首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urasaki A  Morvan G  Kawakami K 《Genetics》2006,174(2):639-649
The Tol2 element is a naturally occurring active transposable element found in vertebrate genomes. The Tol2 transposon system has been shown to be active from fish to mammals and considered to be a useful gene transfer vector in vertebrates. However, cis-sequences essential for transposition have not been characterized. Here we report the characterization of the minimal cis-sequence of the Tol2 element. We constructed Tol2 vectors containing various lengths of DNA from both the left (5') and the right (3') ends and tested their transpositional activities both by the transient excision assay using zebrafish embryos and by analyzing chromosomal transposition in the zebrafish germ lineage. We demonstrated that Tol2 vectors with 200 bp from the left end and 150 bp from the right end were capable of transposition without reducing the transpositional efficiency and found that these sequences, including the terminal inverted repeats (TIRs) and the subterminal regions, are sufficient and required for transposition. The left and right ends were not interchangeable. The Tol2 vector carrying an insert of >11 kb could transpose, but a certain length of spacer, <276 but >18 bp, between the left and right ends was necessary for excision. Furthermore, we found that a 5-bp sequence, 5'-(A/G)AGTA-3', is repeated 33 times in the essential subterminal region. Mutations in the repeat sequence at 13 different sites in the subterminal region, as well as mutations in TIRs, severely reduced the excision activity, indicating that they play important roles in transposition. The identification of the minimal cis-sequence of the Tol2 element and the construction of mini-Tol2 vectors will facilitate development of useful transposon tools in vertebrates. Also, our study established a basis for further biochemical and molecular biological studies for understanding roles of the repetitive sequence in the subterminal region in transposition.  相似文献   

2.
Drosophila P element transposase recognizes internal P element DNA sequences   总被引:24,自引:0,他引:24  
P D Kaufman  R F Doll  D C Rio 《Cell》1989,59(2):359-371
  相似文献   

3.
P J Lammers  J W Golden  R Haselkorn 《Cell》1986,44(6):905-911
Vegetative cells of the cyanobacterium Anabaena contain an 11 kb DNA element within the coding region of the nifD gene. This element is excised by site-specific recombination between directly repeated 11 bp sequences at each of its ends during differentiation of nitrogen-fixing cells called heterocysts. Site-specific recombination, leading to the same rejoined nifD gene, was observed during propagation in E. coli of a fragment containing the 11 kb element and flanking sequences. An assay for excision of the element in E. coli was developed, based on mini-Mu-lac transposition into the element. Since the 11 kb element lacks an origin of replication, its excision results in loss of lac and conversion of blue colony-forming cells to white on X-gal plates. Insertion and deletion mutagenesis identified a region of the element needed for excision. Mutations in this region could be complemented by a 6 kb fragment containing an open reading frame that runs counter to those of the nif genes, beginning 240 bp from the recombination site.  相似文献   

4.
5.
6.
家蚕核型多角体病毒P10基因的克隆及核苷酸序列分析   总被引:3,自引:0,他引:3  
张耀洲  张颖 《病毒学报》1992,8(3):280-282
  相似文献   

7.
Up to now, the most practical method for introducingforeign gene into insect eggs is the microinjection as thatwas utilized in Drosophila melanogaster [1–3]. The dis-covery of transposable elements including: P, Minos,Hermes, mariner, hobo, piggyBac, etc…  相似文献   

8.
The piggyBac element from Trichoplusia ni is recognized as a useful vector for transgenesis of a wide variety of species. This transposable element is 2472 bp in length, and has a complex repeat configuration consisting of an internal repeat (IR), spacer, and terminal repeat (TR) at both ends, and a single ORF encoding the transposase. Excision assays performed in microinjected T. ni embryos using plasmids deleted for progressively larger portions of the piggyBac internal sequence reveal that the 5' and 3' IR, spacer, and TR configuration is sufficient for precise excision of piggyBac when transposase is provided in trans. Interplasmid transposition assays using plasmids carrying varying lengths of intervening sequence between the piggyBac termini in T. ni demonstrate that a minimum of 55 bp of intervening sequence is required for optimal transposition, while lengths less than 40 bp result in a dramatic decrease in transposition frequency. These results suggest that the piggyBac transposase may bind both termini simultaneously before cleavage can occur, and/or that the formation of a transposition complex requires DNA bending between the two termini. Based on these results we constructed a 702-bp cartridge with minimal piggyBac 5' and 3' terminal regions separated by an intervening sequence of optimal length. Interplasmid transposition assays demonstrate that the minimal terminal configuration is sufficient to mediate transposition, and also verify that simply inserting this cartridge into an existing plasmid converts that plasmid into a non-autonomous piggyBac transposon. We also constructed a minimal piggyBac vector, pXL-Bac, that contains an internal multiple cloning site sequence between the minimal terminal regions. These vectors should greatly facilitate the utilization of the piggyBac transposon in a wide range of hosts.  相似文献   

