首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microtubule assembly in vitro and in vivo is highly sensitive to a variety of sulfhydryl-reactive reagents, raising the question of the possible existence of a physiological sulfhydryl-mediated system for regulating microtubule assembly. However, the specific reagents which have previously been used to inhibit microtubule assembly in vitro are either nonphysiological or, if physiological, effective only at concentrations much higher than their physiological ones. Because of reports of association in vivo between microtubules and the sulfhydryl-reactive proteins thioredoxin and thioredoxin reductase, we decided to examine the interaction in vitro between microtubules and the thioredoxin system, comprising thioredoxin, thioredoxin reductase and NADPH. At pH 6.8, both the mammalian and the Escherichia coli thioredoxin systems inhibited microtubule assembly by 4-35% (19 +/- 9%) by reducing one intra-subunit disulfide bond in the tubulin dimer. The thioredoxin-reducible disulfide of the tubulin dimer remains protected from thioredoxin in the assembled microtubules. Thioredoxin or thioredoxin reductase alone, or together in the absence of NADPH, were incapable of either reducing tubulin or inhibiting microtubule assembly. Microtubules formed from reduced tubulin were found to be stable and morphologically identical to those obtained from native tubulin dimers. Since the components of the thioredoxin system were used at concentrations similar to their physiological ones, our results suggest a potential role of the thioredoxin system in regulation of microtubule assembly in vivo.  相似文献   

2.
Oncoprotein 18/stathmin (Op18) has been identified recently as a protein that destabilizes microtubules, but the mechanism of destabilization is currently controversial. Based on in vitro microtubule assembly assays, evidence has been presented supporting conflicting destabilization models of either tubulin sequestration or promotion of microtubule catastrophes. We found that Op18 can destabilize microtubules by both of these mechanisms and that these activities can be dissociated by changing pH. At pH 6.8, Op18 slowed microtubule elongation and increased catastrophes at both plus and minus ends, consistent with a tubulin-sequestering activity. In contrast, at pH 7.5, Op18 promoted microtubule catastrophes, particularly at plus ends, with little effect on elongation rates at either microtubule end. Dissociation of tubulin-sequestering and catastrophe-promoting activities of Op18 was further demonstrated by analysis of truncated Op18 derivatives. Lack of a C-terminal region of Op18 (aa 100–147) resulted in a truncated protein that lost sequestering activity at pH 6.8 but retained catastrophe-promoting activity. In contrast, lack of an N-terminal region of Op18 (aa 5–25) resulted in a truncated protein that still sequestered tubulin at pH 6.8 but was unable to promote catastrophes at pH 7.5. At pH 6.8, both the full length and the N-terminal–truncated Op18 bound tubulin, whereas truncation at the C-terminus resulted in a pronounced decrease in tubulin binding. Based on these results, and a previous study documenting a pH-dependent change in binding affinity between Op18 and tubulin, it is likely that tubulin sequestering observed at lower pH resulted from the relatively tight interaction between Op18 and tubulin and that this tight binding requires the C-terminus of Op18; however, under conditions in which Op18 binds weakly to tubulin (pH 7.5), Op18 stimulated catastrophes without altering tubulin subunit association or dissociation rates, and Op18 did not depolymerize microtubules capped with guanylyl (α, β)-methylene diphosphonate–tubulin subunits. We hypothesize that weak binding between Op18 and tubulin results in free Op18, which is available to interact with microtubule ends and thereby promote catastrophes by a mechanism that likely involves GTP hydrolysis.  相似文献   

