首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Free radical research》2013,47(6):349-353
Chelates can inhibit the iron- and copper-catalyzed autoxidation of ascorbate at pH 7.0. Diethylenetri-aminepentaacetic acid (DTPA or DETAPAC) and Desferal (deferoximane mesylate) slow the iron-catalyzed oxidation of ascorbate as effectively as reducing the trace levels of contaminating iron in buffers with Chelex resin. DETAPAC, EDTA and HEDTA (N-(2-hydroxyethyl)-ethylenediaminetriacetic acid) are effective at slowing the copper-catalyzed autoxidation of ascorbate while Desferal is ineffective. The ability to inhibit ascorbate autoxidation appears to parallel the rate of the reaction of superoxide with the iron chelate.  相似文献   

2.
Chelates can inhibit the iron- and copper-catalyzed autoxidation of ascorbate at pH 7.0. Diethylenetri-aminepentaacetic acid (DTPA or DETAPAC) and Desferal (deferoximane mesylate) slow the iron-catalyzed oxidation of ascorbate as effectively as reducing the trace levels of contaminating iron in buffers with Chelex resin. DETAPAC, EDTA and HEDTA (N-(2-hydroxyethyl)-ethylenediaminetriacetic acid) are effective at slowing the copper-catalyzed autoxidation of ascorbate while Desferal is ineffective. The ability to inhibit ascorbate autoxidation appears to parallel the rate of the reaction of superoxide with the iron chelate.  相似文献   

3.
Chelating activity of advanced glycation end-product inhibitors.   总被引:7,自引:0,他引:7  
The advanced glycation end-product (AGE) hypothesis proposes that accelerated chemical modification of proteins by glucose during hyperglycemia contributes to the pathogenesis of diabetic complications. The two most commonly measured AGEs, N(epsilon)-(carboxymethyl)lysine and pentosidine, are glycoxidation products, formed from glucose by sequential glycation and autoxidation reactions. Although several compounds have been developed as AGE inhibitors and are being tested in animal models of diabetes and in clinical trials, the mechanism of action of these inhibitors is poorly understood. In general, they are thought to function as nucleophilic traps for reactive carbonyl intermediates in the formation of AGEs; however alternative mechanisms of actions, such as chelation, have not been rigorously examined. To distinguish between the carbonyl trapping and antioxidant activity of AGE inhibitors, we have measured the chelating activity of the inhibitors by determining the concentration required for 50% inhibition of the rate of copper-catalyzed autoxidation of ascorbic acid in phosphate buffer. All AGE inhibitors studied were chelators of copper, as measured by inhibition of metal-catalyzed autoxidation of ascorbate. Apparent binding constants for copper ranged from approximately 2 mm for aminoguanidine and pyridoxamine, to 10-100 microm for carnosine, phenazinediamine, OPB-9195 and tenilsetam. The AGE-breakers, phenacylthiazolium and phenacyldimethylthiazolium bromide, and their hydrolysis products, were among the most potent inhibitors of ascorbate oxidation. We conclude that, at millimolar concentrations of AGE inhibitors used in many in vitro studies, inhibition of AGE formation results primarily from the chelating or antioxidant activity of the AGE inhibitors, rather than their carbonyl trapping activity. Further, at therapeutic concentrations, the chelating activity of AGE inhibitors and AGE-breakers may contribute to their inhibition of AGE formation and protection against development of diabetic complications.  相似文献   

4.
The antioxidant efficiency of vitamin C is concentration-dependent   总被引:5,自引:0,他引:5  
The inhibition of autoxidation of plasma lipids by vitamin C (ascorbic acid) has been studied. The ascorbate stoichiometric factor, n, i.e., the number of peroxyl radicals trapped by each ascorbate molecule, decreases as the concentration of ascorbate increases. This is attributed to the fact that ascorbate not only acts as a radical-trapping antioxidant, but can also undergo autoxidation. The data indicate that n----2.0 as [ascorbate]----0 and that n----0 as [ascorbate]----infinity. This concentration-dependent behaviour accounts for the wide variation of n values reported in the literature. It is suggested that this autoxidative destruction of ascorbate may play a role regulating its concentration in blood plasma.  相似文献   