9.
10.
11.
Functional transposable elements (TEs) of several Pseudomonas spp. strains isolated from black shale ore of Lubin mine and from post-flotation tailings of Zelazny Most in Poland, were identified using a positive selection trap plasmid strategy. This approach led to the capture and characterization of (i) 13 insertion sequences from 5 IS families (IS3, IS5, ISL3, IS30 and IS1380), (ii) isoforms of two Tn3-family transposons – Tn5563a and Tn4662a (the latter contains a toxin-antitoxin system), as well as (iii) non-autonomous TEs of diverse structure, ranging in size from 262 to 3892 bp. The non-autonomous elements transposed into AT-rich DNA regions and generated 5- or 6-bp sequence duplications at the target site of transposition. Although these TEs lack a transposase gene, they contain homologous 38-bp-long terminal inverted repeat sequences (IRs), highly conserved in Tn5563a and many other Tn3-family transposons. The simplest elements of this type, designated TIMEs (Tn3 family-derived Inverted-repeat Miniature Elements) (262 bp), were identified within two natural plasmids (pZM1P1 and pLM8P2) of Pseudomonas spp. It was demonstrated that TIMEs are able to mobilize segments of plasmid DNA for transposition, which results in the generation of more complex non-autonomous elements, resembling IS-driven composite transposons in structure. Such transposon-like elements may contain different functional genetic modules in their core regions, including plasmid replication systems. Another non-autonomous element “captured” with a trap plasmid was a TIME derivative containing a predicted resolvase gene and a res site typical for many Tn3-family transposons. The identification of a portable site-specific recombination system is another intriguing example confirming the important role of non-autonomous TEs of the TIME family in shuffling genetic information in bacterial genomes. Transposition of such mosaic elements may have a significant impact on diversity and evolution, not only of transposons and plasmids, but also of other types of mobile genetic elements.  相似文献   

12.
13.
Summary In order to establish a transformation system for P. chrysogenum autonomously replicating vectors were constructed using mitochondrial DNA sequences from the fungus. A physical map of the mt DNA of a production strain was established using ten different restriction enzymes. Unexpectedly, the mt DNA of this strain proved to be significantly smaller than that of a second strain from a culture collection (27 kb versus 49 kb). Various fragments representing about 71% of the 27 kb mt DNA were cloned and, at first, preselected for replicating activity in an intermediate host (Saccharomyces cerevisiae). Two of these fragments also promoted autonomous replication in P. chrysogenum, which was confirmed by isolation of bulk DNA and transfer into E. coli. For selection of transformants in P. chrysogenum the prokaryotic kanamycin resistance gene was used which increased about twofold the resistance against G418. Present address: Institut für Biotechnologie, Fachgebiet Mikrobiologie, Techn. Universität Berlin, Seestr. 13, D-1000 Berlin 65  相似文献   

14.
P D Kaufman  D C Rio 《Cell》1992,69(1):27-39
We have developed an in vitro reaction system for Drosophila P element transposition. Transposition products were recovered by selection in E. coli, and contained simple P element insertions flanked by 8 bp target site duplications as observed in vivo. Transposition required Mg+2 and partially purified P element transposase. Unlike other DNA rearrangement reactions, P element transposition in vitro used GTP as a cofactor; deoxyGTP, dideoxyGTP, or the nonhydrolyzable GTP analogs GMP-PNP or GMP-PCP were also used. Transposon DNA molecules cleaved at the P element termini were able to transpose, but those lacking 3'-hydroxyl groups were inactive. These biochemical data are consistent with genetic data suggesting that P element transposition occurs via a "cut-and-paste" mechanism.  相似文献   

15.
Chawla M  Das Gupta SK 《Plasmid》1999,41(2):135-140
Escherichia coli-mycobacteria shuttle vectors, derived from pAL5000 (a mycobacterial plasmid) and pUC19, were frequently found to undergo structural alterations due to transposition of IS1096, a Mycobacterium smegmatis transposable element, at a cluster of sites located within a small region of 60 bp, immediately upstream of a kanamycin resistance gene present in these vectors. The structural alterations led to deletion of large regions of the vector which, in several cases, were found to extend into the ORF2 (RepB) coding sequences of the pAL5000 replication region without affecting its replication capability. This suggests that the entire ORF2 coding sequences of the pAL5000 replication region may not be essential for replication of pAL5000-derived vectors. The deletion derivatives, which contain the minimal sequences required for replication and selection in mycobacteria, were found to be structurally stable and therefore these could be potentially used as stable vector systems for the transformation of mycobacteria.  相似文献   

