首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 884 毫秒
1.
Summary Leaf epidermal transmittance of ultraviolet radiation (280–400 nm) was examined in several plant species to determine the capability of the epidermis to attenuate solar ultraviolet radiation. Epidermal samples were mechanically isolated and examined with a spectroradiometer/integrating sphere for transmittance. A survey of 25 species exposed to natural insolation was conducted. Although the species differed in life form, habitat type, and epidermal characteristics, epidermal transmittance was generally less than 10%. Ultraviolet radiation was attenuated 95 to 99% in more than half of the species. In 16 species, flavonoid and related pigments in the epidermis accounted for 20 to 57% of the attenuation. Several species exposed to supplemental ultraviolet irradiation (288–315 nm) in a greenhouse exhibited significant (P0.05) depressions in epidermal transmittance of 31 to 47%, apparently resulting from an increase in ultraviolet-absorbing pigments.  相似文献   

2.
Schlichter  D.  Fricke  H. W. 《Hydrobiologia》1991,(1):389-394
The symbiotic coral Leptoseris fragilis lives in the Red Sea at depths of 95–145 m. Symbiotic dinoflagellates (zooxanthellae) themselves possess well known adaptations to low light intensities. In L. fragilis we found indications that light amplifying mechanisms of the host improve photosynthesis of the symbionts. Light of short wavelengths is absorbed by host pigments which transform short into longer wavelengths. The transformed light is more efficient for photosynthesis. Action spectra measurements of photosynthesis demonstrated the amplification of photosynthetically active radiation. Monochromatic light of 387 nm (outside the main absorption maxima of the algal pigments) at subsaturation photon flux densities was as effective photosynthetically as polychromatic light of 415–490 nm, which fits the absorption maxima of the zooxanthellae.  相似文献   

3.
Summary Visual pigments in the rods of 38 species of deep-sea fish were examined by microspectrophotometry. 33 species were found to have a single rhodopsin with a wavelength of maximum absorbance ( max) in the range 470–495 nm. Such visual pigments have absorbance maxima close to the wavelengths of maximum spectral transmission of oceanic water. 5 species, however, did not conform to this pattern and visual pigments were found with max values ranging from 451 nm to 539 nm. In 4 of these species two visual pigments were found located in two types of rod. Some 2-pigment species which have unusual red sensitivity, also have red-emitting photophores. These species have both rhodopsin and porphyropsin pigments in their retinae, which was confirmed by HPLC, and the two pigments are apparently located in separate rods in the same retinal area. In deep-sea fishes the occurrence of unusual visual pigments seems to be correlated with aspects of the species' depth ranges. In addition to ecological influences we present evidence, in the form of max spectral clustering, that indicates the degree of molecular constraint imposed on the evolution of visual pigments in the deep-sea.  相似文献   

4.
The visual pigments and photoreceptor types in the retinas of three species of Pacific salmon (coho, chum, and chinook) were examined using microspectrophotometry and histological sections for light microscopy. All three species had four cone visual pigments with maximum absorbance in the UV (max: 357–382 nm), blue (max: 431–446 nm), green (max: 490–553 nm) and red (max: 548–607 nm) parts of the spectrum, and a rod visual pigment with max: 504–531 nm. The youngest fish (yolk-sac alevins) did not have blue visual pigment, but only UV pigment in the single cones. Older juveniles (smolts) had predominantly single cones with blue visual pigment. Coho and chinook smolts (>1 year old) switched from a vitamin A1- to a vitamin A2-dominated retina during the spring, while the retina of chum smolts and that of the younger alevin-to-parr coho did not. Adult spawners caught during the Fall had vitamin A2-dominated retinas. The central retina of all species had three types of double cones (large, medium and small). The small double cones were situated toward the ventral retina and had lower red visual pigment max than that of medium and large double cones, which were found more dorsally. Temperature affected visual pigment max during smoltification.  相似文献   

