAH with amino acid binding and metallobinding ACT domains and with acylphosphatase.  相似文献   

2.
[NiFe]-hydrogenases are multimeric proteins. The?large subunit contains the NiFe(CN)(2)CO bimetallic active center and the small subunit contains Fe-S clusters. Biosynthesis and assembly of the NiFe(CN)(2)CO active center requires six Hyp accessory proteins. The synthesis of the CN(-) ligands is?catalyzed by the combined actions of HypF and?HypE using carbamoylphosphate as a substrate.?We report the structure of Escherichia coli HypF(92-750) lacking the N-terminal acylphosphatase domain. HypF(92-750) comprises the novel Zn-finger domain, the nucleotide-binding YrdC-like domain, and the Kae1-like universal domain, also binding a nucleotide and a Zn(2+) ion. The two nucleotide-binding sites are sequestered in an internal cavity, facing each other and separated by ~14??. The YrdC-like domain converts carbamoyl moiety to a carbamoyl adenylate intermediate, which is channeled to the Kae1-like domain. Mutations within either nucleotide-binding site compromise hydrogenase maturation but do not affect the carbamoylphosphate phosphatase activity.  相似文献   

3.
TTHA0829 from Thermus thermophilus HB8 has a molecular mass of 22,754 Da and is composed of 210 amino acid residues. The expression of TTHA0829 is remarkably elevated in the latter half of logarithmic growth phase. TTHA0829 can form either a tetrameric or dimeric structure, and main-chain folding provides an N-terminal cystathionine-β-synthase (CBS) domain and a C-terminal aspartate-kinase chorismate-mutase tyrA (ACT) domain. Both CBS and ACT are regulatory domains to which a small ligand molecule can bind. The CBS domain is found in proteins from organisms belonging to all kingdoms and is observed frequently as two or four tandem copies. This domain is considered as a small intracellular module with a regulatory function and is typically found adjacent to the active (or functional) site of several enzymes and integral membrane proteins. The ACT domain comprises four β-strands and two α-helices in a βαββαβ motif typical of intracellular small molecule binding domains that help control metabolism, solute transport and signal transduction. We discuss the possible role of TTHA0829 based on its structure and expression pattern. The results imply that TTHA0829 acts as a cell-stress sensor or a metabolite acceptor.  相似文献   

4.
The N-terminal domain of HypF from Escherichia coli (HypF-N) is a 91 residue protein module sharing the same folding topology and a significant sequence identity with two extensively studied human proteins, muscle and common-type acylphosphatases (mAcP and ctAcP). With the aim of learning fundamental aspects of protein folding from the close comparison of so similar proteins, the folding process of HypF-N has been studied using stopped-flow fluorescence. While mAcP and ctAcP fold in a two-state fashion, HypF-N was found to collapse into a partially folded intermediate before reaching the fully folded conformation. Formation of a burst-phase intermediate is indicated by the roll over in the Chevron plot at low urea concentrations and by the large jump of intrinsic and 8-anilino-1-naphtalenesulphonic acid-derived fluorescence immediately after removal of denaturant. Furthermore, HypF-N was found to fold rapidly with a rate constant that is approximately two and three orders of magnitudes faster than ctAcP and mAcP, respectively. Differences between the bacterial protein and the two human counterparts were also found as to the involvement of proline isomerism in their respective folding processes. The results clearly indicate that features that are often thought to be relevant in protein folding are not highly conserved in the evolution of the acylphosphatase superfamily. The large difference in folding rate between mAcP and HypF-N cannot be entirely accounted for by the difference in relative contact order or related topological metrics. The analysis shows that the higher folding rate of HypF-N is in part due to the relatively high hydrophobic content of this protein. This conclusion, which is also supported by the highly significant correlation found between folding rate and hydrophobic content within a group of proteins displaying the topology of HypF-N and AcPs, suggests that the average hydrophobicity of a protein sequence is an important determinant of its folding rate.  相似文献   

5.
MnmC catalyses the last two steps in the biosynthesis of 5-methylaminomethyl-2-thiouridine (mnm(5)s(2)U) in tRNA. Previously, we reported that this bifunctional enzyme is encoded by the yfcK open reading frame in the Escherichia coli K12 genome. However, the mechanism of its activity, in particular the potential structural and functional dependence of the domains responsible for catalyzing the two modification reactions, remains unknown. With the aid of the protein fold-recognition method, we constructed a structural model of MnmC in complex with the ligands and target nucleosides and studied the role of individual amino acids and entire domains by site-directed and deletion mutagenesis, respectively. We found out that the N-terminal domain contains residues responsible for binding of the S-adenosylmethionine cofactor and catalyzing the methylation of nm(5)s(2)U to form mnm(5)s(2)U, while the C-terminal domain contains residues responsible for binding of the FAD cofactor. Further, point mutants with compromised activity of either domain can complement each other to restore a fully functional enzyme. Thus, in the conserved fusion protein MnmC, the individual domains retain independence as enzymes. Interestingly, the N-terminal domain is capable of independent folding, while the isolated C-terminal domain is incapable of folding on its own, a situation similar to the one reported recently for the rRNA modification enzyme RsmC.  相似文献   