5.
6-Hydroxydopamine (6-OHDA) neurotoxicity has often been related to the generation of free radicals. Here we examined the effect of the presence of iron (Fe(2+) and Fe(3+)) and manganese and the mediation of ascorbate, L-cysteine (CySH), glutathione (GSH), and N-acetyl-CySH on hydroxyl radical (*OH) production during 6-OHDA autoxidation. In vitro, the presence of 800 nM iron increased (> 100%) the production of *OH by 5 microM 6-OHDA while Mn(2+) caused a significant reduction (72%). The presence of ascorbate (100 microM) induced a continuous generation of *OH while the presence of sulfhydryl reductants (100 microM) limited this production to the first minutes of the reaction. In general, the combined action of metal + antioxidant increased the *OH production, this effect being particularly significant (> 400%) with iron + ascorbate. In vivo, tyrosine hydroxylase immunohistochemistry revealed that intrastriatal injections of rats with 6-OHDA (30 nmol) + ascorbate (600 nmol), 6-OHDA + ascorbate + Fe(2+) (5 nmol), and 6-OHDA + ascorbate + Mn(2+) (5 nmol) caused large striatal lesions, which were markedly reduced (60%) by the substitution of ascorbate by CySH. Injections of Fe(2+) or Mn(2+) alone showed no significant difference to those of saline. These results clearly demonstrate the role of ascorbate as an essential element for the neurotoxicity of 6-OHDA, as well as the diminishing action of sulfhydryl reductants, and the negligible effect of iron and manganese on 6-OHDA neurotoxicity.  相似文献   

6.
Ross EJ  Kramer SB  Dalton DA 《Phytochemistry》1999,52(7):1203-1210
Ascorbate and ascorbate peroxidase are important antioxidants that are abundant in N2-fixing legume root nodules. Antioxidants are especially critical in root nodules because leghemoglobin, which is present at high concentrations in nodules, is prone to autoxidation and production of activated oxygen species such as O2.- and H2O2. The merits of ascorbate and ascorbate peroxidase for maintaining conditions favorable for N2 fixation were examined in two model systems containing oxygen-binding proteins (purified myoglobin or leghemoglobin) and N2-fixing microorganisms (free-living Azorhizobium or bacteroids of Bradyrhizobium japonicum) in sealed vials. The inclusion of ascorbate alone to these systems led to enhanced oxygenation of hemeproteins, as well as to increases in nitrogenase (acetylene reduction) activity. The inclusion of both ascorbate and ascorbate peroxidase resulted in even greater positive responses, including increases of up to 4.5-fold in nitrogenase activity. In contrast, superoxide dismutase did not provide beneficial antioxidant action and catalase alone provided only very marginal benefit. Optimal concentrations were 2 mM for ascorbate and 200 micrograms/ml for ascorbate peroxidase. These concentrations are similar to those found in intact soybean nodules. These results support the conclusion that ascorbate and ascorbate peroxidase are beneficial for maintaining conditions favorable for N2 fixation in nodules.  相似文献   

7.
The regeneration of the copper bands of H. pomatia haemocyanin proceeds much more slowly with an excess of ascorbate than with a slight excess of hydrogen peroxide. The regenerating agent with ascorbate is hydrogen perioxide, formed in its autoxidation at the air. This was concluded after regeneration experiments with ascorbate under strictly anaerobic conditions and at the air in the presence of catalase. The autoxidation of ascorbate was catalysed by Fe and Cu ions. In the presence of EDTA there is still metal catalysis, especially in slightly alkaline medium, due to the Fe(III)-EDTA complex. Addition of diethylenetriamine pentaacetate completely abolished the metal catalysis.  相似文献   