5.
Summary Normal and virus-infected (lymphocystis disease) integument from five species of teleosts was examined by light and TEM autoradiography and SEM to establish metabolic-morphologic characteristics of integument with mature lymphocystis cells (LC's). LC's with numerous morphologic attributes of a late developmental stage showed highest incorporation of [3H]-thymidine in vivo (1–91 h) above the intracytoplasmic inclusion body (ci) with little radiolabel in nuclei, cytoplasmic icosahedral deoxyriboviruses (ICDVs) or capsule. Analysis by quantitative autoradiography revealed that the % total cell label in ci and cytoplasm did not vary appreciably from 1–91 h and was corroborative with morphologic criteria of maturity. A possible phylogenetic difference was noted between teleosts, wherein normal integument showed uptake of [3H]-thymidine in vivo (1 h) by cells at all levels of the epidermis, and cyclostomes (Spitzer et al. 1979) wherein labeling was confined to the basal third of the epidermis. Among four infected teleost species, the mean diameters of the ICDVs measured under the same conditions, ranged from 259.5 nm to 290.0 nm with the mean for each species differing significantly (p < 0.01) from each of the other means. Ruptured LC's were shown by TEM and SEM to have released ICDVs onto the lesions and integument. Various stages of LC degeneration, host response, and integumental repair processes were documented. An evaluation of labeling in vivo of the capsular matrix was compatible ([3H]-D-galactose> [3H]-L-lysine [3H]-L-fucose) with a glycosaminoglycan-protein structure.  相似文献   

6.
Summary In the compound eye of the moth Antheraea polyphemus, three types of visual pigments were found in extracts from the retina and by microspectrophotometry in situ. The absorption maxima of the receptor pigment P and the metarhodopsin M are at (1) P 520–530 nm, M 480–490 nm; (2) P 460–480 nm, M 530–540 nm; (3) P 330–340 nm, M 460–470 nm. Their localization was investigated by electron microscopy on eyes illuminated with different monochromatic lights. Within the tiered rhabdom, constituted of the rhabdomeres of nine visual cells, the basal cell contains a blue-and the six medial cells have a greenabsorbing pigment. The two distal cells of most ommatidia also have the blue pigment; only in the dorsal region of the eye, these cells contain a UV-absorbing pigment, which constitutes a portion of only 5% of the visual pigment content within the entire retina. The functional significance of this distribution is discussed.  相似文献   

7.
Summary Photon absorption and photosynthesis under conditions of light limitation were determined in six temperate marine macroalgae and eight submerged angiosperms. Photon absorption and photosynthetic efficiency based on incident light increased in proportion to chlorophyll density per area and approached saturation at the highest densities (300 mg chlorophyll m–2) encountered. Absorption and photosynthetic efficiency were higher in brown and red algae than in green algae and angiosperms for the same chlorophyll density because of absorption by accessory pigments. Among thin macroalgae and submerged angiosperms chlorophyll variations directly influence light absorption and photosynthesis, whereas terrestrial leaves have chlorophyll in excess and thus there is only a minor influence of pigment variability on light-limited photosynthesis. The quantum efficiency of photosynthesis averaged 0.062±0.019 (±SD) mol O2 mol–1 photons absorbed for macroalgae and, significantly less, 0.049±0.016 mol O2 mol–1 photons for submerged angiosperms. Of the measurements 80% were between 0.037 and 0.079 mol O2 mol–1 photons. The results are lower than values given in the literature for unicellular algae and terrestrial C3 species at around 0.1 mol O2 mol–1 photons, but resemble values for other marine macroalgae and terrestrial C4 species. The reason for these differences remains unknown, but may be sought for in differential operation of cyclic photophosphorylation and photorespiration.  相似文献   