6.
Electrophoretically homogeneous preparations of organ-common type acylphosphatase from porcine testis and brain were separated into two molecular species by reversed-phase liquid chromatography. From tryptic peptide map analysis, it was inferred that each of the two testis proteins is the same as the corresponding one of the two brain proteins. The complete primary structures of the two acylphosphatases from testis were then determined. The one molecular species consists of 100 amino acid residues: [sequence; see text] The other consists of 98 amino acid residues identical to the 3rd-100th residues of the above sequence and is also acetylated at the amino-terminal alanine. The 98-residue sequence has only 59% homology with porcine muscle acylphosphatase, but has 92% homology with human erythrocyte acylphosphatase. It was thus confirmed that the major acylphosphatases in testis, brain, and erythrocyte belong to the same organ-common type isoenzyme, distinct from the muscle type isoenzyme.  相似文献   

7.
Cheung YY  Lam SY  Chu WK  Allen MD  Bycroft M  Wong KB 《Biochemistry》2005,44(12):4601-4611
Acylphosphatases catalyze the hydrolysis of the carboxyl-phosphate bond in acyl phosphates. Although acylphosphatase-like sequences are found in all three domains of life, no structure of acylphosphatase has been reported for bacteria and archaea so far. Here, we report the characterization of enzymatic activities and crystal structure of an archaeal acylphosphatase. A putative acylphosphatase gene (PhAcP) was cloned from the genomic DNA of Pyrococcus horikoshii and was expressed in Escherichia coli. Enzymatic parameters of the recombinant PhAcP were measured using benzoyl phosphate as the substrate. Our data suggest that, while PhAcP is less efficient than other mammalian homologues at 25 degrees C, the thermophilic enzyme is fully active at the optimal growth temperature (98 degrees C) of P. horikoshii. PhAcP is extremely stable; its apparent melting temperature was 111.5 degrees C and free energy of unfolding at 25 degrees C was 54 kJ mol(-)(1). The 1.5 A crystal structure of PhAcP adopts an alpha/beta sandwich fold that is common to other acylphosphatases. PhAcP forms a dimer in the crystal structure via antiparallel association of strand 4. Structural comparison to mesophilic acylphosphatases reveals significant differences in the conformation of the L5 loop connecting strands 4 and 5. The extreme thermostability of PhAcP can be attributed to an extensive ion-pair network consisting of 13 charge residues on the beta sheet of the protein. The reduced catalytic efficiency of PhAcP at 25 degrees C may be due to a less flexible active-site residue, Arg20, which forms a salt bridge to the C-terminal carboxyl group. New insights into catalysis were gained by docking acetyl phosphate to the active site of PhAcP.  相似文献   

8.
The fusion of soluble partner to the N terminus of aggregation-prone polypeptide has been popularly used to overcome the formation of inclusion bodies in the E. coli cytosol. The chaperone-like functions of the upstream fusion partner in the artificial multidomain proteins could occur in de novo folding of native multidomain proteins. Here, we show that the N-terminal domains of three E. coli multidomain proteins such as lysyl-tRNA synthetase, threonyl-tRNA synthetase, and aconitase are potent solubility enhancers for various C-terminal heterologous proteins. The results suggest that the N-terminal domains could act as solubility enhancers for the folding of their authentic C-terminal domains in vivo. Tandem repeat of N-terminal domain or insertion of aspartic residues at the C terminus of the N-terminal domain also increased the solubility of fusion proteins, suggesting that the solubilizing ability correlates with the size and charge of N-terminal domains. The solubilizing ability of N-terminal domains would contribute to the autonomous folding of multidomain proteins in vivo, and based on these results, we propose a model of how N-terminal domains solubilize their downstream domains.  相似文献   

