首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Melanocytes characterized by the activities of tyrosinase, tyrosinase‐related protein (TRP)‐1 and TRP‐2 as well as by melanosomes and dendrites are located mainly in the epidermis, dermis and hair bulb of the mammalian skin. Melanocytes differentiate from melanoblasts, undifferentiated precursors, derived from embryonic neural crest cells. Because hair bulb melanocytes are derived from epidermal melanoblasts and melanocytes, the mechanism of the regulation of the proliferation and differentiation of epidermal melanocytes should be clarified. The regulation by the tissue environment, especially by keratinocytes is indispensable in addition to the regulation by genetic factors in melanocytes. Recent advances in the techniques of tissue culture and biochemistry have enabled us to clarify factors derived from keratinocytes. Alpha‐melanocyte‐stimulating hormone, adrenocorticotrophic hormone, basic fibroblast growth factor, nerve growth factor, endothelins, granulocyte‐macrophage colony‐stimulating factor, steel factor, leukemia inhibitory factor and hepatocyte growth factor have been suggested to be the keratinocyte‐derived factors and to regulate the proliferation and/or differentiation of mammalian epidermal melanocytes. Numerous factors may be produced in and released from keratinocytes and be involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes through receptor‐mediated signaling pathways.  相似文献   

3.
Serum-free culture of epidermal cell suspensions from neonatal skin of mice of strain C57BL/10JHir (B10) showed that α-melanocyte-stimulating hormone (α-MSH) was involved in regulating the differentiation of melanocytes by inducing tyrosinase activity, melanosome formation, and dendritogenesis. Dibutyryl adenosine 3′:5′-cyclic monophosphate (DB-cAMP) similarly induced the differentiation of melanocytes. On the other hand, DBcAMP induced the proliferation of epidermal melanocytes in culture in the presence of keratinocytes. Basic fibroblast growth factor (bFGF) was also shown to stimulate the sustained proliferation of undifferentiated melanoblasts in the presence of DBcAMP and keratinocytes. These results suggest that the proliferation and differentiation of mouse epidermal melanoblasts and melanocytes in culture are regulated by the three factors; namely, cAMP, bFGF, and keratinocyte-derived factors. Moreover, serum-free primary culture of mouse epidermal melanocytes derived from B10 congenic mice, which carry various coat color genes, showed that the coat color genes were involved in regulating the proliferation and differentiation of mouse epidermal melanocytes by controlling the proliferative rate, melanosome formation and maturation, and melanosome distribution.  相似文献   

4.
Serum-free culture of epidermal cell suspensions from neonatal skin of mice of strain C57BL/10JHir (B10) showed that alpha-melanocyte-stimulating hormone (alpha-MSH) was involved in regulating the differentiation of melanocytes by inducing tyrosinase activity, melanosome formation, and dendritogenesis. Dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) similarly induced the differentiation of melanocytes. On the other hand, DBcAMP induced the proliferation of epidermal melanocytes in culture in the presence of keratinocytes. Basic fibroblast growth factor (bFGF) was also shown to stimulate the sustained proliferation of undifferentiated melanoblasts in the presence of DBcAMP and keratinocytes. These results suggest that the proliferation and differentiation of mouse epidermal melanoblasts and melanocytes in culture are regulated by the three factors; namely, cAMP, bFGF, and keratinocyte-derived factors. Moreover, serum-free primary culture of mouse epidermal melanocytes derived from B10 congenic mice, which carry various coat color genes, showed that the coat color genes were involved in regulating the proliferation and differentiation of mouse epidermal melanocytes by controlling the proliferative rate, melanosome formation and maturation, and melanosome distribution.  相似文献   

