首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
1. The single highly reactive (class I) thiol group per 80000-mol.wt. subunit of skeletal-muscle phosphofructokinase was specifically carboxymethylated with iodo[2-14C]acetate, and after denaturation the remaining thiol groups were carboxymethylated with bromo[2-3H]acetate. After tryptic digestion and peptide 'mapping' it was found that the 14C radioactivity was in a spot that did not contain significant amounts of 3H radioactivity, so it is concluded that there is not a second, 'buried' cysteine residue within a sequence identical with that of the class-I cysteine peptide. 2. The total number of tryptic peptides as well as the number of those containing cysteine, histidine or tryptophan were inconsistent with the smallest polypeptide chain of phosphofructokinase (mol.wt. about 80000) being composed of two identical amino acid sequences. 3. The amino acid sequence of the tryptic peptide containing the class-I thiol group was shown to be Cys-Lys-Asp-Phe-Arg. This sequence is compared with part of the sequence containing the highly reactive thiol group of phosphorylase.  相似文献   

2.
1. One of the activation products of C4, C4b, was prepared, and the reactive thiol group on the alpha'-chain was radioactively labelled with iodo[2-14C]acetic acid. The alpha'-chain was isolated and the N-terminal amino acid sequence of the first 13 residues was determined. 2. C4b was cleaved by C3bINA in the presence of C4b-binding protein and C4d and C4c isolated. The radioactive label and therefore the reactive thiol group were located to C4d. 3. C4c was reduced and alkylated and the two alpha'-chain fragments of C4c were separated. 3. The molecular weights, amino acid analyses and carbohydrate content of the three alpha'-chain fragments were determined. C4d has a mol.wt. of 44500 and a carbohydrate content of 6%. The two alpha'-chain fragments of C4c have mol.wts. of 25000 (alpha 3) and 12000 (alpha 4) and carbohydrate contents of 10 and 22% respectively. 4. The N-terminal amino acid sequences of C4d, the alpha 3 and the alpha 4 fragments were determined for 18, 24 and 11 residues respectively and, by comparison with the N-terminal sequence of the C4b alpha'-chain, the 25000-mol.wt. fragment (alpha 3) was shown to be derived from the N-terminal part of the alpha'-chain. 5. C-Terminal analyses were done on the alpha'-chain and its three fragments. Arginine was found to be the C-terminal residue of C4d and of the alpha 3 fragment. The C-terminal residue of the alpha'-chain and of the alpha 4 fragment could not be identified. The order of the three fragments of the alpha'-chain is therefore: alpha 3(25000)--C4d(44500)--alpha 4(12000). The specificity of C3bINA is for an Arg--Xaa peptide bond.  相似文献   

3.
Further chemical evidence has been obtained using NaB3H4 to support our previous assignment of a thiol ester bond in human C3 (Tack, B. F., Harrison, R. A., Janatova, J., Thomas, M. L., and Prahl, J. W. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 5764-5768). Following trypsin activation of human C3 in the presence of NaB3H4, 3H was shown to have incorporated specifically into the alpha'-chain of C3b. Subsequent fragmentation of [3H]C3b with porcine elastase further localized the label to the C3d subdomain. Under identical conditions, native C3 or C3 pretreated with trypsin (C3b) showed low reactivity with NaB3H4. A tryptic peptide containing the 3H label was isolated following digestion of [3H]C3b on activated thiol-Sepharose. After hydrolysis and saponification of the peptide hydrolysate, amino acid analysis indicated that the 3H had been incorporated into alpha-amino-delta-hydroxyvaleric acid, the product expected from reduction of an ester bond involving a glutamyl residue. On sequence analysis of the labeled peptide, the 3H was shown to reside at the position of the glutamyl residue previously proposed to be involved in the thiol ester bond. The residue at this position was confirmed as alpha-amino-delta-[3H] hydroxyvaleric acid by high performance liquid chromatography analysis and, after back hydrolysis, by amino acid analysis. These data significantly strengthen earlier studies which indicated the presence of a beta-Cys-gamma-Glu thiol ester bond in human C3.  相似文献   