9.
A novel ligand-binding domain, named the 'ACT domain', was recently identified by a PSI-BLAST search. The archetypical ACT domain is the C-terminal regulatory domain of 3-phosphoglycerate dehydrogenase (3PGDH), which folds with a ferredoxin-like betaalphabetabetaalphabeta topology. A pair of ACT domains form an eight-stranded antiparallel sheet with two molecules of the allosteric inhibitor serine bound in the interface. The ACT domain is found in a variety of contexts and is proposed to be a conserved regulatory ligand binding fold. Rat phenylalanine hydroxylase has a regulatory domain with a similar fold, but different ligand-binding mode. Putative ACT domains in some proteins of unknown structure (e.g. acetohydroxyacid synthase regulatory subunits) may also fold like the 3PGDH regulatory domain. The regulatory domain of threonine deaminase, although not a member of the ACT sequence family, is similar in structure to the paired 3PGDH regulatory domains. Repeats of ACT-like domains can create nonequivalent ligand-binding sites with the potential for complex regulatory patterns. The structures and mechanisms of such systems have only begun to be examined.  相似文献   

10.
Grant GA  Hu Z  Xu XL 《Biochemistry》2005,44(51):16844-16852
L-Serine inhibits the catalytic activity of Escherichia coli D-3-phosphoglycerate dehydrogenase (PGDH) by binding to its regulatory domain. This domain is a member of the ACT domain family of regulatory domains that are modulated by small molecules. A comparison of the phi and psi torsional angle differences between the crystal structures of PGDH solved in the presence and in the absence of L-serine demonstrated a clustering of significant angle deviations in the regulatory domain. A similar clustering was not observed in either of the other two structural domains of PGDH. In addition, significant differences were also observed at the active site and in the Trp-139 loop. To determine if these residues were functionally significant and not just due to other factors such as crystal packing, mutagenic analysis of these residues was performed. Not unexpectedly, this analysis showed that residues that affected the kcat/Km were grouped around the active site and those that affected the serine sensitivity were grouped in the regulatory domain. However, more significantly, residues that affected the cooperativity of inhibition of activity were identified at both locations. These latter residues represent structural elements that participate in both the initial and the ultimate events of the transfer of cooperative behavior from the regulatory domain to the active site. As such, their identification will assist in the elucidation of the pathway of cooperative interaction in this enzyme as well as in the elucidation of the regulatory mechanism of the ACT domain in general.  相似文献   

11.
Smith MN  Kwok SC  Hodges RS  Wood JM 《Biochemistry》2007,46(11):3084-3095
Transporter ProP of Escherichia coli senses extracellular osmolality and responds by mediating cytoplasmic accumulation of organic solutes such as proline. Lesions at the proQ locus reduce ProP activity in vivo. ProQ was previously purified and characterized. Homology modeling predicted that ProQ possesses an alpha-helical N-terminal domain (residues 1-130) and a beta-sheet C-terminal domain (residues 181-232) connected by an unstructured linker. In this work, we tested the structural model for ProQ, explored the solubility and folding of full length ProQ and its domains in diverse buffers, and tested the impacts of the putative ProQ domains on ProP activity in vivo. Limited tryptic proteolysis of ProQ revealed protease resistant fragments corresponding to the predicted N-terminal and C-terminal domains. Polypeptides corresponding to the predicted N- and C-terminal domains could be overexpressed and purified to near homogeneity using nickel affinity, size exclusion and reversed phase chromatographies. Circular dichroism spectroscopy of the purified proteins revealed that the N-terminal domain was predominantly alpha-helical, whereas the C-terminal domain was predominantly beta-sheet, as predicted. The domains were soluble and folded in neutral buffers containing 0.6 M NaCl. The N-terminal domain was soluble and folded in 0.1 M MES (2-[N-morpholino]-ethane sulfonic acid) at pH 5.6. Despite high solubilities, the proteins were not well folded in Na citrate (0.1 M, pH 2.3). The ProQ domains and the linker were expressed at physiological levels, singly and in combination, in bacteria lacking the chromosomal proQ locus. Among these proteins, the N-terminal domain could partially complement the proQ deletion. The full length protein and a variant lacking only the linker restored full activity of the ProP protein.  相似文献   

12.
Members of the LanL family of lanthionine synthetases consist of three catalytic domains, an N-terminal pSer/pThr lyase domain, a central Ser/Thr kinase domain, and a C-terminal lanthionine cyclase domain. The N-terminal lyase domain has sequence homology with members of the OspF family of effector proteins. In this study, the residues in the lyase domain of VenL that are conserved in the active site of OspF proteins were mutated to evaluate their importance for catalysis. In addition, residues that are fully conserved in the LanL family but not in the OspF family were mutated. Activity assays with these mutant proteins are consistent with a model in which Lys80 in VenL deprotonates the α-proton of pSer/pThr residues to initiate the elimination reaction. Lys51 is proposed to activate this proton by coordination to the carbonyl of the pSer/pThr, and His53 is believed to protonate the phosphate leaving group. These functions are very similar to the corresponding homologous residues in OspF proteins. On the other hand, recognition of the phosphate group of pSer/pThr appears to be achieved differently in VenL than in the OspF proteins. Arg156 and Lys103 are thought to interact with the phosphate group on the basis of a structural homology model.  相似文献   