5.
Melanocytes characterized by the activities of tyrosinase, tyrosinase-related protein (TRP)-1 and TRP-2 as well as by melanosomes and dendrites are located mainly in the epidermis, dermis and hair bulb of the mammalian skin. Melanocytes differentiate from melanoblasts, undifferentiated precursors, derived from embryonic neural crest cells. Because hair bulb melanocytes are derived from epidermal melanoblasts and melanocytes, the mechanism of the regulation of the proliferation and differentiation of epidermal melanocytes should be clarified. The regulation by the tissue environment, especially by keratinocytes is indispensable in addition to the regulation by genetic factors in melanocytes. Recent advances in the techniques of tissue culture and biochemistry have enabled us to clarify factors derived from keratinocytes. Alpha-melanocyte-stimulating hormone, adrenocorticotrophic hormone, basic fibroblast growth factor, nerve growth factor, endothelins, granulocyte-macrophage colony-stimulating factor, steel factor, leukemia inhibitory factor and hepatocyte growth factor have been suggested to be the keratinocyte-derived factors and to regulate the proliferation and/or differentiation of mammalian epidermal melanocytes. Numerous factors may be produced in and released from keratinocytes and be involved in regulating the proliferation and differentiation of mammalian epidermal melanocytes through receptor-mediated signaling pathways.  相似文献   

6.
Cells positive to the dopa reaction (melanocytes) as well as to the combined dopa-premelanin reaction (melanoblasts and melanocytes) in the epidermis of C57BL/10JHir-p/p (pink-eyed dilution) mice were fewer and less reactive than in C57BL/10JHir (black, P/P) mice, suggesting that the proliferation and differentiation of p/p melanocytes are inhibited. To confirm the inhibitory effects of p gene on the proliferation and differentiation of epidermal melanocytes, we cultured epidermal cell suspensions of neonatal skins from P/P and p/p in a serum-free medium. The proliferation and differentiation of p/p melanoblasts/melanocytes in primary culture were greatly inhibited as compared to P/P melanoblasts/melanocytes. The morphology of p/p melanoblasts/melanocytes cultured in melanocyte growth medium, though non-pigmented, was similar to P/P melanocytes; namely, dendritic, polygonal, or epithelioid. About 8% of p/p cells cultured in melanocyte growth medium were positive to the dopa reaction, and about 25% were reactive to the combined dopa-premelanin reaction. Eumelanin content in p/p was extremely reduced compared to P/P. The immunocytochemical staining of p/p melanoblasts/melanocytes revealed that they are negative to tyrosinase, but reactive to tyrosinase-related protein (TRP)-1, TRP-2, and c-kit. However, the reactivities in p/p were lower than in P/P. Although the differentiation of p/p melanoblasts was not induced by endothelin (ET)-1, ET-2, and ET-3, the proliferation of p/p melanoblasts was stimulated by them. These results suggest for the first time that p gene exerts its influence on the proliferative activities of mouse epidermal melanoblasts by affecting the regulatory mechanisms dependent on the function of ETs.  相似文献   

7.
The effects of low-dose γ-rays on the embryonic development of animal cells are not well studied. The mouse melanocyte is a good model to study the effects of low-dose γ-rays on the development of animal cells, as it possesses visible pigment (melanin) as a differentiation marker. The aim of this study is to investigate in detail the effects of low-dose γ-rays on embryonic development of mouse melanoblasts and melanocytes in the epidermis and hair bulbs at cellular level. Pregnant females of C57BL/10J mice at nine days of gestation were whole-body irradiated with a single acute dose of γrays (0.1, 0.25, 0.5, and 0.75 Gy), and the effects of γ-rays were studied by scoring changes in the development of epidermal melanoblasts and melanocytes, hair follicles, and hair bulb melanocytes at 18 days in gestation. The number of epidermal melanoblasts and melanocytes, hair follicles, and hair bulb melanocytes in the dorsal and ventral skins was markedly decreased even at 0.1 Gy-treated embryos (P < 0.001), and gradually decreased as dose increased. The effects on the ventral skin were greater than those on the dorsal skin. The dramatic reduction in the number of melanocytes compared to melanoblasts was observed in the ventral skin, but not in the dorsal skin. These results suggest that low-dose γ-rays provoke the death of melanoblasts and melanocytes, or inhibit the proliferation and differentiation of melanoblasts and melanocytes, even at the low dose.  相似文献   