16.
Translocation of Sleeping Beauty (SB) transposon requires specific binding of SB transposase to inverted terminal repeats (ITRs) of about 230 bp at each end of the transposon, which is followed by a cut-and-paste transfer of the transposon into a target DNA sequence. The ITRs contain two imperfect direct repeats (DRs) of about 32 bp. The outer DRs are at the extreme ends of the transposon whereas the inner DRs are located inside the transposon, 165-166 bp from the outer DRs. Here we investigated the roles of the DR elements in transposition. Although there is a core transposase-binding sequence common to all of the DRs, additional adjacent sequences are required for transposition and these sequences vary in the different DRs. As a result, SB transposase binds less tightly to the outer DRs than to the inner DRs. Two DRs are required in each ITR for transposition but they are not interchangeable for efficient transposition. Each DR appears to have a distinctive role in transposition. The spacing and sequence between the DR elements in an ITR affect transposition rates, suggesting a constrained geometry is involved in the interactions of SB transposase molecules in order to achieve precise mobilization. Transposons are flanked by TA dinucleotide base-pairs that are important for excision; elimination of the TA motif on one side of the transposon significantly reduces transposition while loss of TAs on both flanks of the transposon abolishes transposition. These findings have led to the construction of a more advanced transposon that should be useful in gene transfer and insertional mutagenesis in vertebrates.  相似文献   

17.
TheDrosophila nuclear proteins Bj6 and Bx42 characterized previously are detected in a series of developmentally active puffs on salivary gland chromosomes. Here the binding of both proteins at puff 3C11-12 containing the glue protein geneSgs-4 is described in more detail. By deletion analysis we show that both proteins bind within a chromosomal segment containing 17–19 kb of DNA surrounding theSgs-4 gene. They are detectable at this site during the intermoult stages, before the puff regresses in response to the moulting hormone ecdysone. If theSgs-4 gene together with flanking DNA sequences is brought into a different chromosomal position by P element transfer, both proteins are detected at this new location. Both proteins are bound to the chromosome within the range of 2.5 kb DNA upstream of theSgs-4 gene. A strain containing a 52 bp deletion within this region fails to bind Bx42 protein suggesting that the missing DNA, which overlaps a hypersensitive region, may be required for the binding of the Bx42 protein.  相似文献   

18.
19.
The 37,000 bp double-stranded DNA genome of bacteriophage Mu behaves as a plaque-forming transposable element of Escherichia coli. We have defined the cis-acting DNA sequences required in vivo for transposition and packaging of the viral genome by monitoring the transposition and maturation of Mu DNA-containing pSC101 and pBR322 plasmids with an induced helper Mu prophage to provide the trans-acting functions. We found that nucleotides 1 to 54 of the Mu left end define an essential domain for transposition, and that sequences between nucleotides 126 and 203, and between 203 and 1,699, define two auxiliary domains that stimulate transposition in vivo. At the right extremity, the essential sequences for transposition require not more than the first 62 base pairs (bp), although the presence of sequences between 63 and 117 bp from the right end increases the transposition frequency about 15-fold in our system. Finally, we have delineated the pac recognition site for DNA maturation to nucleotides 32 to 54 of the Mu left end which reside inside of the first transposase binding site (L1) located between nucleotides 1–30. Thus, the transposase binding site and packaging domains of bacteriophage Mu DNA can be separated into two well-defined regions which do not appear to overlap.Abbreviations attL attachment site left - attR attachment site right - bp base pairs - Kb kilobase pair - nt nucleotide - Pu Purine - Py pyrimidine - Tn transposable element State University of New York, Downstate Medical Center, Brooklyn, NY 11204 USA  相似文献   

20.
We investigated physical distances and directions of transposition of the maize transposable element Ac in tobacco cultured cells. We introduced a T-DNA construct that carried a non-autonomous derivative of Ac (designated dAc-I-RS) that included sites for cleavage by restriction endonuclease MluI. Another cleavage site was also introduced into the T-DNA region outside of the dAc-I-RS transposable element. The tobacco cultured cell line BY-2 was transformed with the T-DNA and several transformed lines that had a single copy of the T-DNA at a different chromosomal location were isolated. These lines were co-cultured with Agrobacterium tumefaciens cells that carried a cDNA for the Ac transposase gene under the control of various promoters. Sublines of cultured cells in which dAc-I-RS had been transposed, were isolated. The genomic DNAs of these sublines were isolated and digested with MluI. Sizes of DNA segments generated by digestion were determined by pulse-field gel electrophoresis. Our results showed that 20 to 70% of transposition events had occurred within several hundreds kilo-base pairs (kb) on the same chromosome. These results demonstrate that the Ac-Ds element preferentially transposed to regions near the original site in a tobacco chromosome. In addition, the present results are an example of asymmetric transposition as demonstrated by the distance of transposition on the chromosome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号