3.
Oryzalin, a dinitroaniline herbicide, was previously reported to bind to plant tubulin with a moderate strengthe interaction (dissociation constant [Kd] = 8.4 [mu]M) that appeared inconsistent with the nanomolar concentrations of drug that cause the loss of microtubules, inhibit mitosis, and produce herbicidal effects in plants (L.C. Morejohn, T.E. Bureau, J. Mole-Bajer, A.S. Bajer, D.E. Fosket [1987] Planta 172: 252-264). To characterize further the mechanism of action of oryzalin, both kinetic and quasi-equilibrium ligand-binding methods were used to examine the interaction of [14C]-oryzalin with tubulin from cultured cells of maize (Zea mays L. cv Black Mexican Sweet). Oryzalin binds to maize tubulin dimer via a rapid and pH-dependent interaction to form a tubulin-oryzalin complex. Both the tubulin-oryzalin binding strength and stoichiometry are underestimated substantially when measured by kinetic binding methods, because the tubulin-oryzalin complex dissociates rapidly into unliganded tubulin and free oryzalin. Also, an uncharacterized factor(s) that is co-isolated with maize tubulin was found to noncompetitively inhibit oryzalin binding to the dimer. Quasi-equilibrium binding measurements of the tubulin-oryzalin complex using purified maize dimer afforded a Kd of 95 nM (pH 6.9; 23[deg]C) and an estimated maximum molar binding stoichiometry of 0.5. No binding of oryzalin to pure bovine brain tubulin was detected by equilibrium dialysis, and oryzalin has no discernible effect on microtubules in mouse 3T3 fibroblasts, indicating an absence of the oryzalin-binding site on mammalian tubulin. Oryzalin binds to pure taxol-stabilized maize microtubules in a polymer mass- and number-dependent manner, although polymerized tubulin has a much lower oryzalin-binding capacity than unpolymerized tubulin. Much more oryzalin is incorporated into polyment during taxol-induced assembly of pure maize tubulin, and half-maximal inhibition of the rapid phase of taxol-induced polymerization of 5 [mu]M tubulin is obtained with 700 [mu]M oryzalin. The data are consistent with a molecular mechanism whereby oryzalin binds rapidly, reversibly, and with high affinity to the plant tubulin dimer to form a tubulin-oryzalin complex that, at concentrations substoichiometric to tubulin, copolymerizes with unliganded tubulin and slows further assembly. Because half-maximal inhibition of maize callus growth is produced by 37 nM oryzalin, the herbicidal effects of oryzalin appear to result from a substoichiometric poisoning of microtubules.  相似文献   

4.
Formation of microtubules at low temperature by tubulin from antarctic fish   总被引:1,自引:0,他引:1  
Tubulin was isolated from two species of antarctic fish, Pagothenia borchgrevinki and Dissostichus mawsoni, by cycles of temperature-dependent assembly, centrifugation, disassembly, and centrifugation. The preparations were found to consist almost entirely of tubulin and to contain negligibly small amounts of microtubule-associated proteins. This tubulin polymerized to make microtubules of ordinary dimensions. The formed microtubules appear to be in labile equilibrium with free tubulin dimer at all temperatures observed. In a buffer consisting of 0.1 M 1,4-piperazinediethanesulfonic acid, 2 mM dithioerythritol, 1 mM MgSO4, 2 mM ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, and 1 mM guanosine 5'-triphosphate, pH 6.9, the tubulin of P. borchgrevinki has a critical concentration for assembly of 0.046 (+/- 0.008) mg/mL at 35 degrees C and 0.74 (+/- 0.15) mg/mL at the habitat temperature of the fish, -1.8 degrees C. The critical concentration measured at the lower temperature is quite small relative to the critical concentration for formation of mammalian microtubules from pure tubulin at the same temperature, which must be at least 2 orders of magnitude larger. The antarctic fish microtubules may thus be called "cold stable" by comparison with mammalian microtubules. They do not fully dissociate at temperatures near 0 degree C because they are composed of tubulin that assembles more readily at these temperatures than does mammalian tubulin. There is no evidence for the presence of a cold-stabilizing factor in association with the tubulin. These findings suggest that alteration of tubulin may be a means by which some poikilotherms can adapt to a cold environment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The removal of tightly bound GDP from the exchangeable nucleotide-binding site of tubulin has been performed with alkaline phosphatase under conditions which essentially retain the assembly properties of the protein. When microtubule protein is treated with alkaline phosphatase, nucleotide is selectively removed from tubulin dimer rather than from MAP (microtubule-associated protein)-containing oligomeric species. Tubulin devoid of E-site (the exchangeable nucleotide-binding site of the tubulin dimer) nucleotide shows enhanced proteolytic susceptibility of the beta-subunit to thermolysin and decreased protein stability, consistent with nucleotide removal causing changes in protein tertiary structure. Pyrophosphate ion (3 mM) is able to promote formation of normal microtubules in the complete absence of GTP by incubation at 37 degrees C either with nucleotide-depleted microtubule protein or with nucleotide-depleted tubulin dimer to which MAPs have been added. The resulting microtubules contain up to 80% of tubulin lacking E-site nucleotide. In addition to its effects on nucleation, pyrophosphate competes weakly with GDP bound at the E-site. It is deduced that binding of pyrophosphate at a vacant E-site can promote microtubule assembly. The minimum structural requirement for ligands to induce tubulin assembly apparently involves charge neutralization at the E-site by bidentate ligation, which stabilizes protein domains in a favourable orientation for promoting the supramolecular protein-protein interactions involved in microtubule formation.  相似文献   