8.
Tetrahydropapaveroline (THP) is a compound derived from dopamine monoamine oxidase-mediated metabolism, particularly present in the brain of parkinsonian patients receiving L-dopa therapy, and is capable of causing dopaminergic neurodegeneration. The aim of this work was to evaluate the potential of THP to cause oxidative stress on mitochondrial preparations and to gain insight into the molecular mechanisms responsible for its neurotoxicity. Our data show that THP autoxidation occurs with a continuous generation of hydroxyl radicals (*OH) and without the involvement of the Fenton reaction. The presence of ascorbate enhances this process by establishing a redox cycle, which regenerates THP from its quinolic forms. It has been shown that the production of *OH is not affected by the presence of either ferrous or ferric iron. Although THP does not affect lipid peroxidation, it is capable of reducing the high levels of thiobarbituric acid-reactive substances obtained in the presence of ascorbate and/or iron. However, THP autoxidation in the presence of ascorbate causes both an increase in protein carbonyl content and a reduction in protein-free thiol content. THP also increases protein carbonyl content when the autoxidation occurs in the presence of iron. The remarkable role played by ascorbate in the production of oxidative stress by THP autoxidation is of particular interest.  相似文献   

9.
Since the discovery of vitamin C, the number of its known biological functions is continually expanding. Both the names ascorbic acid and vitamin C reflect its antiscorbutic properties due to its role in the synthesis of collagen in connective tissues. Ascorbate acts as an electron-donor keeping iron in the ferrous state thereby maintaining the full activity of collagen hydroxylases; parallel reactions with a variety of dioxygenases affect the expression of a wide array of genes, for example via the HIF system, as well as via the epigenetic landscape of cells and tissues. In fact, all known physiological and biochemical functions of ascorbate are due to its action as an electron donor. The ability to donate one or two electrons makes AscH(-) an excellent reducing agent and antioxidant. Ascorbate readily undergoes pH-dependent autoxidation producing hydrogen peroxide (H(2)O(2)). In the presence of catalytic metals this oxidation is accelerated. In this review, we show that the chemical and biochemical nature of ascorbate contribute to its antioxidant as well as its prooxidant properties. Recent pharmacokinetic data indicate that intravenous (i.v.) administration of ascorbate bypasses the tight control of the gut producing highly elevated plasma levels; ascorbate at very high levels can act as prodrug to deliver a significant flux of H(2)O(2) to tumors. This new knowledge has rekindled interest and spurred new research into the clinical potential of pharmacological ascorbate. Knowledge and understanding of the mechanisms of action of pharmacological ascorbate bring a rationale to its use to treat disease especially the use of i.v. delivery of pharmacological ascorbate as an adjuvant in the treatment of cancer.  相似文献   

10.
The antioxidant activity of tannic acid (TA), a plant polyphenol claimed to possess antimutagenic and anticarcinogenic activities, was studied by monitoring (i) 2-deoxyribose degradation (a technique for OH detection), (ii) ascorbate oxidation, (iii) ascorbate radical formation (determined by EPR analysis) and (iv) oxygen uptake induced by the system, which comprised Fe(III) complexes (EDTA, nitrilotriacetic acid (NTA) or citrate as co-chelators), ascorbate and oxygen. TA removes Fe(III) from the co-chelators (in the case of EDTA, this removal is slower than with NTA or citrate), forming an iron-TA complex less capable of oxidizing ascorbate into ascorbate radical or mediating 2-deoxyribose degradation. The effectiveness of TA against 2-deoxyribose degradation, ascorbate oxidation and ascorbate radical formation was substantially higher in the presence of iron-NTA (or iron-citrate) than with iron-EDTA, which is consistent with the known formation constants of the iron complexes with the co-chelators. Oxygen uptake and 2-deoxyribose degradation induced by Fe(II) autoxidation were also inhibited by TA. These results indicate that TA inhibits OH formation induced by Fe(III)/ascorbate/O(2) mainly by arresting Fe(III)-induced ascorbate oxidation and Fe(II) autoxidation (which generates Fe(II) and H(2)O(2), respectively), thus limiting the production of Fenton reagents and OH formation. We also hypothesize that the Fe(II) complex with TA exhibits an OH trapping activity, which explains the effect of TA on the Fenton reaction.  相似文献   

11.
1. No evidence could be found for production of the superoxide radical, O2-, during autoxidation of ascorbic acid at alkaline pH values. Indeed, ascorbate may be important in protection against O2- genat-d in vivo. 2. Oxidation of ascorbate at pH 10.2 was stimulated by metal ions. Stimulation by Fe2+ was abolished by superoxide dismutase, probably because of generation of O2-- during reduction of O2 by Fe2+, followed by reaction of O2-- with ascorbate. EDTA changed the mechanism of Fe2+-stimulated ascorbate oxidation. 3. Stimulation of ascorbate oxidation by Cu2+ was also decreased by superoxide dismutase, but this appears to be an artifact, since apoenzyme or bovine serum albumin showed similar effects.  相似文献   

