首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Polyamine oxidases (PAOs) are FAD-dependent enzymes involved in polyamine catabolism. All so far characterized PAOs from monocotyledonous plants, such as the apoplastic maize PAO, oxidize spermine (Spm) and spermidine (Spd) to produce 1,3-diaminopropane, H(2)O(2), and an aminoaldehyde, and are thus considered to be involved in a terminal catabolic pathway. Mammalian PAOs oxidize Spm or Spd (and/or their acetyl derivatives) differently from monocotyledonous PAOs, producing Spd or putrescine, respectively, in addition to H(2)O(2) and an aminoaldehyde, and are therefore involved in a polyamine back-conversion pathway. In Arabidopsis thaliana, five PAOs (AtPAO1-AtPAO5) are present with cytosolic or peroxisomal localization and three of them (the peroxisomal AtPAO2, AtPAO3, and AtPAO4) form a distinct PAO subfamily. Here, a comparative study of the catalytic properties of recombinant AtPAO1, AtPAO2, AtPAO3, and AtPAO4 is presented, which shows that all four enzymes strongly resemble their mammalian counterparts, being able to oxidize the common polyamines Spd and/or Spm through a polyamine back-conversion pathway. The existence of this pathway in Arabidopsis plants is also evidenced in vivo. These enzymes are also able to oxidize the naturally occurring uncommon polyamines norspermine and thermospermine, the latter being involved in important plant developmental processes. Furthermore, data herein reveal some important differences in substrate specificity among the various AtPAOs, which suggest functional diversity inside the AtPAO gene family. These results represent a new starting point for further understanding of the physiological role(s) of the polyamine catabolic pathways in plants.  相似文献   

2.
The Arabidopsis cyclophilin gene family   总被引:12,自引:0,他引:12       下载免费PDF全文
Romano PG  Horton P  Gray JE 《Plant physiology》2004,134(4):1268-1282
  相似文献   

3.
4.
The PRA1 gene family in Arabidopsis   总被引:1,自引:0,他引:1  
Prenylated Rab acceptor 1 (PRA1) domain proteins are small transmembrane proteins that regulate vesicle trafficking as receptors of Rab GTPases and the vacuolar soluble N-ethylmaleimide-sensitive factor attachment receptor protein VAMP2. However, little is known about PRA1 family members in plants. Sequence analysis revealed that higher plants, compared with animals and primitive plants, possess an expanded family of PRA1 domain-containing proteins. The Arabidopsis (Arabidopsis thaliana) PRA1 (AtPRA1) proteins were found to homodimerize and heterodimerize in a manner corresponding to their phylogenetic distribution. Different AtPRA1 family members displayed distinct expression patterns, with a preference for vascular cells and expanding or developing tissues. AtPRA1 genes were significantly coexpressed with Rab GTPases and genes encoding vesicle transport proteins, suggesting an involvement in the vesicle trafficking process similar to that of their animal counterparts. Correspondingly, AtPRA1 proteins were localized in the endoplasmic reticulum, Golgi apparatus, and endosomes/prevacuolar compartments, hinting at a function in both secretory and endocytic intracellular trafficking pathways. Taken together, our data reveal a high functional diversity of AtPRA1 proteins, probably dealing with the various demands of the complex trafficking system.  相似文献   

5.
Indole-3-butyric acid (IBA) is an endogenous auxin used to enhance rooting during propagation. To better understand the role of IBA, we isolated Arabidopsis IBA-response (ibr) mutants that display enhanced root elongation on inhibitory IBA concentrations but maintain wild-type responses to indole-3-acetic acid, the principle active auxin. A subset of ibr mutants remains sensitive to the stimulatory effects of IBA on lateral root initiation. These mutants are not sucrose dependent during early seedling development, indicating that peroxisomal beta-oxidation of seed storage fatty acids is occurring. We used positional cloning to determine that one mutant is defective in ACX1 and two are defective in ACX3, two of the six Arabidopsis fatty acyl-CoA oxidase (ACX) genes. Characterization of T-DNA insertion mutants defective in the other ACX genes revealed reduced IBA responses in a third gene, ACX4. Activity assays demonstrated that mutants defective in ACX1, ACX3, or ACX4 have reduced fatty acyl-CoA oxidase activity on specific substrates. Moreover, acx1 acx2 double mutants display enhanced IBA resistance and are sucrose dependent during seedling development, whereas acx1 acx3 and acx1 acx5 double mutants display enhanced IBA resistance but remain sucrose independent. The inability of ACX1, ACX3, and ACX4 to fully compensate for one another in IBA-mediated root elongation inhibition and the ability of ACX2 and ACX5 to contribute to IBA response suggests that IBA-response defects in acx mutants may reflect indirect blocks in peroxisomal metabolism and IBA beta-oxidation, rather than direct enzymatic activity of ACX isozymes on IBA-CoA.  相似文献   