6.
Ionic and nucleotide requirements for microtubule polymerization in vitro.   总被引:23,自引:0,他引:23  
J B Olmsted  G G Borisy 《Biochemistry》1975,14(13):2996-3005
The ionic and nucleotide requirements for the in vitro polymerization of microtubules from purified brain tubulin have been characterized by viscometry. Protein was purified by successive cycles of a temperature dependent assembly-diassembly scheme. Maximal polymerization occurred at a concentration of 0.1 M Pipes (piperazine-N,N'-bis(2-ethanesulfonic acid)); increasing ionic strength by addition of NaCl to samples prepared in lower buffer concentrations did not result in an equivalent level of polymerization. Both Na-+ and K-+ inhibited microtubule formation at levels greater than 240 mM, withmaximal assembly occurring at physiological concentrations of 150 mM. Maximal extent of assembly occurred at pH 6.8 and optimal rate at pH 6.6. Inhibition of polymerization was half-maximal at added calcium concentrations of 1.0 mM and magnesium concentrations of 10.0 mM. EGTA (ethylene glycol bis(beta-aminoethyl ether)tetraacetic acid), which chelates Ca-2+, had no effect on polymerization over a concentration range of 0.01-10.0 mM. In contrast, EDTA (ethylenediaminetetraacetic acid), which chelates both Mg-2+ and Ca-2+, inhibited assemble half-maximally at 0.25 mM and totally at 2.0 mM. As determined from experiments using Mg-2+-EDTA buffers, magnesium was required for polymerization. Magnesium promoted the maximal extent of assembly at substoichiometric levels relative to tubulin, but was maximal for both rate and extent at stoichiometric concentrations. Elemental analyses indicated that approximately 1 mol of magnesium was tightly bound/mol of tubulin dimer. Viscosity development was dependent upon hydrolyzable nucleoside triphosphate, and stoichiometric levels of GTP were sufficient for maximal polymerization. The effect of magnesium in increasing the rate of GTP-dependent polymerization suggests that a Mg-2+-GTP complex is the substrate required for a step in assembly.  相似文献   

7.
Microtubules are polymers of tubulin subunits (dimers) arranged on a hexagonal lattice. Each tubulin dimer comprises two monomers, the alpha-tubulin and beta-tubulin, and can be found in two states. In the first state a mobile negative charge is located into the alpha-tubulin monomer and in the second into the beta-tubulin monomer. Each tubulin dimer is modeled as an electrical dipole coupled to its neighbors by electrostatic forces. The location of the mobile charge in each dimer depends on the location of the charges in the dimer's neighborhood. Mechanical forces that act on the microtubule affect the distances between the dimers and alter the electrostatic potential. Changes in this potential affect the mobile negative charge location in each dimer and the charge distribution in the microtubule. The net effect is that mechanical forces affect the charge distribution in microtubules. We propose to exploit this effect and use microtubules as mechanical force sensors. We model each dimer as a two-state quantum system and, following the quantum computation paradigm, we use discrete quantum random walk on the hexagonal microtubule lattice to determine the charge distribution. Different forces applied on the microtubule are modeled as different coin biases leading to different probability distributions of the quantum walker location, which are directly connected to different charge distributions. Simulation results show that there is a strong indication that microtubules can be used as mechanical force sensors and that they can also detect the force directions and magnitudes.  相似文献   