4.
It has been proposed that penicillin and other beta-lactam antibiotics are substrate analogs which inactivate certain essential enzymes of bacterial cell wall biosynthesis by acylating a catalytic site amino acid residue (Tipper, D.J., and Strominger, J.L. (1965) Proc. Natl. Acad. Sci. U.S.A. 54, 1133-1141). A key prediction of this hypothesis, that the penicilloyl moiety and an acyl moiety derived from substrate both bind to the same active site residue, has been examined. D-Alanine carboxypeptidase, a penicillin-sensitive membrane enzyme, was purified from Bacillus subtilis and labeled covalently at the antibiotic binding site with [14C]penicillin G or with the cephalosporin [14C]cefoxitin. Alternatively, an acyl moiety derived from the depsipeptide substrate [14C]diacetyl L-Lys-D-Ala-D-lactate was trapped at the catalytic site in near-stoichiometric amounts by rapid denaturation of an acyl-enzyme intermediate. Radiolabeled peptides were purified from a pepsin digest of each of the 14C-labeled D-alanine carboxypeptidases and their amino acid sequences determined. Antibiotic- and substrate-labeled peptic peptides had the same sequence: Tyr-Ser-Lys-Asn-Ala-Asp-Lys-Arg-Leu-Pro-Ile-Ala-Ser-Met. Acyl moieties derived from antibiotic and from substrate were shown to be bound covalently in ester linkage to the identical amino acid residue, a serine at the penultimate position of the peptic peptide. These studies establish that beta-lactam antibiotics are indeed active site-directed acylating agents. Additional amino acid sequence data were obtained by isolating and sequencing [14C]penicilloyl peptides after digestion of [14C]penicilloyl D-alanine carboxypeptidase with either trypsin or cyanogen bromide and by NH2-terminal sequencing of the uncleaved protein. The sequence of the NH2-terminal 64 amino acids was thus determined and the active site serine then identified as residue 36. A computer search for homologous proteins indicated significant sequence homology between the active site of D-alanine carboxypeptidase and the NH2-terminal portion of beta-lactamases. Maximum homology was obtained when the active site serine of D-alanine carboxypeptidase was aligned correctly with a serine likely to be involved in beta-lactamase catalysis. These findings provide strong evidence that penicillin-sensitive D-alanine carboxypeptidases and penicillin-inactivating beta-lactamases are related evolutionarily.  相似文献   

5.
The phosphopantetheine thiol of rabbit mammary fatty acid synthase was specifically alkylated using chloro[14C]acetyl-CoA and a radioactive fragment generated by limited elastase digestion of the modified protein was purified by gel filtration. We have previously mapped this fragment to an internal location in the 250 000-Mr polypeptide adjacent to the thioesterase domain [Eur. J. Biochem. 130, 185-193 (1983)]. The purified fragment had apparent molecular weights of 23 000 by gel filtration and 10 000 by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulphate, while amino acid analysis indicated a minimal molecular weight of 10 400. We have determined the amino acid sequence of the first 64 residues of the fragment. The phosphopantetheine moiety is esterified to a serine at residue 38 in the sequence. When the sequences of the rabbit acyl carrier fragment and the 8847-Mr acyl carrier protein of Escherichia coli are aligned, 17 out of 64 residues are identical. These results suggest that the limited proteolysis delineates an internal acyl carrier domain within the rabbit protein and provide the first clear evidence that multifunctional fatty acid synthases have arisen by fusion of ancestral monofunctional proteins.  相似文献   