13.
BACKGROUND: Do proteins that have the same structure fold by the same pathway even when they are unrelated in sequence? To address this question, we are comparing the folding of a number of different immunoglobulin-like proteins. Here, we present a detailed protein engineering phi value analysis of the folding pathway of TI I27, an immunoglobulin domain from human cardiac titin. RESULTS: TI I27 folds rapidly via a kinetic intermediate that is destabilized by most mutations. The transition state for folding is remarkably native-like in terms of solvent accessibility. We use phi value analysis to map this transition state and show that it is highly structured; only a few residues close to the N-terminal region of the protein remain completely unfolded. Interestingly, most mutations cause the transition state to become less native-like. This anti-Hammond behavior can be used as a novel means of obtaining additional structural information about the transition state. CONCLUSIONS: The residues that are involved in nucleating the folding of TI I27 are structurally equivalent to the residues that form the folding nucleus in an evolutionary unrelated fibronectin type III protein. These residues form part of the common structural core of Ig-like domains. The data support the hypothesis that interactions essential for defining the structure of these beta sandwich proteins are also important in nucleation of folding.  相似文献   

14.
RsbU is a positive regulator of the activity of sigmaB, the general stress-response sigma factor of Gram+ microorganisms. The N-terminal domain of this protein has no significant sequence homology with proteins of known function, whereas the C-terminal domain is similar to the catalytic domains of PP2C-type phosphatases. The phosphatase activity of RsbU is stimulated greatly during the response to stress by associating with a kinase, RsbT. This association leads to the induction of sigmaB activity. Here we present data on the activation process and demonstrate in vivo that truncations in the N-terminal region of RsbU are deleterious for the activation of RsbU. This conclusion is supported by comparisons of the phosphatase activities of full-length and a truncated form of RsbU in vitro. Our determination of the crystal structure of the N-terminal domain of RsbU from Bacillus subtilis reveals structural similarities to the regulatory domains from ubiquitous protein phosphatases and a conserved domain of sigma-factors, illuminating the activation processes of phosphatases and the evolution of "partner switching." Finally, the molecular basis of kinase recruitment by the RsbU phosphatase is discussed by comparing RsbU sequences from bacteria that either possess or lack RsbT.  相似文献   

15.
16.
Polyphosphate (polyP) is a linear polymer consisting of tens to hundreds of phosphate molecules joined together by high-energy anhydride bonds. These polymers are found in virtually all prokaryotic and eukaryotic cells and perform many functions; prominent among them are the responses to many stresses. Polyphosphate is synthesized by polyP kinase (PPK), using the terminal phosphate of ATP as the substrate, and degraded to inorganic phosphate by both endo- and exopolyphosphatases. Here we report the crystal structure and analysis of the polyphosphate phosphatase PPX from Escherichia coli O157:H7 refined at 2.2 Angstroms resolution. PPX is made of four domains. Domains I and II display structural similarity with one another and share the ribonuclease-H-like fold. Domain III bears structural similarity to the N-terminal, HD domain of SpoT. Domain IV, the smallest domain, has structural counterparts in cold-shock associated RNA-binding proteins but is of unknown function in PPX. The putative PPX active site is located at the interface between domains I and II. In the crystal structure of PPX these two domains are close together and represent the "closed" state. Comparison with the crystal structure of PPX/GPPA from Aquifex aeolicus reveals close structural similarity between domains I and II of the two enzymes, with the PPX/GPPA representing an "open" state. A striking feature of the dimer is a deep S-shaped canyon extending along the dimer interface and lined with positively charged residues. The active site region opens to this canyon. We postulate that this is a likely site of polyP binding.  相似文献   

17.
Sheng ZZ  Huang JF 《动物学研究》2011,32(5):509-514
BRCT( BRCA1 C-terminus)是真核生物DNA损伤修复系统重要的信号传导和蛋白靶向结构域.为了探讨含磷酸结合口袋的BRCT与磷酸化配体结合的机制,对XRCC1 BRCT1、PTIP BRCT4、ECT2 BRCT1和TopBP1BRCT1进行了结构保守性和表面静电势分析.结果显示,4个BRCT的磷酸结合口袋周围所存在的结构保守并带正电势的沟槽很可能是其功能位点,并且类似的沟槽在含磷酸结合口袋的BRCT中普遍存在.沟槽两侧及底部均带有极性氨基酸残基,两侧带正电荷,而底部疏水.这说明沟槽与配体的结合以静电和疏水相互作用为主.沟槽主要位于单个BRCT中,而且4个BRCT的沟槽在形状和电荷分布上都不同,说确明BRCT配体特异性主要由单个BRCT决定.磷酸结合口袋位于沟槽中心,说明沟槽可能同时结合磷酸化残基的N端和C端附近残基.  相似文献   