8.
About 10--20% of the total protein in the outer fiber fraction was solubilized by sonication in a solution containing 5 mM MES, 0.5 mM MgSO4, 1.0 mM EGTA, 1.0 mM GTP, and 0 or 50 mM KC1 at pH 6.7. The sonicated extract was shown by analytical centrifugation to consist largely of a 6 S component (tubulin dimer), having a molecular weight of 103,000, as determined by gel filtration, and possessing a colchicine-binding activity of 0.8 mole per tubulin dimer. The tubulin fraction failed to polymerize into microtubules by itself. Addition of a small amount of the ciliary outer fiber fragments or reconstituted short brain microtubules, however, induced polymerization, as demonstrated by viscosity of flow birefringence changes as well as light or electron microscopic observations. The growth of heterogeneous microtubules upon mixing outer fiber tubulin with DEAE-dextran-decorated brain microtubules was observed by electron microscopy. Microtubules were reconstituted from outer fiber tubulin without addition of any nuclei fraction when a concentrated tubulin fraction was warmed at 35degree. A few doublet-like microtubules or pairs of parallel singlet microtubules that were closely aligned longitudinally could be observed among many singlet microtubules. Unlike other fiber microtubules, the reconstituted polymers were depolymerized by exposure to Ca2+ ions, high or low ionic strength, colchicine, low temperature or SH reagents. No microtubules were assembled under these conditions.  相似文献   

9.
Taxol-stabilised erythrocyte microtubules assembled less readily than similarly prepared brain microtubules on adding 10(-4) M-10(-3) M concentrations of calcium at 2 degrees C. Scatchard plot analyses of the high affinity calcium binding sites showed that the erythrocyte tubulin contained only 0.9 high affinity binding sites per dimer compared to 1.4 binding sites per dimer for brain tubulin. Association constants, however, for calcium binding to both erythrocyte and brain tubulin were similar (3.0 x 10(-6) M and 2.1 x 10(-6) M). The beta-tubulin subunit appeared to be responsible for the lower calcium binding ability of erythrocyte tubulin as shown by a gel overlay assay with 45Ca. Strains-all, a dye that stains many calcium binding proteins blue, did not stain erythrocyte beta-tubulin or its chymotryptic C-terminal fragment blue as was the case for brain beta-tubulin and its chymotryptic C-terminal fragment. We suggest that the lower calcium binding ability of erythrocyte beta-tubulin may be implicated in the differential behaviour of erythrocyte microtubules.  相似文献   

10.
Bovine brain tubulin, purified by phosphocellulose chromatography (PC), was assembled in the presence of 10% dimethyl sulfoxide (DMSO), and the reaction was monitored turbidimetrically. Samples were fixed in glutaraldehyde-tannic acid after completion of polymerization, as indicated by no further change in absorbance, and then sectioned and studied electron microscopy, with special attention being given to the arrangement of protofilaments in the walls of formed elements. Samples of PC-tubulin were polymerized in buffer having various pH values from 6.0 to 7.7. At the lower pH values, only branched and flattened ribbons of protofilaments are formed. At intermediate values, the ribbons are unbranched, narrower, and more curved in cross section; complete microtubules are also seen. At the higher pH values, the predominate formed elements are complete microtubules. Most of the complete microtubules examined in this study had 14 wall protofilaments. The effect of pH on tubulin assembly was shown not to be an effect of DMSO. The dimers of associated protofilaments in ribbons and microtubules are conceptually viewed as having trapezoidal profiles in cross section, and, as additional dimers are added, the "C"-shaped ribbon closes to form a tube. The tilt angle of the lateral surfaces of the "trapezoidal" dimers will determine the number of wall protofilaments in the microtubules. At low pH, it is theorized that the trapezoidal profile of the dimer is shifted to a more rectangular configuration such that flat ribbons are formed by the lateral association of dimers. Also, variously shaped ribbon structures are formed at intermediate pH values, including "S"- and "W"-shaped structures, and elements shaped like a figure "6," all representing ribbons viewed in cross section. By visualizing the trapezoidal dimer in three-dimensions, and by arbitrarily indexing its six binding surfaces, it is possible to discuss interdimer binding in terms of preferred and possible binding interactions.  相似文献   