8.
Ultraviolet radiation,ozone depletion,and marine photosynthesis   总被引:5,自引:0,他引:5  
Concerns about stratospheric ozone depletion have stimulated interest in the effects of UVB radiation (280–320 nm) on marine phytoplankton. Research has shown that phytoplankton photosynthesis can be severely inhibited by surface irradiance and that much of the effect is due to UV radiation. Quantitative generalization of these results requires a biological weighting function (BWF) to quantify UV exposure appropriately. Different methods have been employed to infer the general shape of the BWF for photoinhibition in natural phytoplankton, and recently, detailed BWFs have been determined for phytoplankton cultures and natural samples. Results show that although UVB photons are more damaging than UVA (320–400 nm), the greater fluxes of UVA in the ocean cause more UV inhibition. Models can be used to analyze the sensitivity of water column productivity to UVB and ozone depletion. Assumptions about linearity and time-dependence strongly influence the extrapolation of results. Laboratory measurements suggest that UV inhibition can reach a steady-state consistent with a balance between damage and recovery processes, leading to a non-linear relationship between weighted fluence rate and inhibition. More testing for natural phytoplankton is required, however. The relationship between photoinhibition of photosynthesis and decreases in growth rate is poorly understood, so long-term effects of ozone depletion are hard to predict. However, the wide variety of sensitivities between species suggests that some changes in species composition are likely. Predicted effects of ozone depletion on marine photosynthesis cannot be equated to changes in carbon flux between the atmosphere and ocean. Nonetheless, properly designed studies on the effects of UVB can help identify which physiological and ecological processes are most likely to dominate the responses of marine ecosystems to ozone depletion.Abbreviations BWF biological weighting function - BWF/P-I photosynthesis versus photosynthetically available irradiance as influenced by biologically-weighted UV - Chl chlorophyll a - DOM dissolved organic matter - E PAR irradiance in energy units (PAR) - E s saturation parameter for PAR in the BWF/P-I model - E inh * biologically-weighted dimensionless fluence rate for photoinhibition of photosynthesis by UV and PAR - biological weighting coefficient - % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGafqyTduMbae% baaaa!37AC!\[\bar \varepsilon \]PAR biological weighting coefficient for damage to photosynthesis by E PAR - k() diffuse attenuation coefficient for wavelength - MAAs mycosporine-like amino acids - PAR photosynthetically available radiation - P B rate of photosynthesis normalized to Chl - P s B maximum attainable rate of photosynthesis in the absence of photoinhibition - UVA ultraviolet A (320–400 nm) - UVB ultraviolet B (280–320 nm)  相似文献   

9.
Effects of UV-B radiation on photosynthesis and growth of terrestrial plants   总被引:25,自引:0,他引:25  
The photosynthetic apparatus of some plant species appears to be well-protected from direct damage from UV-B radiation. Leaf optical properties of these species apparently minimizes exposure of sensitive targets to UV-B radiation. However, damage by UV-B radiation to Photosystem II and Rubisco has also been reported. Secondary effects of this damage may include reductions in photosynthetic capacity, RuBP regeneration and quantum yield. Furthermore, UV-B radiation may decrease the penetration of PAR, reduce photosynthetic and accessory pigments, impair stomatal function and alter canopy morphology, and thus indirectly retard photosynthetic carbon assimilation. Subsequently, UV-B radiation may limit productivity in many plant species. In addition to variability in sensitivity to UV-B radiation, the effects of UV-B radiation are further confounded by other environmental factors such as CO2, temperature, light and water or nutrient availability. Therefore, we need a better understanding of the mechanisms of tolerance to UV-B radiation and of the interaction between UV-B and other environmental factors in order to adequately assess the probable consequences of a change in solar radiation.Abbreviations Amax light and CO2 saturated rate of oxygen evolution - Ci internal CO2 concentration - Fv/Fm ratio of variable to total fluorescence yield - PAR photosynthetically active radiation (400–700 nm) - PS II Photosystem II - app apparent quantum yield of photosynthesis - SLW specific leaf weight - UV-B ultraviolet-B radiation between 290–320 nm  相似文献   

