首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The prolactin receptor localized in rabbit mammary gland membranes has been identified by affinity labelling using covalent cross-linking agents such as a unique protein chain of approximately 32,000 daltons. After partial purification (5,000-fold) of these receptors from mammary gland homogenate, polyclonal antibodies, which specifically and completely inhibit prolactin binding in all organs and in all species studied, were raised. These antibodies possessed prolactin-like biological activity (casein synthesis) on rabbit mammary gland explants. Monoclonal antibodies specifically directed against the binding domain of the receptor were also obtained. These antibodies were more species-specific than the polyclonal antibodies. The most potent (M110) possessed higher affinity than prolactin for the receptor and could be a very effective tool to elucidate the structure of the receptor and its immunological detection.  相似文献   

2.
Two types of prolactin receptors were identified in sow mammary gland. When light membranes were prepared on a discontinuous sucrose gradient (0.3 and 1.7 M) and then diluted and washed with 0.3 M sucrose solution, a large amount (about 50%) of receptors were released from membranes and appeared in the supernatant fraction. These two forms (hydrophobic and water-soluble) of receptors were characterized as having the same binding specificity for lactogenic hormones and a similar affinity constant for ovine prolactin (K alpha approximately 10-12 X 10(9) M-1). Polyclonal antibodies and one monoclonal (mAb M110) antibody, obtained against partially purified prolactin receptors from rabbit mammary gland, cross-reacted effectively with sow mammary receptors. They completely inhibited the specific binding of [125I]oPRL to membrane and water-soluble receptors. The present studies indicate that the two types of sow prolactin receptors could represent the same molecular entity and confirm that prolactin receptors from rabbit and sow mammary gland exhibit numerous antigenic similarities.  相似文献   

3.
The biological activity of three monoclonal antibodies (mAbs) against the rabbit mammary prolactin (PRL) receptor (M110, A82, and A917) were investigated using explants of rabbit mammary gland. The three mAbs which were all able to inhibit the binding of 125I-ovine prolactin to its receptor had different biological activities. Two mAbs (M110 and A82) were able to prevent the stimulating effect of PRL on casein synthesis when the molar ratio between the mAb and PRL was 100. At a lower concentration, M110 moved the PRL dose-response curve to the right by a factor of 2.4. This mAb was also effective in vivo, reducing milk production in a lactating rabbit, in a similar fashion to the prolactin lowering drug, CB-154. One mAb (A917) was able to mimic the action of PRL on both casein and DNA ([3H]thymidine incorporation) synthesis, whereas the other two mAbs were without any stimulatory effect. For this stimulatory effect to be observed, bivalency of the antibody was essential, since monovalent fragments, which were able to inhibit PRL binding, had no agonistic activity. The ability of the mAbs to induce a down-regulation of receptors was also studied. M110, which was equipotent to PRL in occupation of receptors, induced no down-regulation, while A917, which had full biological activity, induced only a small degree of down-regulation. These studies suggest that the binding domain of the receptor might be relatively complex, since only a part of this domain recognized by the antibody with PRL-like activity was able to induce hormonal action. Alternatively, only those antibodies able to microaggregate the receptors may possess PRL-like activity.  相似文献   

4.
The effects of prolactin and a serum containing anti-prolactin receptor antibodies on prolactin binding sites were investigated in a suspension culture of rat liver cells. In this model, prolactin binding sites decline rapidly with time, with 90% of the sites lost at 24–48 h of culture. The inclusion of 10 to 100 nM ovine prolactin in the incubation medium, results in a 6-fold increase in prolactin binding compared to control cultures. Anti-prolactin receptor serum is capable of preventing this PRL-induced increase in its receptors. However, when incubated alone, these antibodies at lower concentrations (0.5 to 5%) mimic the up-regulatory effect of prolactin on its own binding site. These findings suggest that in rat liver cells, as has been observed for rabbit mammary gland, that the prolactin molecule is not required beyond the initial binding to its receptors for its action to be attained.  相似文献   