11.
The carboxy terminals of alphabeta-tubulins are flexible regions rich in acidic amino acid residues that play an inhibitory role in the polymerization of tubulin to microtubules. We have shown that the binding of colchicine and its B-ring analogs (with C-7 substituents) to tubulin are pH sensitive and have high activation energies. Under identical conditions, the binding of analogs without C-7 substituents is pH independent and has lower activation energy. Beta-C-terminus-truncated tubulin (alphabeta(s)) shows similar pH sensitivity and activation energy to native tubulin (alphabeta). Removal of the C-termini of both subunits of tubulin (alpha(s)beta(s)) or the binding of a basic peptide P2 to the negatively charged alpha-C-terminus of tubulin causes a colchicine-tubulin interaction independent of pH with a low activation energy. Tubulin dimer structure shows that the C-terminal alpha-tail is too far from the colchicine binding site to interact directly with the bound colchicine. Therefore, it is likely that the interaction of the alpha-C-terminus with the main body of tubulin indirectly affects the colchicine-tubulin interaction via conformational changes in the main body. We therefore conclude that in the presence of tail-body interaction, a B-ring substituent makes contact with the alpha-tubulin and induces significant conformational changes in alpha-tubulin.  相似文献   

12.
We have examined the dilution-induced in vitro disassembly kinetics of bovine brain microtubules, initially at steady state, using a wider range of dilutions (2-100-fold) than previously employed. In contrast to earlier results, as well as to the simple nucleation-condensation model for microtubule formation, the initial rate of dimer loss from microtubule ends was not a linear function of the initial concentration of unpolymerized tubulin. Over a 2-20-fold dilution range, plots of the initial rate of dimer loss versus the initial unpolymerized tubulin concentration were approximately linear. However, at greater dilutions, rates of microtubule depolymerization increased nonlinearly. For example, between a 10-fold dilution and a 100-fold dilution, the initial rate of dimer loss for microtubule-associated protein-containing microtubules increased by 300%, rather than a maximum of 11% expected on the basis of a linear rate plot. The nonlinear response was observed for dimer loss from opposite microtubule ends separately and with microtubules containing and lacking associated proteins. Qualitatively similar results were obtained using a wide range of experimental protocols, from which we can reasonably exclude methodological artifact as a basis for the data. We can also reasonably exclude the dissociation of the high molecular weight microtubule-associated proteins 1 and 2 from the microtubules as an explanation for the nonlinearity of the rate plots. The nonlinearity of the rate plots indicates that kinetic constants obtained under nonsteady state conditions of extreme microtubule dilution may not describe the steady state condition accurately.  相似文献   

13.
H J Hinz  S N Timasheff 《Biochemistry》1986,25(25):8285-8291
The enthalpy changes that occur in the self-assembly of tubulin into microtubules were examined by adiabatic differential heat capacity microcalorimetry and by isothermal batch microcalorimetry. Tubulin solutions at concentrations between 7 and 17 mg/mL were heated from 0 to 40 degrees C at heating rates of 1 or 2 deg/min in pH 6.8 or 7.0 assembly buffers containing 20 mM MES, 100 mM glutamic acid, 5 mM MgCl2, 3.4 M glycerol, and either 0.5 mM GMP-PCP or 1 mM GTP. The assembly reaction in the presence of GTP was characterized by a complex heat-uptake pattern consisting of a broad endotherm with a sharper exotherm superimposed on it, similar to assembly in a GTP phosphate buffer [Hinz, H.-J., Gorbunoff, M.J., Price, B., & Timasheff, S.N. (1979) Biochemistry 18,3084]. Replacement of GTP by the nonhydrolyzable analogue resulted in a pattern typical for an endothermic reaction only. These results have permitted the assignment of the endothermic process to microtubule assembly and of the exothermic process to the resultant GTP hydrolysis. In these studies equilibration was found to be slow, several hours of cooling being required for the system to return to its original state. Turbidity scans also revealed hysteresis between consecutive scans and a displacement of the depolymerization transition midpoint to a lower temperature than that of assembly. The disassembly of microtubules was examined in batch calorimetry experiments in pH 7.0 phosphate, 1 mM GTP, 16 mM MgCl2, and 3.4 M glycerol, in which tubulin assembled into microtubules was diluted to below the critical concentration.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
We model the dynamical states of the C-termini of tubulin dimers that comprise neuronal microtubules. We use molecular dynamics and other computational tools to explore the time-dependent behavior of conformational states of a C-terminus of tubulin within a microtubule and assume that each C-terminus interacts via screened Coulomb forces with the surface of a tubulin dimer, with neighboring C-termini and also with any adjacent microtubule-associated protein 2 (MAP2). Each C-terminus can either bind to the tubulin surface via one of the several positively charged regions or can be allowed to explore the space available in the solution surrounding the dimer. We find that the preferential orientation of each C-terminus is away from the tubulin surface but binding to the surface may also take place, albeit at a lower probability. The results of our model suggest that perturbations generated by the C-termini interactions with counterions surrounding a MAP2 may propagate over distances greater than those between adjacent microtubules. Thus, the MAP2 structure is able to act as a kind of biological wire (or a cable) transmitting local electrostatic perturbations resulting in ionic concentration gradients from one microtubule to another. We briefly discuss the implications the current dynamic modeling may have on synaptic activation and potentiation.  相似文献   