12.
Catalase activity in cell cultures of fetal rat mesencephalon was decreased by 42 and 50%, respectively, after exposure to l-3,4-dihydroxyphenylalanine (l-DOPA, 100 μM) or dopamine (100 μM) for 48 h. Catalase activity was also decreased 21% by 10 μM hydroquinone. Ascorbic acid (200 μM), an agent that suppresses the autoxidation of l-DOPA and dopamine, blocked the anti-catalase effect of l-DOPA, but not that of dopamine. Inhibitors of the A and B forms of monoamine oxidase (20 μM clorgyline plus 20 μM pargyline) had no effect on the anti-catalase action of either l-DOPA or dopamine. The latter results suggest that products of the oxidative deamination of dopamine by monoamine oxidase are not involved in the suppression of catalase activity. However, autoxidation reactions of l-DOPA may play a role since ascorbate suppressed the anti-catalase effect of l-DOPA. On the contrary, the basis for the failure of ascorbate to similarly block the anti-catalase effect of dopamine is uncertain. l-DOPA and dopamine (25 μM) also inhibited crystalline catalase in solution after incubation for 1 h at neutral pH (40–50% inhibition). Inhibition was blocked by 0.45 M ethanol, indicating a need for autoxidation and the formation of compound II, which is an enzymatically inactive form of catalase. The ability to model the enzyme inhibition in purely chemical experiments indicates a probable mechanism for loss of enzymatic activity in cell cultures. Inhibition of catalase may contribute to cell damage during incubation of cultures with l-DOPA, dopamine, or other autoxidizable compounds. Copyright © 1996 Elsevier Science Ltd  相似文献   

13.
The activity of dopamine-β-hydroxylase is inhibited by copper. It is stimulated by a variety of substances, such as fumarate and sodium chloride, which exert salt-like effects. Both phenomena are mediated indirectly through an interaction of ascorbate with catalase. The latter is converted to the inactive catalase II, by the autoxidation of ascorbate and other electron donors. Copper accelerates the autoxidation, thereby enhancing the inactivation of catalase. The activity of DβH, which requires catalase, is therefore inhibited. At high ionic strength, i. e. in the presence of high levels of salt, the conversion of catalase to catalase II is prevented, and the DβH reaction proceeds.  相似文献   

14.
The autoxidation of ascorbate and of norepinephrine in Krebs Ringer phosphate medium, pH 7.4, was studied. The autoxidation of the two substances was determined spectrophotometrically at 265 and 480 nm respectively. The effect of dialyzed extracts (m.w. greater than 12,000) from Escherichia coli (aerobe), Megasphaera elsdenii, and Clostridium butyricum (obligate anaerobes) was examined and compared to similarly prepared extracts from rat serum and cerebral cortex. The assay medium contained cellular components diluted 10(3)-10(6)-fold. Up to 10(4)-fold dilution there was a substantial reduction in the rate of both autoxidation reactions, but the preparations from M. elsdenii and C. butyricum were conspicuously less effective. After 5 min heat treatment at 100 degrees C the anaerobic preparations produced less than 20% inhibition, while the activity of the other preparations remained unchanged at 75-95% inhibition. These and earlier experiments involving additional mammalian species (Mishra and Kovachich, Neurosci. Lett., 43: 103-108, 1983) and plants (Mishra and Kovachich, Life Sci., 34: 2207-2212, 1984) suggest that a high level of heat-stable antioxidant activity in one or both of these autoxidation tests (denatured plant extracts only inhibit ascorbate autoxidation) is a general characteristic of organisms that thrive in oxygen-rich atmosphere.  相似文献   