18.
Packer LE  Song B  Raleigh DP  McKnight CJ 《Biochemistry》2011,50(18):3706-3712
Villin-type headpiece domains are ~70 residue motifs that reside at the C-terminus of a variety of actin-associated proteins. Villin headpiece (HP67) is a commonly used model system for both experimental and computational studies of protein folding. HP67 is made up of two subdomains that form a tightly packed interface. The isolated C-terminal subdomain of HP67 (HP35) is one of the smallest autonomously folding proteins known. The N-terminal subdomain requires the presence of the C-terminal subdomain to fold. In the structure of HP67, a conserved salt bridge connects N- and C-terminal subdomains. This buried salt bridge between residues E39 and K70 is unusual in a small protein domain. We used mutational analysis, monitored by CD and NMR, and functional assays to determine the role of this buried salt bridge. First, the two residues in the salt bridge were replaced with strictly hydrophobic amino acids, E39M/K70M. Second, the two residues in the salt bridge were swapped, E39K/K70E. Any change from the wild-type salt bridge residues results in unfolding of the N-terminal subdomain, even when the mutations were made in a stabilized variant of HP67. The C-terminal subdomain remains folded in all mutants and is stabilized by some of the mutations. Using actin sedimentation assays, we find that a folded N-terminal domain is essential for specific actin binding. Therefore, the buried salt bridge is required for the specific folding of the N-terminal domain which confers actin-binding activity to villin-type headpiece domains, even though the residues required for this specific interaction destabilize the C-terminal subdomain.  相似文献   

19.
The thermodynamics and kinetics of folding of common-type acylphosphatase have been studied under a variety of experimental conditions and compared with those of the homologous muscle acylphosphatase. Intrinsic fluorescence and circular dichroism have been used as spectroscopic probes to follow the folding and unfolding reactions. Both proteins appear to fold via a two-state mechanism. Under all the conditions studied, common-type acylphosphatase possesses a lower conformational stability than the muscle form. Nevertheless, common-type acylphosphatase folds more rapidly, suggesting that the conformational stability and the folding rate are not correlated in contrast to recent observations for a number of other proteins. The unfolding rate of common-type acylphosphatase is much higher than that of the muscle enzyme, indicating that the differences in conformational stability between the two proteins are primarily determined by differences in the rate of unfolding. The equilibrium m value is markedly different for the two proteins in the pH range of maximum conformational stability (5. 0-7.5); above pH 8.0, the m value for common-type acylphosphatase decreases abruptly and becomes similar to that of the muscle enzyme. Moreover, at pH 9.2, the dependencies of the folding and unfolding rate constants of common-type acylphosphatase on denaturant concentration (mf and mu values, respectively) are notably reduced with respect to pH 5.5. The pH-induced decrease of the m value can be attributed to the deprotonation of three histidine residues that are present only in the common-type isoenzyme. This would decrease the positive net charge of the protein, leading to a greater compactness of the denatured state. The folding and unfolding rates of common-type acylphosphatase are not, however, significantly different at pH 5.5 and 9.2, indicating that this change in compactness of the denatured and transition states does not have a notable influence on the rate of protein folding.  相似文献   

20.
A J Denzer  C E Nabholz    M Spiess 《The EMBO journal》1995,14(24):6311-6317
Upon insertion of a signal-anchor protein into the endoplasmic reticulum membrane, either the C-terminal or the N-terminal domain is translocated across the membrane. Charged residues flanking the transmembrane domain are important determinants for this decision, but are not necessarily sufficient to generate a unique topology. Using a model protein that is inserted into the membrane to an equal extent in either orientation, we have tested the influence of the size and the folding state of the N-terminal domain on the insertion process. A small zinc finger domain or the full coding sequence of dihydrofolate reductase were fused to the N-terminus. These stably folding domains hindered or even prevented their translocation. Disruption of their structure by destabilizing mutations largely restored transport across the membrane. Translocation efficiency, however, did not depend on the size of the N-terminal domain within a range of 40-237 amino acids. The folding behavior of the N-terminal domain is thus an important factor in the topogenesis of signal-anchor proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号