10.
Spectral downwelling irradiance in an Antarctic lake   总被引:1,自引:0,他引:1  
Summary Spectral downwelling irradiance (400–700 nm) was determined in the ice-covered Lake Hoare located in the dry valleys near McMurdo Sound, Antarctica. Full waveband PAR beneath the ice was <44E·m-2·s-1 or <3% of surface downwelling irradiance. Maximum light transmission just beneath the 2.6–4 m ice cover, which contained sediments and air bubbles, occurred between 400–500 nm. In the water column below, attenuation of light by phytoplankton in the 400–500 nm region and between 656–671 nm suggested absorption of light by algal pigments.  相似文献   

11.
The photosynthetic behaviour ofDunaliella viridis has been studied under a combination of three variables: irradiance (0–900 mol m–2 s–1), temperature (15, 23, 31, 38, 42 °C) and nitrogen concentration (0.05, 0.5, 1.5, 5, 10 mM NO 3 - ) at a salinity of 2 M NaCl.The highest rates of photosynthesis have been found at 31 °C and a nitrate concentration of 10 mM. There exists a synergistic effect between temperature and nitrogen availability on the photosynthesis ofD. viridis; under nitrogen deficiency oxygen evolution is low, even null at high temperature. The interaction between these two variables of control occurs in a multiplicative way. There is also a general increase in photosynthetic pigments following the increase in nitrogen concentration in the culture medium. The normalization of net photosynthesis data in relation to chlorophylla shows that nitrogen concentration makes an indirect control of the photosynthetic rate ofD. viridis through the variation of pigment concentration.  相似文献   

12.
The light utilization efficiency and relative photon requirement of photosynthesis in pulsed and continuous light from light emitting diodes (LEDs) has been measured. First, we chacterized the photon requirement of photosynthesis from light of LEDs that differ in spectral quality. A photon requirement of 10.3±0.4 was measured using light from a 658 nm peak wavelength (22 nm half band width) LED over the range of 0–50 mol photons m–2 s–1 in 2 kPa O2 in leaves of tomato (Lycopersicon esculentum Mill., cv. VF36). Because the conversion of electrical power to photons increased with wavelength, LED lamps with peak photon output of 668 nm were most efficient for converting electricity to photosynthetically fixed carbon. The effect of pulsed irradiation on photosynthesis was then measured. When all of the light to make the equivalent of 50 mol photons m–2 s–1 was provided during 1.5 s pulses of 5000 mol photons m–2 s–1 followed by 148.5 s dark periods, photosynthesis was the same as in continuous 50 mol photons m–2 s–1. When the pulse light and dark periods were lengthened to 200 s and 19.8 ms, respectively, photosynthesis was reduced, although the averaged photon flux density was unchanged. Under these conditions, the light pulses delivered 1017 photons m–2, which we calculate to be equivalent to the capacitance of PS I or PS II. Data support the theory that photons in pulses of 100 s or shorter are absorbed and stored in the reaction centers to be used in electron transport during the dark period. When light/dark pulses were lengthened to 2 ms light and 198 ms dark, net photosynthesis was reduced to half of that measured in continuous light. Pigments of the xanthophyll cycle were not affected by any of these pulsed light treatments even though zeaxanthin formation occurred when leaves were forced to dissipate an equal amount of continuous light.Abbreviations CWF cool white fluorescent - EPS xanthophyll epoxidation state - LED light emitting diode - LUE light utilization efficiency - PFD photon flux density - PR photon requirement (for CO2 fixation) - PS II primary donor in Photosystem II - RPR relative photon requirement  相似文献   