8.
During embryonic development in vertebrates, the neural crest‐derived melanoblasts migrate along the dorsolateral axis and cross the basal membrane separating the dermis from the epidermis to reach their final location in the interfollicular epidermis and epidermal hair follicles. Neoplastic transformation converts melanocytes into highly invasive and metastatic melanoma cells. In vitro, these cells extend various types of protrusions and adopt two interconvertible modes of migration, mesenchymal and amoeboid, driven by different signalling molecules. In this review, we describe the major contributions of natural mouse mutants, mouse models generated by genetic engineering and in vitro culture systems, to identification of the genes, signalling pathways and mechanisms regulating the migration of normal and pathological cells of the melanocyte lineage, at both the cellular and molecular levels.  相似文献   

9.
B V Koniukhov 《Ontogenez》1991,22(2):167-175
Data obtained in mutant mouse strains provide evidence for multilocus control of determination and proliferation of melanocyte stem cells. Mice are known to have five loci (mi, Sp, s, Ls, Dom) controlling melanoblast determination. Locus mi is expressed in pluripotent cells of the neural crest from which melanocyte and neuron clones are formed; it is also expressed in a strain of ectomesenchyme cells. Loci Sp, s, ls and Dom are expressed somewhat later, probably during one of the last quantal cell cycles leading to the determination of unipotent melanocyte stem cells. Mutant genes of these loci impair the development of pigment cells as well as of ganglial neurons. Three loci (W, vs, Sl) control the proliferation of melanocyte stem cells. Mutations of locus W present in a single copy inhibit the proliferative activity of melanoblasts, whereas when present at the double dose they completely block their proliferation. Locus Sl is not expressed in melanocytes but acts in another cell system, which is very important for the proliferation of melanocyte stem cells. Mutant genes Ga, si and vit decrease the lifespan of stem cells for epidermal melanocytes.  相似文献   

10.
Interleukin (IL)-1alpha is one of the important cytokines involved in regulating immunological reactions in the mouse skin. However, it is not known whether IL-1alpha regulates the proliferation and differentiation of mouse epidermal melanocytes. In this study, to investigate the role of IL-1alpha in the regulation of the proliferation and differentiation of mouse epidermal melanocytes, IL-1alpha was supplemented to serum-free primary cultures of epidermal cell suspensions from the initiation of the primary culture (keratinocytes and melanoblasts-melanocytes) as well as to pure cultures of melanoblasts-melanocytes (keratinocyte-depleted cultures, after 14 days), and its effect was tested. IL-1alpha inhibited the proliferation of undifferentiated melanoblasts irrespective of the presence or absence of keratinocytes, whereas the cytokine inhibited the proliferation of differentiated melanocytes only in the presence of keratinocytes. Moreover, IL-1alpha induced the differentiation of melanocytes and, in addition, stimulated tyrosinase activity, melanin synthesis, and dendritogenesis of melanocytes irrespective of the presence or absence of keratinocytes. These results suggest that IL-1alpha is involved in inhibiting the proliferation of neonatal murine epidermal melanoblasts and in stimulating the differentiation, melanogenesis, and dendritogenesis of melanocytes. The results also suggest that IL-1alpha inhibits the proliferation of differentiated melanocytes in cooperation with keratinocyte-derived factors.  相似文献   

11.
Cultures of 14-day embryonic mouse epidermis that include melanoblasts initiate melanin synthesis 30 hr after plating, a schedule that is 2.5 days earlier than in vivo. In order to determine if the accelerated differentiation of melanoblasts is related to a cessation of cell proliferation in the cultures, a study of [3H]thymidine incorporation by melanoblasts and melanocytes was made. Autoradiograms of 14-day epidermal cultures grown for 48 hr in medium containing [3H]thymidine revealed that melanoblasts continue to proliferate during this time period. A second population of melanoblasts that did not incorporate [3H]thymidine was also present in these cultures. The relative numbers of dividing and nondividing melanoblasts change with the age of the epidermis cultured. Ninety-one percent of the melanoblasts in 13-day epidermis take up [3H]thymidine, 63% incorporate [3H]thymidine in 14-day cultures, and only 29% take up label in cultures of 15-day epidermis. It appears from these results that melanoblasts during their migration from the neural crest are proliferative cells and that during the early invasion of the epidermis a nonproliferative population of melanoblasts is established. Both populations coexist in the epidermis and subsequently undergo differentiation on the same time schedule.  相似文献   