6.
Active-site peptides of malonyl and palmitoyl transferase from yeast fatty acid synthetase were isolated and sequenced to try to prove the hypothesis [J. Ayling, R. Pirson & F. Lynen (1979) Biochemistry 11, 526--533] that both enzymes are identical. For this purpose synthetase modified with 5,5'-dithiobis(2-nitrobenzoic acid) was labelled with either [14C]malonyl or [14C]palmitoyl residues followed by proteolytic digestion of the labelled protein. [14C]Malonyl-peptides were isolated by conventional purification procedures; their structures were determined by a combination of methods. [14C]Palmitoyl-peptide material was purified by high-performance liquid chromatography and the structure determined by solid-phase Edman degradation and other analytical methods. Serine was identified as the acyl acceptor group in both transferases. Comparison of the sequence data available shows that the sequence around the acyl acceptor group in both cases is identical. This proves the identity of malonyl and palmitoyl transferase.  相似文献   

7.
The inactivation mechanism(s) of human glutathione S-transferase P1-1 (hGST P1-1) by the catechol metabolite of Premarin estrogens, 4-hydroxyequilenin (4-OHEN), was (were) studied by means of site-directed mutagenesis, electrospray ionization mass spectrometric analysis, titration of free thiol groups, kinetic studies of irreversible inhibition, and analysis of band patterns on nonreducing sodium dodecyl sulfate--polyacrylamide gel electrophoresis (SDS-PAGE). The four cysteines (Cys 14, Cys 47, Cys 101, and Cys 169 in the primary sequence) in hGST P1-1 are susceptible to electrophilic attack and/or oxidative damage leading to loss of enzymatic activity. To investigate the role of cysteine residues in the 4-OHEN-mediated inactivation of this enzyme, one or a combination of cysteine residues was replaced by alanine residues (C47A, C101A, C47A/C101A, C14A/C47A/C101A, and C47A/C101A/C169A mutants). Mutation of Cys 47 decreased the affinity for the substrate GSH but not for the cosubstrate 1-chloro-2,4-dinitrobenzene (CDNB). However, the Cys 47 mutation did not significantly affect the rate of catalysis since V(max) values of the mutants were similar or higher compared to that of wild type. Electrospray ionization mass spectrometric analyses of wild-type and mutant enzymes treated with 4-OHEN showed that a single molecule of 4-OHEN-o-quinone attached to the proteins, with the exception of the C14A/C47A/C101A mutant where no covalent adduct was detected. 4-OHEN also caused oxidative damage as demonstrated by the appearance of disulfide-bonded species on nonreducing SDS--PAGE and protection of 4-OHEN-mediated enzyme inhibition by free radical scavengers. The studies of thiol group titration and irreversible kinetic experiments indicated that the different cysteines have distinct reactivity for 4-OHEN; Cys 47 was the most reactive thiol group whereas Cys 169 was resistant to modification. These results demonstrate that hGST P1-1 is inactivated by 4-OHEN through two possible mechanisms: (1) covalent modification of cysteine residues and (2) oxidative damage leading to proteins inactivated by disulfide bond formation.  相似文献   

8.
Purified ATPsynthase of bovine heart mitochondria has been analyzed for its mobility and reactivity of oligomycin-sensitive sulfhydryl regions in presence of the substrate ADP and oligomycin. Labeling of thiol groups at the hydrophobic F_0 region of the ATPsynthase was increased in the enzyme initially treated with SDS, N-ethylmaleimide and dithiothreitol (modified enzyme). After dialysis or gel permeation the ATPsynthase was treated with [14C] alpha lipoic acid at a molar ratio of 35-85/1 (lipoic acid/ATPsynthase) corresponding to 4-8.6 nmol/mg protein. Under these conditions, ATPase activity of the native enzyme was significantly decreased. After preincubation with ADP, PAGE of the native, [14C] labeled enzyme revealed an increase of radioactivity at a region of 25 kDa deduced to Cys 197 of subunit b. In the modified enzyme the increase in radioactivity was found at 10 kDa. In this context, the sequence Lys-Cys-Ile around Cys 197 of subunit b suggests excessive reactivity of this thiol, as well as ready reversibility by -SH-S-S- interchange. Therefore, previously observed reaction by thiol reagents and antioxidants from outside the mitochondrion can be interpreted with Cys 197 of F0 b. It accounts for sulfhydryl unmasked by binding of ADP at F1.  相似文献   