15.
Stathmin is a phosphorylation-regulated tubulin-binding protein. In vitro and in vivo studies using nonphosphorylatable and pseudophosphorylated mutants of stathmin have questioned the view that stathmin might act only as a tubulin-sequestering factor. Stathmin was proposed to effectively regulate microtubule dynamic instability by increasing the frequency of catastrophe (the transition from steady growth to rapid depolymerization), without interacting with tubulin. We have used a noninvasive method to measure the equilibrium dissociation constants of the T(2)S complexes of tubulin with stathmin, pseudophosphorylated (4E)-stathmin, and diphosphostathmin. At both pH 6.8 and pH 7.4, the relative sequestering efficiency of the different stathmin variants depends on the concentration of free tubulin, i.e. on the dynamic state of microtubules. This control is exerted in a narrow range of tubulin concentration due to the highly cooperative binding of tubulin to stathmin. Changes in pH affect the stability of tubulin-stathmin complexes but do not change stathmin function. The 4E-stathmin mutant mimics inactive phosphorylated stathmin at low tubulin concentration and sequesters tubulin almost as efficiently as stathmin at higher tubulin concentration. We propose that stathmin acts solely by sequestering tubulin, without affecting microtubule dynamics, and that the effect of stathmin phosphorylation on microtubule assembly depends on tubulin critical concentration.  相似文献   

16.
Small-angle neutron scattering has been used to examine taxol-stabilized microtubules and other tubulin samples in both H(2)O and D(2)O buffers. Measurements were made at pH/pD values between 6.0 and 7.8, and observed scattered intensities, I(Q), have been interpreted in terms of multicomponent models of microtubules and related tubulin polymers. A semiquantitative curve fitting procedure has been used to estimate the relative amounts of the supramolecular components of the samples. At both pH and pD 7.0 and above, the tubulin polymers are seen to be predominantly microtubules. Although in H(2)O buffer the polymer distribution is little changed as the pH varies, when pD is lowered the samples appear to contain an appreciable amount of sheetlike structures and the average microtubule protofilament number increases from ca. 12.5 at pD > or = approximately 7.0 to ca. 14 at pD approximately 6.0. Such structural change indicates that analysis of microtubule solutions based on H(2)O/D(2)O contrast variation must be performed with caution, especially at lower pH/pD.  相似文献   

17.
A mouse monoclonal antibody (AC88) that was raised against the 88-kDa heat-shock protein of the water mold, Achlya ambisexualis, and that cross-reacts with the 90-kDa mammalian heat-shock protein (hsp90), and an antibody against tubulin were used to localize hsp90 and microtubules, respectively, in the same cultured rat endothelial and PtK1 epithelial cells by indirect immunofluorescence. AC88 and tubulin antibodies labeled the same structures in cells at all stages of the cell cycle, regardless of whether cells were permeabilized before or after fixation. Labeling of cell structures by both AC88 and anti-tubulin antibodies was identically affected by treating cells with colcemid. Double labeling with AC88 and anti-tubulin antibodies in interphase and mitotic cells is consistent with the conclusion that all microtubules are labeled and that no subclass of microtubules is preferentially labeled. Fluorescent labeling by AC88 was prevented by preabsorption of the antibody with purified rat hsp90 but was unaffected by preabsorption with purified 6S tubulin dimer. In contrast to AC88, fluorescent labeling by an anti-tubulin antibody was prevented by preabsorption with tubulin dimer but was unaffected by preabsorption with rat hsp90. Western-blot analysis demonstrated no cross-reactivity of AC88 for tubulin and no cross-reactivity of the anti-tubulin antibody for hsp90. A polyclonal antiserum fraction from a rabbit immunized with the 89-kDa heat-shock protein from chicken also labeled the mitotic apparatus in dividing cells and, somewhat less distinctly, fibrous structures in interphase cells. Labeling by hsp89 anti-serum was prevented by absorption with hsp90. AC88 also labeled microtubules in cultured mouse (L929 and 3T3), rat (endothelium and TRST), hamster (CHO) and primate (BSC, COS-1 and HeLa) cell lines. The demonstration of colocalization of hsp90 with microtubules should provide a valuable clue to eventual understanding of the cellular function of this ubiquitous, conserved and abundant stress-response protein.  相似文献   