12.
Mouse epidermal melanoblasts/melanocytes preferentially proliferated from disaggregated epidermal cell suspensions derived from newborn mouse skin in a serum-free melanoblast/melanocyte-proliferation medium supplemented with dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) and/or basic fibroblast growth factor (bFGF). Leukemia inhibitory factor (LIF) supplemented to the medium from initiation of primary culture increased the proliferation of melanoblasts or melanocytes as well as the differentiation of melanocytes. Pure cultured primary melanoblasts or melanocytes were further cultured with the medium supplemented with LIF from 14 days (keratinocyte depletion). LIF stimulated the proliferation of melanoblasts or melanocytes as well as the differentiation of melanocytes in the absence of keratinocytes. Moreover, anti-LIF antibody supplemented to the medium from initiation of primary culture inhibited the proliferation of melanoblasts or melanocytes as well as the differentiation of melanocytes. These results suggest that LIF is one of the keratinocyte-derived factors involved in regulating the proliferation and differentiation of neonatal mouse epidermal melanocytes in culture in cooperation with cAMP elevator and bFGF.  相似文献   

13.
14.
Conditional Cre-mediated recombination has emerged as a robust method of introducing somatic genetic alterations in an organ-specific manner in the mouse. Here, we generated and characterized mice harboring a 4-hydroxytamoxifen (OHT)-inducible Cre recombinase-estrogen receptor fusion transgene under the control of the melanocyte-specific tyrosinase promoter, designated Tyr::CreER(T2). Cre-mediated recombination was induced in melanocytes in a spatially and temporally controlled manner upon administration of OHT and was documented in embryonic melanoblasts, follicular bulb melanocytes, dermal dendritic melanocytes, epidermal melanocytes of tail skin, and in putative melanocyte stem cells located within the follicular bulge. Functional evidence suggestive of recombination in follicular melanocyte stem cells included the presence of Cre-mediated recombination in follicular bulb melanocytes 1 year after topical OHT administration, by which time several hair cycles have elapsed and the melanocytes residing in this location have undergone multiple rounds of apoptosis and replenishment. These Tyr:: CreER(T2) transgenic mice represent a useful resource for the evaluation of melanocyte developmental genetics, the characterization of melanocyte stem cell function and dynamics, and the construction of refined mouse models of malignant melanoma.  相似文献   

15.
How are proliferation and differentiation of melanocytes regulated?   总被引:1,自引:0,他引:1  
Coat colors are determined by melanin (eumelanin and pheomelanin). Melanin is synthesized in melanocytes and accumulates in special organelles, melanosomes, which upon maturation are transferred to keratinocytes. Melanocytes differentiate from undifferentiated precursors, called melanoblasts, which are derived from neural crest cells. Melanoblast/melanocyte proliferation and differentiation are regulated by the tissue environment, especially by keratinocytes, which synthesize endothelins, steel factor, hepatocyte growth factor, leukemia inhibitory factor and granulocyte-macrophage colony-stimulating factor. Melanocyte differentiation is also stimulated by alpha-melanocyte stimulating hormone; in the mouse, however, this hormone is likely carried through the bloodstream and not produced locally in the skin. Melanoblast migration, proliferation and differentiation are also regulated by many coat color genes otherwise known for their ability to regulate melanosome formation and maturation, pigment type switching and melanosome distribution and transfer. Thus, melanocyte proliferation and differentiation are not only regulated by genes encoding typical growth factors and their receptors but also by genes classically known for their role in pigment formation.  相似文献   