9.
The sequence acetyl-CoA leads to acetyl-O-enzyme leads to acetyl-S-acyl carrier protein has for the first time been demonstrated directly with a multifunctional (mammalian) fatty acid synthase. This was achieved by blocking of the active-site thiols of rabbit mammary fatty acid synthase with iodoacetamide. The modified enzyme was incubated with [14C]acetyl-CoA to form acetyl-O-enzyme, and acetyl-CoA was removed rapidly by centrifuge desalting. We were then able to demonstrate transfer of the acetyl group from [14C]acetyl-O-enzyme to the pantetheine thiol in a fragment of rabbit mammary fatty acid synthase containing the phosphopantetheine group, and to E. coli acyl carrier protein.  相似文献   

10.
The biosynthetic pathway to n-heptane was investigated by examining the effect of the [beta]-keto acyl-acyl carrier protein synthase inhibitor (2R,3S)-2,3-epoxy-4-oxo-7E,10E-dodecadienamide (cerulenin), a thiol reagent ([beta]-mercaptoethanol), and an aldehydetrapping reagent (hydroxylamine) on the biosynthesis of n-[14C]heptane and putative intermediates in xylem sections of Jeffrey pine (Pinus jeffreyi Grev.& Balf.) incubated with [14C]acetate. Cerulenin inhibited C18 fatty acid biosynthesis but had relatively little effect on radiolabel incorporation into C8 fatty acyl groups and n-heptane. [beta]-Mercaptoethanol inhibited n-heptane biosynthesis, with a corresponding accumulation of radiolabel into both octanal and 1-octanol, whereas hydroxylamine inhibited both n-heptane and 1-octanol biosynthesis, with radiolabel accumulation in octyl oximes. [14C]Octanal was converted to both n-heptane and 1-octanol when incubated with xylem sections, whereas [14C]1-octanol was converted to octanal and n-heptane in a hydroxylamine-sensitive reaction. These results suggest a pathway for the biosynthesis of n-heptane whereby acetate is polymerized via a typical fatty acid synthase reaction sequence to yield a C8 thioester, which subsequently undergoes a two-electron reduction to generate a free thiol and octanal, the latter of which alternately undergoes an additional, reversible reduction to form 1-octanol or loss of C1 to generate n-heptane.  相似文献   

11.
A method has been developed that permits the quantitative analysis of [14C]acyl-acyl carrier proteins and [14C]acyl CoAs from a typical reaction mixture. The method is based on (a) the initial extraction of free fatty acids and the less polar lipids into petroleum ether from aqueous isopropanol; (b) the precipitation of [14C]acyl-acyl carrier proteins in the presence of ammonium sulfate and chloroform-methanol; and (c) the final separation of acyl CoAs from the more polar lipids by selective adsorption on neutral alumina gel. All fractions can then be analyzed for the composition of complex lipids and 14C-labeled fatty acids by the usual methods.  相似文献   

12.
A compound soluble in organic solvents and synthesized from [14C]acetate by isolated spinach chloroplasts incubated in the dark in the presence of dithiothreitol was shown to be O-acetyl dithiothreitol. The chloroplast system was required for the activation of acetate to acetyl CoA, but the transfer of the acetyl moiety to dithiothreitol was nonenzymatic. The first product of the reaction was shown to be S-acetyl dithiothreitol, but in the presence of an oxidant, simultaneous ring closure and migration of the acetyl group from the thiol to an adjacent hydroxyl group occurred to form an O-acetyl dithiothreitol.The acetyl transfer reaction involving acetyl CoA and dithiothreitol showed a marked pH dependence, being most active at about pH 9 and inoperative below pH 6. All acyl CoAs tested (C2-C18) rapidly labeled dithiothreitol; acetyl acyl carrier protein, and palmityl acyl carrier protein were much less reactive and free fatty acids were unreactive. The thiol reagents dithioerythritol, glutathione, and cysteine, in addition to dithiothreitol, reacted rapidly with acetyl CoA to form the corresponding acetyl mercaptans. 2-Mercaptoethanol was much less reactive; oxidized dithiothreitol was unreactive. The second-order rate constant for acetyl dithiothreitol synthesis was 12.3 m?1 min?1 at pH 8.5 and 30 °C.  相似文献   