18.
The porcine neurotubule and its basic subunit were found to be modified in vitro by iodination of amino acids (principally tyrosine) using lactoperoxidase. Iodide ion, H2O2, or lactoperoxidase singly or in any pairwise combination had virtually no effect on neurotubules. However, when all three reagents were present, permitting covalent iodination, it was found that at 0.1 iodotyrosines per tubulin dimer the microtubules unravel to form structures which morphologically resemble strands of protofilaments twisted or wound around each other. These abnormal tubules are stable at room temperature and 4°C. Both monomers of tubulin are labeled to approximately the same extent. Iodinated tubulin (0.1 iodotyrosines/dimer) is unable to assemble in vitro under normal assembly conditions. Heavily iodinated microtubules (8 iodines per tubulin dimer) are similar in morphology to the slightly iodinated structures.  相似文献   

19.
Effects of pH on tubulin-nucleotide interactions   总被引:1,自引:0,他引:1  
Significant GTP-independent, temperature-dependent turbidity development occurs with purified tubulin stored in the absence of unbound nucleotide, and this can be minimized with a higher reaction pH. Since microtubule assembly is optimal at lower pH values, we examined pH effects on tubulin-nucleotide interactions. While the lowest concentration of GTP required for assembly changed little, GDP was more inhibitory at higher pH values. The amounts of exogenous GTP bound to tubulin at all pH values were similar, but the amounts of exogenous GDP bound and endogenous GDP (i.e., GDP originally bound in the exchangeable site) retained by tubulin rose as reaction pH increased. Endogenous GDP was more efficiently displaced by exogenous GTP than GDP at all pH values, but displacement by GTP was 10-15% greater at pH 6 than at pH 7. Dissociation constants for GDP and GTP were about 1.0 microM at pH 6 and 0.02 microM at pH 7. A small increase in the affinity of GDP relative to that of GTP occurs at pH 7 as compared to pH 6, together with a 50-fold absolute increase in the affinity of both nucleotides for tubulin at pH 7. The time courses of microtubule assembly and GTP hydrolysis were compared at pH 6 and pH 7. At pH 6, the two reactions were simultaneous in onset and initially stoichiometric. At pH 7, although the reactions began simultaneously, hydrolysis seemed to lag substantially behind assembly. Unhydrolyzed radiolabeled GTP was not incorporated into microtubules, however, indicating that GTP hydrolysis is actually closely coupled to assembly. The apparent lag in hydrolysis probably results from a methodological artifact rather than incorporation of GTP into the microtubule with delayed hydrolysis.  相似文献   

20.
Colchincine was found to be taken up by adipose tissue and therein to bind to a soluble macromolecule not sedimented by centrifugation for 2 h at 100 000 x g. A similar binding occurred when soluble extracts of adipose tissue were incubated with colchicine. The binding reaction reaction is temperature dependent and shows a pH optimum between 6.8 and 7.0. Double reciprocal plots of colchicine concentration versus amounts of colchicine bound to protein in the steady state disclosed an apparent Km of 0.250 to 1.5 muM. The colchicine binding activity of soluble tissue extracts decreased when the extracts were incubated at 37 degree C. Addition of guanosine triphosphate and Mg-2+ retarded the loss of colchicine binding activity. The molecular weight of the colchicine complex was estimated to be 115 000 and its sedimentation coefficient 5.8 S. All of these characteristics are remarkably similar to those of the protein tubulin which has been isolated from other tissues. Since it is now well known that tubulin is a protein subunit of cytoplasmic microtubules, it is suggested that the previously reported metabolic effects of colchicine on adipose tissue result from the dissolution of microtubules by colchicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号