13.
Zusammenfassung Der Zusammenhang zwischen dem spezifischen Bacteriochlorophyllgehalt der Zellen und der Thylakoidmorphogenese wird an Rhodospirillum rubrum untersucht. Bei der Induktion des Photosynthese-Apparates wird zunächst Bacteriochlorophyll synthetisiert, obgleich noch keine Thylakoide gebildet werden (1. Phase). Werden Thylakoide ausgebildet, so steigt der spezifische Bacteriochlorophyllgehalt der Thylakoide in Abhängigkeit vom spezifischen Bacteriochlorophyllgehalt der Zellen an, bis ein Wert von 12–13 g Bacteriochlorophyll je mg Zellprotein erreicht ist (2. Phase). Während der Wert für die Zellen darüber hinaus weiter erhöht werden kann, bleibt der Wert der Thylakoide konstant bei 100 g Bacteriochlorophyll je mg Thylakoid-Protein (3. Phase). Isolierte Thylakoide aus Zellen mit niedrigem Bacteriochlorophyllgehalt besitzen geringere Durchmesser als Thylakoide aus Zellen mit höheren Werten. Auch hinsichtlich der Zusammensetzung der Thylakoide in Abhängigkeit von den steigenden Bacteriochlorophyllgehalten bei induzierten Zellen konnten Unterschiede festgestellt werden. Ähnlich wie die spezifischen Bacteriochlorophyllgehalte der Thylakoide, nähern sich die verschiedenen Proteinbausteine der Thylakoide einem festen Verhältnis zueinander, das sich oberhalb von 10–14 g Bacteriochlorophyll je mg Zellprotein nicht mehr ändert. Mit Zunahme des Bacteriochlorophyllgehaltes der Zellen steigt der Gehalt an thylakoidspezifischen Proteinen in den Membranen an und der Anteil der für die Cytoplasmamembran spezifischen Komponenten nimmt ab.
The bacteriochlorophyll content and protein composition of chromatophores (=thylakoids) of Rhodospirillum rubrum during morphogenesis of the photosynthetic apparatus
Summary The correlation between the specific bacteriochlorophyll content of whole cells and the morphogenesis of chromatophores was investigated in Rhodospirillum rubrum. During the first phase after induction of the photosynthetic apparatus bacteriochlorophyll is synthesized without formation of chromatophores. In a second phase chromatophores increases in a linear correlation to the specific bacterichlorophyll content of the cells. In a third phase, when the specific bacteriochlorophyll content of the cells has reached 12–13 g/mg protein, the specific bacteriochlorophyll content of the chromatophores remains constant (100 g/mg protein). Isolated chromatophores from the second phase have smaller diameters, than chromatophores from the third phase. The composition of the protein compounds of isolated chromatophores changes during the development of the chromatophores in a similar fashion as the specific bacteriochlorophyll content of chromatophores does change. With increasing bacteriochlorophyll content of the cells the chromatophore specific proteins in the membranes increase whereas proteins specific for the cytoplasmic membrane decrease until both reach a constant level.

Verwendete Abkürzungen BChl. Bacteriochlorophyll  相似文献   

14.
Summary With the aid of a microspectrophotometer the visual pigments and oil globules in the retina of the emu (Dromiceius novae-hollandiae), the brushland tinamou (Nothoprocta c. cinerascens) and the Chilean tinamou (Nothoprocta perdicaria sanborni) were characterized. All three of these palaeognathous birds contain in their rods a typical rhodopsin with max near 500 nm. Each of these birds has cones containing iodopsin-like visual pigments with max in the 560–570 nm spectral region. No unequivocal evidence was obtained for the presence of cone pigments other than this iodopsin-like pigment, although one cell thought to be a cone, and containing a visual pigment with max near 498 nm, was observed in the retina of the brushland tinamou. The oil globule systems of the three palaeognathous species are identical to each other and are much simpler than is typical for neognathous birds in that only two different types of globule are present, one with T50 at 508 nm and another with T50 at 568 nm. Comparison of the data with observations made on neognathous species indicates (1) that palaeognathous birds probably have poorer color discrimination capabilities than neognathous birds and (2) that the tinamou is more closely related to the ratites than to the galliform species.This study was supported, in part, by NIH Grant No. EY01839 (A.J. Sillman), NIH Grant No. EY00323 (W.N. McFarland) and NSF Grant No. 78-07657 (E.R. Loew). The authors thank E. Clinite, R. Dunford, C. Murphy, R. Riis and D. Weathers for their valuable assistance. Thanks also go to R.E. Burger for his gift of the emus.  相似文献   