5.
Different polyclonal and monoclonal antibodies against the rabbit mammary prolactin (PRL) receptor were previously obtained that totally inhibited PRL binding in the rabbit mammary gland. Only polyclonal antibodies were shown to immunoprecipitate preformed PRL--receptor complexes in solubilized mammary membranes suggesting that they also recognized domains outside of the PRL binding site of the receptor. When partially purified PRL receptor preparations from both rabbit and pig mammary tissues were iodinated, immunoprecipitated and subsequently analyzed by SDS--PAGE, a single component of molecular weight approximately 42,000 was specifically recognized by all the anti-PRL receptor antibodies. This unit was the only component immunoprecipitated by the monoclonal antibody M 110. Its identification was not impaired by using reducing or non-reducing conditions. Moreover, a further purification of the [125I]-labeled receptor preparations from both species by a second PRL affinity chromatography selected a single binding unit of the same molecular weight. In contrast, polyclonal antibodies immunoprecipitated additional components apart from the 42,000 unit, especially one unit of molecular weight 70,000-80,000 in both species. We conclude that rabbit and pig mammary PRL receptors exhibit striking immunological similarities. Both contain a single binding unit of molecular weight approximately 42,000 that is not linked to other units via disulfide bridges. This binding unit could be associated with a larger component of MW 70,000-80,000 in the holo receptor.  相似文献   

6.
Three monoclonal antibodies (M110, A82, and A917) were obtained by fusing myeloma cells and spleen cells from mice immunized with partially purified rabbit mammary gland prolactin (PRL) receptors. All 3 antibodies were capable of complete inhibition of 125I-ovine prolactin (oPRL) binding to rabbit mammary PRL receptors in either particulate or soluble form. M110 showed slightly greater potency than oPRL in competing for 125I-oPRL binding. These antibodies also inhibited PRL binding to microsomal fractions from rabbit liver, kidney, adrenal, ovary, and pig mammary gland, although A82 showed poor inhibition in pig mammary gland. There was no cross-reaction of any of the 3 monoclonal antibodies (mAbs) for the other species tested: human (T-47D breast cancer cells) and rat (liver, ovary). In order to confirm that these antibodies are specific to the binding domain, antibodies were purified, iodinated, and binding characteristics were investigated. 125I-M110 and 125I-A82 binding was completely inhibited by lactogenic hormones, whereas nonlactogenic hormones did not cross-react. Competition of 125I-M110 by oPRL (ID50 = 0.44 nM) was comparable to that of 125I-oPRL by unlabeled oPRL (ID50 = 0.35 nM), while 125I-A917 binding was only partially competed (30-60%) by lactogenic hormones. Tissue and species specificity of labeled antibody binding paralleled results of binding inhibition experiments using 125I-oPRL. In addition, A82 and A917 completely inhibited 125I-M110 binding. In contrast, 125I-A82 binding was stimulated by A917 and 125I-A917 binding was stimulated by A82. These findings indicate that monoclonal antibodies can be readily prepared from partially purified PRL receptors from rabbit mammary gland; two antibodies (M110 and A82) are hormone binding site specific while the other (A917) binds a domain partially but not entirely distinct from the hormone binding site, and that all three antibodies have strong species specificity.  相似文献   

7.
DDR1 signaling is essential to sustain Stat5 function during lactogenesis   总被引:1,自引:0,他引:1  
Postnatal development of the mammary gland is achieved by an interplay of endocrine and extracellular matrix-derived signals. Despite intense research, a comprehensive understanding of the temporal and spatial coordination of these hormonal and basement membrane stimuli is still lacking. Here, we address the role of the collagen-receptor DDR1 in integrating extracellular matrix-derived signaling with the lactogenic pathway initiated by the prolactin receptor. We found that stimulation of DDR1-overexpressing mammary epithelial HC11 cells with collagen and prolactin resulted in stronger and more sustained induction of Stat5 phosphorylation as compared to control cells. Enhanced Stat5 activity in HC11-DDR1 cells correlated with increased beta-casein gene expression. In contrast, cells derived from DDR1-null mice showed reduced Stat5 activation upon lactogenic stimulation and completely failed to induce beta-casein expression. The cell-autonomous role of DDR1 in controlling ductal branching and alveologenesis prior to the onset of lactogenesis was corroborated by mammary tissue transplantation experiments. Our results show that aside from hormone- and cytokine receptors, DDR1 signaling establishes a third matrix-derived pathway vital to maintain mammary gland function.  相似文献   