13.
The major (14)C-labelled peptides from creatine kinase from normal and dystrophic chicken muscle obtained by carboxymethylating the reactive thiol groups with iodo[2-(14)C]acetic acid and digestion with trypsin were purified by ion-exchange chromatography on Dowex-50 (X2) and by paper electrophoresis. The chromatographic characteristics of the (14)C-labelled peptides, their electrophoretic mobilities at pH6.5, and their amino acid compositions were identical for the two enzymes. The sequence of amino acids around the essential thiol groups of creatine kinase from normal and dystrophic chicken muscle was shown to be Ile-Leu-Thr-CmCys-Pro-Ser-Asn-Leu-Gly-Thr-Gly-Leu-Arg (CmCys, carboxymethylcysteine). This sequence is almost identical with that for the creatine kinases in human and ox muscle and bovine brain and is very similar to that of arginine kinase from lobster muscle. Antibodies to the enzymes were raised in rabbits and their reaction with the creatine kinase from normal and dystrophic muscles in interfacial, immunodiffusion and immunoelectrophoretic experiments was studied. The cross-reaction between normal muscle creatine kinase and antisera against the dystrophic muscle enzyme (or vice versa) observed by immunodiffusion and by immunoelectrophoretic experiments further suggests that the enzymes from normal and dystrophic chicken muscle are similar in structure. The results of the present study, the identical amino acid sequence of the peptides containing the reactive thiol group from both the normal and dystrophic chicken muscle enzymes and the immunological similarities of the two enzymes are in accord with the similarity of the two enzymes observed by Roy et al. (1970).  相似文献   

14.
The reactivity of thiol groups and the subunit structure of aldolase   总被引:7,自引:6,他引:1  
1. Seven unique carboxymethylcysteine-containing peptides have been isolated from tryptic digests of rabbit muscle aldolase carboxymethylated with iodo[2-(14)C]acetic acid in 8m-urea. These peptides have been characterized by amino acid and end-group analysis and their location within the cyanogen bromide cleavage fragments of the enzyme has been determined. 2. Reaction of native aldolase with 5,5'-dithiobis-(2-nitrobenzoic acid), iodoacetamide and N-ethylmaleimide showed that a total of three cysteine residues per subunit of mol.wt. 40000 were reactive towards these reagents, and that the modification of these residues was accompanied by loss in enzymic activity. Chemical analysis of the modified enzymes demonstrated that the same three thiol groups are involved in the reaction with all these reagents but that the observed reactivity of a given thiol group varies with the reagent used. 3. One reactive thiol group per subunit could be protected when the modification of the enzyme was carried out in the presence of substrate, fructose 1,6-diphosphate, under which conditions enzymic activity was retained. This thiol group has been identified chemically and is possibly at or near the active site. Limiting the exposure of the native enzyme to iodoacetamide also served to restrict alkylation to two thiol groups and left the enzymic activity unimpaired. The thiol group left unmodified is the same as that protected by substrate during more rigorous alkylation, although it is now more reactive towards 5,5'-dithiobis-(2-nitrobenzoic acid) than in the native enzyme. 4. Conversely, prolonged incubation of the enzyme with fructose 1,6-diphosphate, which was subsequently removed by dialysis, caused an irreversible fall in enzymic activity and in thiol group reactivity measured with 5,5'-dithiobis-(2-nitrobenzoic acid). 5. It is concluded that the aldolase tetramer contains at least 28 cysteine residues. Each subunit appears to be identical with respect to number, location and reactivity of thiol groups.  相似文献   

