首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background  

Time series gene expression data analysis is used widely to study the dynamics of various cell processes. Most of the time series data available today consist of few time points only, thus making the application of standard clustering techniques difficult.  相似文献   

3.
4.
5.

Background  

A common observation in the analysis of gene expression data is that many genes display similarity in their expression patterns and therefore appear to be co-regulated. However, the variation associated with microarray data and the complexity of the experimental designs make the acquisition of co-expressed genes a challenge. We developed a novel method for Extracting microarray gene expression Patterns and Identifying co-expressed Genes, designated as EPIG. The approach utilizes the underlying structure of gene expression data to extract patterns and identify co-expressed genes that are responsive to experimental conditions.  相似文献   

6.
The aim of this study was to detect and interpret correlation patterns in several large data matrices from the same biological system using Partial Least Squares Regression (PLSR) in order to get information on the system under investigation. To do this, DNA microarray data and Fourier Transform Infrared (FT-IR) spectra from a designed study where Campylobacter jejuni was exposed to environmental stress conditions, were used. The experimental design included variation in atmospheric conditions, temperature and time. PLSR was first used to analyse each of the two data types separately in order to explore the effect of the experimental parameters on the data. The results showed that both the gene expression and FT-IR spectra were affected by the variations in atmosphere, temperature and time, but that the effect was different for the two types of data. When the DNA microarray data and FT-IR spectra were linked together by PLSR, covariation due to temperature was seen. Both specific genes and ranges in the FT-IR spectra that were connected to the variation in temperature were detected. Some of these are possibly connected to properties of the cell wall of the bacteria. The results in this study show the potential of PLSR for investigation of covariance structures in biological data. By doing this, valuable information about the biological system can be detected and interpreted. It was also shown that the use of FT-IR spectroscopy provided important information about the stress responses in the bacteria, information that was not detected from the DNA microarray data.  相似文献   

7.
8.
9.

Background  

MicroRNAs (miRNAs) are non-coding RNAs that regulate gene expression by binding to the messenger RNA (mRNA) of protein coding genes. They control gene expression by either inhibiting translation or inducing mRNA degradation. A number of computational techniques have been developed to identify the targets of miRNAs. In this study we used predicted miRNA-gene interactions to analyse mRNA gene expression microarray data to predict miRNAs associated with particular diseases or conditions.  相似文献   

10.
11.
12.
Assessing reliability of gene clusters from gene expression data   总被引:5,自引:0,他引:5  
The rapid development of microarray technologies has raised many challenging problems in experiment design and data analysis. Although many numerical algorithms have been successfully applied to analyze gene expression data, the effects of variations and uncertainties in measured gene expression levels across samples and experiments have been largely ignored in the literature. In this article, in the context of hierarchical clustering algorithms, we introduce a statistical resampling method to assess the reliability of gene clusters identified from any hierarchical clustering method. Using the clustering trees constructed from the resampled data, we can evaluate the confidence value for each node in the observed clustering tree. A majority-rule consensus tree can be obtained, showing clusters that only occur in a majority of the resampled trees. We illustrate our proposed methods with applications to two published data sets. Although the methods are discussed in the context of hierarchical clustering methods, they can be applied with other cluster-identification methods for gene expression data to assess the reliability of any gene cluster of interest. Electronic Publication  相似文献   

13.

Background  

Expression microarrays represent a powerful technique for the simultaneous investigation of thousands of genes. The evidence that genes are not randomly distributed in the genome and that their coordinated expression depends on their position on chromosomes has highlighted the need for mathematical approaches to exploit this dependency for the analysis of expression data-sets.  相似文献   

14.
Gene expression profiles of 14 common tumors and their counterpart normal tissues were analyzed with machine learning methods to address the problem of selection of tumor-specific genes and analysis of their differential expressions in tumor tissues. First, a variation of the Relief algorithm, “RFE_Relief algorithm” was proposed to learn the relations between genes and tissue types. Then, a support vector machine was employed to find the gene subset with the best classification performance for distinguishing cancerous tissues and their counterparts. After tissue-specific genes were removed, cross validation experiments were employed to demonstrate the common deregulated expressions of the selected gene in tumor tissues. The results indicate the existence of a specific expression fingerprint of these genes that is shared in different tumor tissues, and the hallmarks of the expression patterns of these genes in cancerous tissues are summarized at the end of this paper.  相似文献   

15.
Root organization and gene expression patterns   总被引:5,自引:1,他引:4  
New tools of microscopy, molecular biology, and genetics aremaking it possible for biologists to study roots with new vigour.Such investigations have enabled plant biologists to noticethe symmetry, pattern, and simplicity of root structures sothat there is now an exciting rebirth in the study of roots.The literature of root biology, development and structure isvast. In this short review we will concentrate on describingour notion of how roots are organized structurally, and thendiscuss what is known about tissue- and zone-specific gene expressionin roots. Key words: Root apex, root anatomy, root development, gene expression  相似文献   

16.
MOTIVATION: Unsupervised analysis of microarray gene expression data attempts to find biologically significant patterns within a given collection of expression measurements. For example, hierarchical clustering can be applied to expression profiles of genes across multiple experiments, identifying groups of genes that share similar expression profiles. Previous work using the support vector machine supervised learning algorithm with microarray data suggests that higher-order features, such as pairwise and tertiary correlations across multiple experiments, may provide significant benefit in learning to recognize classes of co-expressed genes. RESULTS: We describe a generalization of the hierarchical clustering algorithm that efficiently incorporates these higher-order features by using a kernel function to map the data into a high-dimensional feature space. We then evaluate the utility of the kernel hierarchical clustering algorithm using both internal and external validation. The experiments demonstrate that the kernel representation itself is insufficient to provide improved clustering performance. We conclude that mapping gene expression data into a high-dimensional feature space is only a good idea when combined with a learning algorithm, such as the support vector machine that does not suffer from the curse of dimensionality. AVAILABILITY: Supplementary data at www.cs.columbia.edu/compbio/hiclust. Software source code available by request.  相似文献   

17.
18.
In this paper, we describe an approach for identifying 'pathways' from gene expression and protein interaction data. Our approach is based on the assumption that many pathways exhibit two properties: their genes exhibit a similar gene expression profile, and the protein products of the genes often interact. Our approach is based on a unified probabilistic model, which is learned from the data using the EM algorithm. We present results on two Saccharomyces cerevisiae gene expression data sets, combined with a binary protein interaction data set. Our results show that our approach is much more successful than other approaches at discovering both coherent functional groups and entire protein complexes.  相似文献   

19.
Clustering gene expression patterns.   总被引:23,自引:0,他引:23  
Recent advances in biotechnology allow researchers to measure expression levels for thousands of genes simultaneously, across different conditions and over time. Analysis of data produced by such experiments offers potential insight into gene function and regulatory mechanisms. A key step in the analysis of gene expression data is the detection of groups of genes that manifest similar expression patterns. The corresponding algorithmic problem is to cluster multicondition gene expression patterns. In this paper we describe a novel clustering algorithm that was developed for analysis of gene expression data. We define an appropriate stochastic error model on the input, and prove that under the conditions of the model, the algorithm recovers the cluster structure with high probability. The running time of the algorithm on an n-gene dataset is O[n2[log(n)]c]. We also present a practical heuristic based on the same algorithmic ideas. The heuristic was implemented and its performance is demonstrated on simulated data and on real gene expression data, with very promising results.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号