8.
Estramustine, a new anti-microtubule drug, was added to the culture medium of rabbit mammary explants with lactogenic hormones. In the absence of the drug, prolactin with insulin and cortisol stimulated DNA synthesis and it induced beta-casein and beta-casein mRNA accumulation in the tissue. As opposed to other anti-microtubule agents such as colchicine, estramustine was unable to prevent prolactin actions. An examination of the mammary cells by immunofluorescence revealed that the microtubule network was significantly altered under the influence of estramustine. These data indicate that the integrity of microtubules is not required for prolactin to deliver its message to the mammary cell. These data also suggest that other anti-microtubule drugs such as colchicine which prevent prolactin action act through their binding to tubulin molecule unrelated to microtubule structures.  相似文献   

9.
Antisera against a partially purified growth hormone receptor derived from rabbit liver were generated in guinea pigs. The antisera specifically inhibited the binding of 125I-ovine growth hormone (oGH) to liver membranes but had no effect on the binding of 125I-ovine prolactin to rabbit mammary gland receptors. These antisera did not bind or destroy 125I-oGH. Moreover, the binding of labeled growth hormone to membrane particles derived from liver of several species was also inhibited by the antisera, thus suggesting that immunological determinants of the growth hormone receptor of several species are similar. gamma-Globulin fractions derived from the antisera were responsible for the inhibition. In addition 125I-gamma-globulin derived from one antiserum bound to membrane pellets with a corresponding decline in 125I-oGH binding. Kinetic analysis of inhibition of 125I-oGH binding suggested a hyperbolic competitive inhibition, a point of view which is favored by the demonstration of a hormone receptor . antibody complex. The availability of the antireceptor sera confirmed previous data that differential affinity chromatography separated growth hormone and prolactin receptors in solubilized rabbit liver membrane preparations. The antireceptor sera will be useful probes in further characterization of the growth hormone receptor.  相似文献   

10.
Characterization of prolactin receptors in pig mammary gland.   总被引:1,自引:1,他引:0       下载免费PDF全文
Prolactin receptors present in the particulate fraction of lactating pig mammary gland were solubilized by 7.5mM-3-[(3-cholamidopropyl)dimethylammonio]-1-propane-su lph onic acid (Chaps) and purified by affinity chromatography on prolactin coupled to Affi-Gel 10. Nearly 30% of the particulate receptors were solubilized by the detergent and over a 1000-fold purification from homogenates was achieved. A water-soluble fraction rich in receptors was observed during the preparation of membranes, although this fraction has not yet been purified. Prolactin binding to the receptors was a time-dependent, reversible and saturable reaction in particulate, Chaps-solubilized and purified receptors. In all forms, receptors showed the same specificity to peptide hormones. Prolactin and human growth hormone bound to the same receptors, whereas bovine growth hormone, follicle-stimulating hormone, luteinizing hormone, thyroid-stimulating hormone and insulin failed to bind. After solubilization, the dissociation constant (Kd) for prolactin was decreased 5-fold from 9.8 X 10(-11) M in the particulate receptors to 1.8 X 10(-11) M in solubilized and purified receptors, being due principally to an increase in the association rate constant from 1.0 X 10(9)M-1 X h-1 to (3.9-4.6) X 10(9)M-1 X h-1, respectively, with the dissociation rate constant remaining unchanged at (1.1-1.3) X 10(-2)h-1. Isoelectric focusing of the prolactin-receptor complex revealed two peaks, one at a pI of 5.5-5.6 and the other at 5.2-5.3. Microsomal receptors were covalently cross-linked to 125I-labelled ovine prolactin with ethylene glycol bis(succinimidyl succinate) and analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. Autoradiography of the gel revealed a major subunit of Mr 28 000-35 000 and a minor one of Mr 67 000-69 000. Anti-(prolactin receptor) antibodies raised against rabbit mammary gland prolactin receptors were equally effective in inhibiting prolactin binding to particulate, solubilized and affinity-purified receptors, suggesting that purified prolactin receptors have a structure indistinguishable immunologically from particulate receptors and rabbit mammary gland prolactin receptors. The present demonstration shows that particulate prolactin receptors from a domestic animal can be solubilized and purified without losing the original properties of high affinity and binding specificity for hormones.  相似文献   