15.
Fatty acid synthetase was covalently labelled with [14C]palmitic acid from [14C]palmityl-CoA. Tryptic and peptic digestion of the [14C]palmityl enzyme resulted in the formation of radioactive palmityl peptides carrying the long-chain acyl residue both in oxygen-ester and thio-ester linkage. The lipophilic palmityl peptides were purified by column and thin-layer chromatography using organic lolvent systems. Peptides arising from the acyl carrier protein, the condensing enzyme and the palmityl transferase were identified and characterized. The amino acid sequence of a 4'-phosphopant-etheine-containing peptide was established. It comprises 13 residues and shows a high degree of homology with the acyl carrier protein from Escherichia coli. A heptapeptide and an octapeptide from the palmityl transferase active site were partially sequenced. The identical amino acid composition of palmityl transferase and malonyl transferase core peptides is briefly discussed.  相似文献   

16.
The location of the covalent binding site of the third component of complement (C3) on the IgG heavy chain was determined by sequence analysis of peptides generated by cyanogen bromide digestion of C3-IgG adducts. Activation of the alternative pathway by incubation of heat-aggregated human IgG1 with fresh normal human plasma formed covalent adducts of C3b-IgG. CNBr peptides of these adducts were transferred to a polyvinylidene difluoride membrane, and amino-terminal sequences were determined. A 40-kDa dipeptide containing the covalent bond was identified by labeling the free thiol group (generated during activation of the internal thioester of C3b) with iodo[1-14C]acetamide and analyzed by amino acid sequencing. The resulting double sequence suggested an adduct with NH2 termini at residue 938 (pro-C3 numbering) of C3 (75 residues NH2-terminal to the thioester) and residue 84 in the variable region of the IgG heavy chain. These results combined with results from hydroxylamine treatment (splits ester linkage between C3b and IgG) imply that this adduct peptide consists of a 22-kDa C3 fragment and an 18-kDa IgG fragment. Therefore, C3 binds covalently within the region extending from the last 20 residues of the variable region through the first 20 residues of CH2.  相似文献   

17.
Fatty acid synthase from the uropygial gland of goose was inactivated by iodoacetamide with a second-order rate constant of 1.3 M-1 S-1 at pH 6.0 and 25 degrees C. Of the seven component activities of the synthase, only the condensation activity was significantly inhibited by iodoacetamide modification. Since preincubation of the enzyme with acetyl-CoA, but not with malonyl-CoA, protected the enzyme from inactivation by iodoacetamide, it is suggested that iodoacetamide probably modified the primer-binding thiol group at the condensation active site. Determination of the stoichiometry of modification was done using [1-14C]iodoacetamide that was purified by high-performance liquid chromatography. Graphical analysis of the data showed that binding of 1.2 carboxamidomethyl groups per subunit of fatty acid synthase would result in complete inhibition of the enzyme activity, suggesting that there is one condensation domain per subunit of fatty acid synthase. Analysis of the tryptic peptide map of the enzyme that was modified with [1-14C]iodoacetamide in the presence and absence of acetyl-CoA revealed that acetyl-CoA prevented the labeling of a major radioactive peptide and a minor radioactive peptide. These two peptides were purified by high-performance liquid chromatography. Amino acid analysis of these two peptides revealed that the major radioactive peptide contained S-carboxymethylcysteine while the minor radioactive peptide did not. However, the latter peptide contained beta-alanine, suggesting that this peptide was from the acyl carrier protein segment of fatty acid synthase and that the iodoacetamide treatment resulted in modification of the pantetheine thiol, although to a lower extent than the primer-binding thiol. The sequence of the primer-binding active site peptide from the condensation domain was H2N-Gly-Pro-Ser-Leu-Ser-Ile-Asp- Thr-Ala-Cys(carboxamidomethyl)-X-Ser-Ser-Leu-Met-Ala-Leu-Glu-Asn-A la-Tyr-Lys- COOH, the first reported sequence of the condensation active site from a vertebrate fatty acid synthase. The acyl carrier protein segment showed extensive sequence homology with the acyl carrier protein of Escherichia coli, particularly in the vicinity of the phosphopantetheine attachment, and the sequence was H2N-Asp-Val-Ser-Ser-Leu- Asn-Ala-Asp-Ser-Thr-Leu-Ala-Asp-Leu-Gly-Leu-Asp-Ser(4'-phosphopanteth ein e) -Leu-Met-Gly-Val-Glu-Val-Arg-COOH.  相似文献   