15.
The influence of far-red (FR; 700–800 nm) radiation on steady-state stomatal conductance and net photosynthesis in P. vulgaris has been studied. Whereas FR radiation alone was relatively ineffective, addition of FR to a background of white light (WL; predominantly 400–700 nm) resulted in increased stomatal conductance. Stomata exhibited a marked diurnal sensitivity to FR. The action maximum for enhancing stomatal conductance was near 714 nm. A combination of FR and infra-red (IR; >800 nm) enhanced net photosynthesis when added to a background of WL. When IR alone was added to WL, there was a net decrease in photosynthesis, indicating that it is the FR waveband which is responsible for the observed photosynthetic effects. Naturally occurring levels of FR radiation (235 mol·m-2·s-1) in vegetation-canopy shade enhanced net photosynthetic CO2 gain by 28% when added to a background of 55 mol·m-2·s-1 WL.Abbreviations BL blue - FR far-red - IR infra-red - PAR photosynthetically active radiation - R red - WL white light  相似文献   

16.
Summary In the tobacco hornworm,Manduca sexta, the epidermis which underlies the larval crochets is the first tissue to become independent of the prothoracic glands (PG) in a larval molt. In each successive larval molt, crochet forming cells increase in size, form hooks at their distal ends and, finally, secrete cuticle. This paper examines the endocrine requirements for competence to molt and describes parallel cultures in vivo and in vitro to define the hormonal control of crochet molting. When implanted into a fourth instar host larva prior to initiation of the last larval molt, competent crochet epidermis molted, forming crochets synchronously with its host. In the fourth instar, competence to form crochets is attained slowly during the first two days following ecdysis from the third instar. During the feeding phase of the fifth (last) instar, the crochet epidermis remains competent to molt (to form an extra sixth instar set of crochets) until the larva attains a weight of about 4.5 gm. Then, concurrent with the decline in the titer of juvenile hormone (JH) in the hemolymph, competence to form crochets declines. A similar loss of competence did not occur when fourth instar crochet epidermis was exposed to a declining JH titer by culture in either fourth instar isolated abdomens for 72 h or in fifth instar host larvae between 4 and 7 gm. Responses of crochet epidermis cultured in vitro also were examined. Competent fourth instar crochet epidermis formed crochets following 3–6 h exposure to ecdysone in vitro. Six ×10–7M -ecdysone was required for 50% response, whereas a 10–50-fold higher concentration of -ecdysone was necessary. Although formation of morphologically complete crochets in vitro proceeded with similar time course to that in situ, no molt-induced growth occurred in vitro. When crochet epidermis was exposed to ecdysone in vitro immediately after explantation, exogenous JH was not required for molting. But when tissue was first cultured for 72 h without hormones, subsequent molting in vitro could not be elicited, although molting still could occur when the tissue subsequently was implanted into a fourth instar host. Exposure to corpora allata or to JH during the 72 h of culture in vivo partially prevented the loss in capacity to respond to ecdysone in vitro, suggesting that JH may be one factor involved directly or indirectly in maintenance of tissue responsiveness.Preliminary presentation of some of this work given at the December, 1973 Meeting of the American Society of Zoologists (Fain and Riddiford, 1973)  相似文献   

17.
Five carotenes:B-carotene,-carotene, lycopene, phytoene and phytofluene; as well as two xanthophylls: canthaxanthin and cryptoxanthin have been extracted from mature fruit-bodies ofSphaerobolus stellatus. The most abundant of the pigments isB-carotene. None of the extracted pigments showed appreciable absorption in the region 600–720 nm.  相似文献   