11.
Colchicine and related drugs are known to inhibit milk secretion. They are also able to prevent stimulation of casein and DNA synthesis by prolactin in the mammary gland. The present report reports data obtained with tubulozole, a new antimitotic drug. Tubulozole C added to culture medium of isolated rabbit epithelial mammary cells strongly inhibited their multiplication. Simultaneously, at a concentration of 1 microM, it prevented almost completely the induction of beta-casein mRNA. Induced cells were rapidly deinduced by addition of the drug to the medium. A similar inhibition was observed when the induction was obtained with prolactin alone or with its two stimulators insulin and glucocorticoids. Tubulozole T, an isomer of tubulozole C which is known to be ineffective in disrupting microtubules, did not alter prolactin actions. These data and those obtained with other tubulin-binding drugs strongly suggest that the integrity of microtubules is required for prolactin to deliver its message to the mammary cell.  相似文献   

12.
The binding of cyclosporin A and ovine prolactin to rabbit mammary gland membranes was determined. CsA bound with a Kd of 2.2 X 10(-6)M whereas prolactin bound with a Kd of 2 X 10(-10)M. The binding of each ligand was an independent event and neither ligand influenced the binding of the other ligand showing that CsA does not inhibit the binding of prolactin to its specific receptor in this system.  相似文献   

13.
Specific receptors for prolactin (PRL) are known to be present on plasma membranes and intracellular membranes of mammary gland. We now report, however, the detection and characterization of a soluble lactogen-specific binding protein in high-speed (200,000 g) cytosolic preparations from pregnant- and non-pregnant-rabbit mammary gland. The binding protein was not detectable by poly(ethylene glycol) precipitation; instead, bound and free 125I-labelled human growth hormone (hGH; a potent lactogen) was separated using a mini-gel filtration technique. Specific binding of 125I-hGH reached an apparent equilibrium between 10 and 14 h at 21-23 degrees C. It was dependent on mammary-gland protein concentration and, partially, on Ca2+ or Mg2+ concentrations. Scatchard analysis revealed steep curvilinear plots, the high-affinity component having a KA of approximately 3 X 10(10) M-1. Gel filtration on calibrated Ultrogel AcA34 columns of 125I-hGH-cytosol complexes or of cytosol alone, followed by measurement of 125I-hGH binding in each eluted fraction, indicated that the binding protein had an Mr of 33,000-43,000. A specific binding protein of the same size was observed when 125I-ovine or -human PRL, but not 125I-bovine GH, was used as ligand. The apparent lactogenic specificity was confirmed by a lack of cross-reactivity of the binding protein with an anti-[GH receptor (rabbit liver)] monoclonal antibody. Polyacrylamide-gel electrophoresis of 125I-hGH covalently cross-linked to cytosol with disuccinimidyl suberate revealed binding proteins of Mr 35,000 (non-reduced) and 37,000 (reduced), results comparable with those obtained by gel filtration and indicating an absence of inter-subunit disulphide bonds. These studies have shown the presence of an apparently naturally soluble lactogen-binding protein in the cytosolic fraction of rabbit mammary gland. The relationship between this binding protein and the membrane PRL receptor is not yet known.  相似文献   