18.
It has been shown that the active dicyano derivative of creatine kinase (ATP:creatine N-phosphotransferase) obtained by cyanolysis of the 5,5'-dithiobis(2-nitrobenzoic acid)-modified and inactivated enzyme contains, as does the native enzyme, two reactive SH groups. Modification of these two SH groups leads to complete inactivation of the dicyano enzyme. Reaction with 4-iodoacetamido-1-naphthol introduces fluorescent labels at these reactive SH groups of the native and the dicyano enzymes. Following tryptic digestion, the respective fluorescent-labelled peptides have been separated by HPLC and the amino acid composition analysis of these peptides has shown that they are consistent with the sequence of the peptide segment containing the active-site SH of Cys-282 of creatine kinase for both the native and the dicyano enzymes, showing that the active SH groups are free in the dicyano enzyme. Upon mild denaturation in 3 M urea, it can be shown that two of the SH groups partially buried in the native enzyme have been cyanylated in the dicyano enzyme. The two reactive SH groups are therefore essential for the activity of creatine kinase and the two cyanylated SH groups are internal groups which probably contributes partially to the stabilization of an active conformation of the enzyme molecule.  相似文献   

19.
A competitive labeling method that measures the relative reactivity of lysines was used to study the structure of troponin-I. Troponin-I was acetylated free and complexed with troponin-C and troponin-T in the native state with [3H]acetic anhydride. The [3H]troponin-I was combined with [14C]troponin-I that had been acetylated in 6 M guanidine HCl and completely chemically labeled. Peptides containing labeled lysines were isolated following digestion with trypsin and Staphylococcus aureus protease and identified in the published sequence. The 3H/14C ratio of these peptides was used as a measure of the relative reactivity of the lysines. Troponin-I contains 24 lysines; we have identified 23 of these in 16 peptides. When troponin-I is labeled in a native complex, the lysines in the region from residues 40 to 98 are influenced: five become relatively less reactive (40, 65, 70, 78, and 90) and three become relatively more reactive (84, 87), and 98). All of these changes except Lys 70 can be seen when troponin-I binds to troponin-T. Lys 70 is reduced in reactivity when it binds to troponin-C. The lysines that appear to be important in binding of troponin-I to troponin-T are influenced by the binding of Ca2+ to troponin-C in the native troponin complex (in the presence of 2 mM MgCl2), suggesting for the first time that the troponin-IT interaction is affected by Ca2+.  相似文献   

20.
Alpha 2-Macroglobulin (alpha 2 M) was isolated from plasma of the freshwater crayfish, Pacifastacus leniusculus, using ultracentrifugation, ion-exchange chromatography and gel filtration techniques. The Pacifastacus alpha 2 M molecule (P alpha 2 M) was radio-actively labeled in the thiol ester structure with iodo [14C]acetic acid in the presence of methylamine. After reduction and carboxymethylation of the protein, it was digested with trypsin. A 14C-labeled tryptic peptide was sequenced and contained an amino acid sequence very similar to other known thiol ester sequences from human alpha 2 M and related proteins. The N-terminal sequence of P alpha 2 M was related to that recently determined for lobster alpha 2 M [(1987) J. Biol. Chem. 262, 14606-14611].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号