15.
This study addresses the dynamic interactions among alpha-tocopherol, caffeic acid, and ascorbate in terms of a sequence of redox cycles aimed at accomplishing optimal synergistic antioxidant protection. Several experimental models were designed to examine these interactions: UV irradiation of alpha-tocopherol-containing sodium dodecyl sulfate micelles, one-electron oxidations catalyzed by the hypervalent state of myoglobin, ferrylmyoglobin, and autoxidation at appropriate pHs. These models were assessed by ultraviolet (UV) and electron paramagnetic resonance (EPR), entailing direct- and continuous-flow experiments, spectroscopy and by separation and identification of products by HPLC. The alpha-tocopheroxyl radical EPR signal generated by UV irradiation of alpha-tocopherol-containing micelles was suppressed by caffeic acid and ascorbate; in the former case, no other EPR signal was observed at pH 7.4, whereas in the latter case, the alpha-tocopheroxyl radical EPR signal was replaced by a doublet EPR spectrum corresponding to the ascorbyl radical (A*-). The potential interactions between caffeic acid and ascorbate were further analyzed by assessing, on the one hand, the ability of ascorbate to reduce the caffeic acid o-semiquinone (generated by oxidation of caffeic acid by ferrylmyoglobin) and, on the other hand, the ability of caffeic acid to reduce ascorbyl radical (generated by autoxidation or oxidation of ascorbate by ferrylmyoglobin). The data presented indicate that the reductive decay of ascorbyl radical (A*-) and caffeic acid o-semiquinone (Caf-O*) can be accomplished by caffeic acid (Caf-OH) and ascorbate (AH-), respectively, thus pointing to the reversibility of the reaction Caf-O* + AH- <--> Caf-OH + A*-. Continuous-flow EPR measurements of mixtures containing ferrylmyoglobin, alpha-tocopherol-containing micelles, caffeic acid, and ascorbate revealed that ascorbate is the ultimate electron donor in the sequence encompassing transfer of the radical character from the micellar phase to the phase. In independent experiments, the effects of caffeic acid and ascorbate on the oxidation of two low-density lipoprotein (LDL) populations, control and alpha-tocopherol-enriched, were studied and results indicated that alpha-tocopherol, caffeic acid, and ascorbate acted synergistically to afford optimal protection of LDL against oxidation. These results are analyzed for each individual antioxidant in terms of three domains: its localization and that of the antioxidant-derived radical, its reduction potential, and the predominant decay pathways for the antioxidant-derived radical, that exert kinetic control on the process.  相似文献   

16.
Addition of 1mM ascorbate to isolated chloroplasts with methyl viologen (MV) as electron acceptor trebled the rate of oxygen uptake and decreased the ADPO ratio to a third of that with no ascorbate present. These effects of ascorbate were reversed by superoxide dismutase (SOD), which in the absence of ascorbate had little effect on O2 uptake or ADPO ratio. A chloroplast-associated SOD activity equivalent to 500 units/mg chlorophyll was detected. The effects of ascorbate and SOD on O2 uptake were similar in both coupled and uncoupled chloroplasts. The results are consistent with the hypothesis that ascorbate stimulates O2 uptake by reduction of superoxide, which is formed by autoxidation of the added electron acceptor (MV), and which dismutates in the absence of ascorbate. Ascorbate does not seem to stimulate O2 uptake by replacing water as the photosystem II donor.  相似文献   

17.
Summary Ascorbate free radical is considered to be a substrate for a plasma membrane redox system in eukaryotic cells. Moreover, it might be involved in stimulation of cell proliferation. Ascorbate free radical can be generated by autoxidation of the ascorbate dianion, by transition metal-dependent oxidation of ascorbate, or by an equilibrium reaction of ascorbate with dehydroascorbic acid. In this study, we investigated the formation of ascorbate free radical, at physiological pH, in mixtures of ascorbate and dehydroascorbic acid by electron spin resonance spectroscopy. It was found that at ascorbate concentrations lower than 2.5 mM, ascorbate-free radical formation was not dependent on the presence of dehydroascorbic acid. Removal of metal ions by treatment with Chelex 100 showed that autoxidation under these conditions was less than 20%. Therefore, it is concluded that at low ascorbate concentrations generation of ascorbate free radical mainly proceeds through metal-ion-dependent reactions. When ascorbate was present at concentrations higher than 2.5 mM, the presence of dehydroascorbic acid increased the ascorbate free-radical signal intensity. This indicates that under these conditions ascorbate free radical is formed by a disproportionation reaction between ascorbate and dehydroascorbic acid, having aK equil of 6 × 10–17 M. Finally, it was found that the presence of excess ferricyanide completely abolished ascorbate free-radical signals, and that the reaction between ascorbate and ferricyanide yields dehydroascorbic acid. We conclude that, for studies under physiological conditions, ascorbate free-radical concentrations cannot be calculated from the disproportionation reaction, but should be determined experimentally.Abbreviations AFR ascorbate free radical - DHA dehydroascorbic acid - EDTA ethylenediaminetetraacetic acid - DTPA diethylenetri-aminepentaacetic acid - TEMPO 2,2,6,6-tetramethylpiperidinoxy  相似文献   