16.
17.
Melanocytes originate from the neural crest in vertebrates and migrate to the body surface where they differentiate into functional cells. Genes involved in melanocyte differentiation can be classified into two groups. One of them consists of the functional genes that control proteins specific to the function of the melanocyte. As the representative gene of this category, albino (c) locus in the mouse is considered to control tyrosinase, the key enzyme in melanogenesis. cDNA for mouse tyrosinase has been cloned and sequenced. The cDNA can be used to detect tyrosinase mRNA synthesized during melanocyte differentiation. On the other hand, genes such as brown (b) or pink-eyed dilution (p) have been assumed to control melanosome proteins. The other category consists of genes that regulate the expression of these functional genes directly or indirectly. In the mouse, so-called white-spotting genes and genes of the agouti series are considered to fall into this category. Based on the fact that mutations at the white-spotting loci result in the absence of melanocytes in a particular area of skin, it is assumed that some of these loci control the factors that promote either differentiation or migration of melanoblasts and are candidates for the classic regulator genes Genes at the agouti (a) locus in the mouse determine the type of melanin synthesized in hair follicle melanocytes, that is eumelanin or pheomelanin. An interesting feature of this locus is that the site of gene action is not within the melanocytes but in the cells surrounding them. The results of our study indicate that the gene product of the a-locus interacts with α-MSH at the α-MSH receptor site, regulates the cellular cAMP level via a signal transduction system and, in turn, determines the type of melanin synthesized in the cells.  相似文献   

18.
19.
Long-term exposure of ultraviolet radiation B (UVB)-induced pigmented spots in the dorsal skin of hairless mice of Hos:(HR-1 X HR//De) F1. Previous study showed that the proliferative and differentiative activities of cultured epidermal melanoblasts/melanocytes from UVB-induced pigmented spots increased with the development of the pigmented spots. To determine whether the increase in the proliferative and differentiative activities of epidermal melanoblasts/melanocytes was brought about by direct changes in melanocytes, or by indirect changes in surrounding keratinocytes, pure cultured melanoblasts/melanocytes and keratinocytes were prepared and co-cultured in combination with control and irradiated mice in a serum-free culture medium. Keratinocytes from irradiated mice stimulated the proliferation and differentiation of both neonatal and adult non-irradiated melanoblasts/melanocytes more greatly than those from non-irradiated mice. In contrast, both non-irradiated and irradiated adult melanocytes proliferated and differentiated similarly when they were co-cultured with irradiated adult keratinocytes. These results suggest that the increased proliferative and differentiative activities of mouse epidermal melanocytes from UVB-induced pigmented spots are regulated by keratinocytes, rather than melanocytes.  相似文献   

20.
Mouse epidermal melanoblasts and melanocytes preferentially proliferated from disaggregated epidermal cell suspensions derived from newborn mouse skin in a serum-free melanocyte-proliferation medium (MDMD) and melanoblast-proliferation medium (MDMDF) supplemented with dibutyryl adenosine 3':5'-cyclic monophosphate (DBcAMP) and/or basic fibroblast growth factor (bFGF). Pure cultured primary melanoblasts and melanocytes were then further cultured with MDMD/MDMDF supplemented with steel factor (SLF) (keratinocyte depletion). SLF increased the number of melanoblasts and melanocytes as well as the proportion of differentiated melanocytes in the absence of keratinocytes. Flow cytometric analysis showed that melanoblasts and melanocytes in the S and G2/M phases of the cell cycle were increased by treatment with SLF. Moreover, an anti-SLF antibody added to MDMD/MDMDF from the initiation of the primary culture (in the presence of keratinocytes) inhibited the proliferation of melanoblasts and melanocytes as well as the differentiation of melanocytes. These results suggest that SLF is one of the keratinocyte-derived factors involved in regulating the proliferation and differentiation of neonatal mouse epidermal melanocytes in culture in cooperation with cAMP elevator and bFGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号