14.
To study the role of glucocorticoid receptor (GR) at different stages of mammary gland development, mammary anlage were rescued from GR-/- mice by transplantation into the cleared fat pad of wild-type mice. In virgin mice, GR-/- outgrowths displayed abnormal ductal morphogenesis characterized by distended lumena, multiple layers of luminal epithelial cells in some regions along the ducts, and increased periductal stroma. In contrast, the loss of GR did not result in overt phenotypic changes in mammary gland development during pregnancy, lactation, and involution. Surprisingly, despite the known synergism between glucocorticoids and prolactin in the regulation of milk protein gene expression, whey acidic protein and beta-casein mRNA levels were unaffected in GR-/- transplants as compared with wild-type transplants. That mineralocorticoid receptor (MR) might compensate for the loss of GR was suggested by the detection of MR in the mammary gland at d 1 of lactation. This hypothesis was tested using explant cultures derived from the GR-/- transplants in which the mineralocorticoid fludrocortisone was able to synergistically induce beta-casein gene expression in the presence of prolactin and insulin. These studies suggest that MR may compensate for the absence of GR at some, but not at all stages of mammary gland development.  相似文献   

15.
1. The rate of fatty acid synthesis by mammary explants from rabbits pregnant for 16 days or from rabbits pseudopregnant for 11 days was stimulated up to 15-fold by culturing for 2-4 days with prolactin. This treatment initiated the predominant synthesis of C(8:0) and C(10:0) fatty acids, which are characteristic of rabbit milk. 2. Inclusion of insulin in the culture medium increased the rate of synthesis of these medium-chain fatty acids. By contrast the inclusion of corticosterone led to the predominant synthesis of long-chain fatty acids. When explants were cultured for 2-4 days with insulin, corticosterone and prolactin, the rate of fatty acid synthesis increased up to 42-fold, but both medium- and long-chain fatty acids were synthesized. 3. These results show that the stimulus to mammary-gland lipogenesis and the initiation of synthesis of medium-chain fatty acids observed between days 16 and 23 of pregnancy in the rabbit can be simulated in vitro by prolactin alone. 4. When mammary explants from rabbits pregnant for 23 days were cultured for 2 days with insulin, corticosterone and prolactin, the rate of fatty acid synthesis increased fivefold, but there was a preferential synthesis of long-chain fatty acids. Culture with prolactin alone had little effect on the rate or pattern of fatty acids synthesized. 5. The results are compared with findings in vivo on the control of lipogenesis in the rabbit mammary gland, and are contrasted with the known effects of hormones in vitro on the mammary gland of the mid-pregnant mouse.  相似文献   

16.
The prolactin receptor is a membrane protein mainly involved in the development of the mammary gland and in lactation in mammals. We used specific cDNA constructs and the insect/baculovirus expression system and produced independently and in large amounts several recombinant forms of the rabbit mammary gland prolactin receptor: the full-length receptor (L1, L2), a truncated membrane form (S), a secretable form of the extracellular domain (E) and two forms of the intracellular domain (I1, I2). Of these forms, the L1 and L2 are associated with the membrane fraction, the E is predominantly secreted into the medium and the I1 and I2 are expressed as soluble proteins and surprisingly, a great portion accumulates in the culture medium. The molecular mass (94 kDa) of the expressed full-length receptor corresponds to the translation product of the entire cDNA coding region. The receptor biochemically identified in the rabbit mammary gland is however much shorter. Thus, in the mammary gland, the receptor presumably undergoes post-translational modifications. The receptor forms L1, L2 and S bind prolactin with specificity and affinity similar to those reported for the native receptor. They also interact with two monoclonal antibodies, M110 and A917, specific for the native conformation of the hormone-binding site. The I1 and I2 forms do not bind prolactin, whereas the E form does. Thus, the hormone binding site is located in the extracellular domain which can function autonomously as a PRL-binding soluble protein. However, the E form binds prolactin with a higher affinity than the native receptor and it does not bind one of the two antireceptor monoclonal antibodies, known to be hormone binding-site specific. Thus, the conformation of the native receptor and that of the E form differ.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号