18.
The fluorescence intensity of the fluorophore in dansyl piperidine-nitroxide is intramolecularly quenched by the nitroxyl fragment. Therefore, the oxidation of ascorbic acid by the fluorophore-nitroxide (FN) probe can be monitored by two independent methods: steady-state fluorescence and electron paramagnetic resonance. Bovine serum albumin (BSA) affects the rate of this reaction. The influence of BSA on the rate is attributed to the adsorption of both ascorbate and the probe to BSA. Adsorption of ascorbate to BSA is confirmed by NMR relaxation experiments. The spatial distribution of the molecules on the BSA surface changes the availability of ascorbate and FN to each other. The results also point out that, in the presence of BSA, the autoxidation of ascorbate is significantly slowed down. The effect is studied at different pH values and explained in terms of the electrostatic interaction between the ascorbate anion and the BSA molecule.  相似文献   

19.
Some chemical and fungicidal effects of 20 phthalocyanines of Co, Fe, Cu, and Al were studied. Under dark conditions, these complexes reduced nitroblue tetrazolium in the presence of KCN, accelerated the autoxidation of ascorbate or hydroquinone and decomposed hydrogen peroxide. In the later reaction, hydroxyl radical was generated as evidenced with the deoxyribose assay. The inhibition by superoxide dismutase and catalase of catalyzed autoxidation of ascorbate suggests the participation of superoxide anion-radical and hydrogen peroxide in the reaction. Most complexes were toxic to the fungus Magnaporthe grisea which causes blast disease of rice. The toxicity was enhanced by light being diminished by antioxidant reagents sequestering active oxygen species. Some complexes (including nontoxic ones), after 1-day contact with a leaf surface of the disease-susceptible rice cultivar, induced the fungitoxicity of leaf diffusate. This toxicity was also light-activated and sensitive to antioxidant reagents. Several complexes, when added to inocula, decreased 2-3 times the frequency of the compatible symptoms of the blast. It is suggested that in planta, the dark redox activity of phthalocyanines along with their photosensitization promote the generation of active oxygen, which damages the parasite and, therefore, favors disease resistance.  相似文献   

20.
A fluorophore-nitroxide free radical dual-functional probe (FN) was utilized to study the kinetics of ascorbate (AH(-)) binding to Bovine Serum Albumin (BSA). Since the free radical fragment in the FN probe intramolecularly quenches fluorescence, ascorbate reduction of the nitroxide function is accompanied by a concomitant fluorescence intensity increase from the fluorophore. Thus, both fluorescence and the EPR techniques could be utilized to measure the reaction rate. In the presence of BSA protein, the observed rate of the overall process is the sum of that from at least two reactions: the reaction between free ascorbate and free probe, and the reaction between bound ascorbate and bound probe. Our findings show that the observed rate is strongly dependent on the ionic strength of the medium. A corollary of this observation is the indication of a purely electrostatic interaction between ascorbate and the BSA protein. This conclusion was further corroborated by 1H NMR measurement of the transverse relaxation time, T(2), of ascorbate protons in BSA solutions. Ascorbate ion was released from the ascorbate/BSA ensemble in the presence of increasing concentrations of NaCl. Binding constants of AH(-) to BSA were calculated at different ionic strengths at pH 7.4. Furthermore, an increase in ionic strength did not affect the ability of albumin to protect ascorbate against autoxidation. This suggests that the protein's protective antioxidant effect may be attributed to BSA binding of trace quantities of transition-metal cations (rather than ascorbate binding to BSA). This conclusion is supported by ascorbate UV-absorption measurements in the presence of albumin and Cu(2+) ions as a function of ionic strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号