18.
Summary Posterior flagella of zoids ofScytosiphon lomemaria andChorda filum (Phaeophyceae, Chromophyta) were isolated and subjected to microspectrofluorometry using a high sensitivity microspectrofluorometer in order to characterize the flagellar autofluorescent substances. Vigorous agitation in a Hypertonic medium yielded preparations of largely intact flagella retaining detectable green flagellar autofluorescence. Under 380–425 nm excitation light, maximum emission of flagellar autofluorescence was observed at 495 nm, whereas under 400–440 nm excitation light fluorescence shifted to around 510 nm. Comparison of these spectra with the fluorescence spectra of 4,5-cyclic FMN isolated from fertile thalli ofS. lomentaria, and of 6-carboxypterin suggested that two (or more) different fluorescent substances (presumably a flavin and a pterin) are present in the flagella.Abbreviations DTT dithiothreitol - FMN flavin mononucleotide - HEPES N-[2-hydroxyethyl]piperazine-N-[2-ethanesulfonic acid]) - PEG polyethylene glycol - PFB paraflagellar body - Tris tris(hydroxymethyl) aminomethane. Dedicated to Professors Masakazu Tatewaki and Tadao Yoshida on the occasion of their academic retirement  相似文献   

19.
Summary Pigment-dispersing hormone (PDH) acts to disperse pigments within the chromatophores of crustaceans. Using an antibody raised against -PDH from the fiddler crab Uca pugilator, we characterized the distribution of -PDH-like immunoreactivity in the stomatogastric nervous system of five decapod crustaceans: the crabs, Cancer borealis and Cancer antennarius, the lobsters, Panulirus interruptus and Homarus americanus, and the crayfish, Procambarus clarkii. No somata were stained in the stomatogastric ganglion (STG) or the esophageal ganglion in any of these species. Intense PDH-like staining was seen in the neuropil of the STG in P. interruptus only. In all 5 species, cell bodies, processes, and neuropil within the paired circumesophageal ganglia (CGs) showed PDH-like staining; the pattern of this staining was unique for each species. In each CG, the -PDH antibody stained: 1 large cell in C. borealis; 3 small to large cells in C. antennarius; 3–8 medium cells in P. clarkii; 1–4 small cells in H. americanus; and 13–17 small cells in P. interruptus. The smallest cell in each CG in C. antennarius sends its axon, via the inferior esophageal nerves, into the opposite CG; this pair of cells, not labeled in the other species studied, may act as bilateral coordinators of sensory or motor function. These diverse staining patterns imply some degree of evolutionary diversity among these crustaceans. A -PDH-like peptide may act as a neuromodulator of the rhythms produced by the stomatogastric nervous system of decapod crustaceans.  相似文献   

20.
Effect of quality, quantity and minimum duration of light on the process of recovery was investigated in the photoinhibited cells of the green alga Chlamydomonas reinhardtii. Complete and rapid reactivation of photosynthesis took place in diffuse white light of 25 mol m–2 s–1. The recovery was partial (< 10%) in the dark. Far red (725 nm), red (660 nm) and blue light (480 nm) in the range of 10 to 75 mol m–2 s–1 did not enhance the process of reactivation. Photoinhibited cells incubated in dark for 15 min when exposed for 5 min to diffuse light (25 mol m–2 s–1) showed complete reactivation. Even exposure of 15 min dark incubated photoinhibited cells to photoinhibitory light (2500 mol m–2 s–1) for 5 s fully regained the photosynthesis. The study indicated a very precise and triggering effect of light in the process of reactivation. The dark respiratory inhibitor KCN and uncouplers FCCP and CCCP increased the susceptibility of C. reinhardtii to photoinhibition and also prevented photoinhibited cells to reactivate fully even after longer period of incubation under suitable reactivating conditions. Of the various possibilities envisaged to assign the role of dark respiration in recovery process, supply of ATP by mitochondrial respiration appeared sound and pertinent.Abbreviations CCCP- carbonyl cyanide m-chlorophenylhydrazone - D1- 32 kDa protein of PS II reaction center - FCCP- carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone - KCN- potassium cyanide - PBQ- phenyl-p-benzoquinone - PFD- photon flux density - SHAM- salicylhydroxamic acid NBRI Research Publication No. 431.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号