6.
7.
Zhong R  Ye ZH 《Plant physiology》2003,132(2):544-555
The SAC domain was first identified in the yeast (Saccharomyces cerevisiae) Sac1p phosphoinositide phosphatase protein and subsequently found in a number of proteins from yeast and animals. The SAC domain is approximately 400 amino acids in length and is characterized by seven conserved motifs. The SAC domains of several proteins have been recently demonstrated to possess phosphoinositide phosphatase activities. Sac1p has been shown to regulate the levels of various phosphoinositides in the phosphoinositide pool and affect diverse cellular functions such as actin cytoskeleton organization, Golgi function, and maintenance of vacuole morphology. The Arabidopsis genome contains a total of nine genes encoding SAC domain-containing proteins (AtSACs). The SAC domains of the AtSACs possess the conserved amino acid motifs that are believed to be important for the phosphoinositide phosphatase activities of yeast and animal SAC domain proteins. AtSACs can be divided into three subgroups based on their sequence similarities, hydropathy profiles, and phylogenetic relationship. Gene expression analysis demonstrated that the AtSAC genes exhibited differential expression patterns in different organs and, in particular, the AtSAC6 gene was predominantly expressed in flowers. Moreover, the expression of the AtSAC6 gene was highly induced by salinity. These results provide a foundation for future studies on the elucidation of the cellular functions of SAC domain-containing proteins in Arabidopsis.  相似文献   

8.
The phenylalanine ammonia-lyase gene family in Arabidopsis thaliana   总被引:12,自引:0,他引:12  
Phenylpropanoid derivatives are a complex class of secondary metabolites that have many important roles in plants during normal growth and in responses to environmental stress. Phenylalanine ammonialyase (PAL) catalyzes the first step in the biosynthesis of phenylpropanoids, and is usually encoded by a multi-gene family. Genomic clones for three Arabidopsis thaliana PAL genes containing the entire protein-coding region and upstream and downstream sequences have been obtained and completely sequenced. Two A. thaliana PAL genes (PAL1 and PAL2) are structurally similar to PAL genes that have been cloned from other plant species, with a single intron at a conserved position, and a long highly conserved second exon. Previously identified promoter motifs plus several additional sequence motifs were found in the promoter regions of PAL1 and PAL2. Expression of PAL1 and PAL2 is both qualitatively and quantitatively similar in different plant organs and under various inductive conditions. A third A. thaliana PAL gene, PAL3, differs significantly from PAL1 and PAL2 and other sequenced plant PAL genes. PAL3 contains an additional intron, and its deduced amino acid sequence is less homologous to other PAL proteins. The PAL3 promoter region lacks several sequence motifs conserved between A. thaliana PAL1 and PAL2, as well as motifs described in other genes involved in phenylpropanoid metabolism. A. thaliana PAL3 was expressed at very low levels under the conditions examined.  相似文献   

9.
Rat liver peroxisomes contain three acyl-CoA oxidases:palmitoyl-CoA oxidase, pristanoyl-CoA oxidase, and trihydroxycoprostanoyl-CoA oxidase. The three oxidases were separated by anion-exchange chromatography of a partially purified oxidase preparation, and the column eluate was analyzed for oxidase activity with different acyl-CoAs. Short chain mono (hexanoyl-) and dicarboxylyl (glutaryl-)-CoAs and prostaglandin E2-CoA were oxidized exclusively by palmitoyl-CoA oxidase. Long chain mono (palmitoyl-) and dicarboxylyl (hexadecanedioyl-)-CoAs were oxidized by palmitoyl-CoA oxidase and pristanoyl-CoA oxidase, the former enzyme catalyzing approximately 70% of the total eluate activity. The very long chain lignoceroyl-CoA was also oxidized by palmitoyl-CoA oxidase and pristanoyl-CoA oxidase, the latter enzyme catalyzing approximately 65% of the total eluate activity. Long chain 2-methyl branched acyl-CoAs (2-methylpalmitoyl-CoA and pristanoyl-CoA) were oxidized for approximately 90% by pristanoyl-CoA oxidase, the remaining activity being catalyzed by trihydroxycoprostanoyl-CoA oxidase. The short chain 2-methylhexanoyl-CoA was oxidized by trihydroxycoprostanoyl-CoA oxidase and pristanoyl-CoA oxidase (approximately 60 and 40%, respectively, of the total eluate activity). Trihydroxycoprostanoyl-CoA was oxidized exclusively by trihydroxycoprostanoyl-CoA oxidase. No oxidase activity was found with isovaleryl-CoA and isobutyryl-CoA. Substrate dependences of palmitoyl-CoA oxidase and pristanoyl-CoA oxidase were very similar when assayed with the same (common) substrate. Since the two oxidases were purified to a similar extent and with a similar yield, the contribution of each enzyme to substrate oxidation in the column eluate probably reflects its contribution in the intact liver.  相似文献   

10.
S Horie  S Ogawa  T Suga 《Life sciences》1989,44(16):1141-1148
Rats fed on clofibrate- and DEHP-containing diets showed virtually proportional increases in hepatic acyl-CoA oxidase and glutaryl-CoA oxidase activities. The solubilization profiles of the two activities from the light mitochondrial fraction of the liver homogenate of DEHP-treated rats were the same, and the glutaryl-CoA oxidase/acyl-CoA oxidase activity ratio remained constant through the purification. The final preparation obtained was a single protein based on the result of polyacrylamide gel electrophoresis. The evidence indicates that the two activities are associated with the same protein.  相似文献   

11.
By consensus, the acyl-CoA synthetase (ACS) community, with the advice of the human and mouse genome nomenclature committees, has revised the nomenclature for the mammalian long-chain acyl-CoA synthetases. ACS is the family root name, and the human and mouse genes for the long-chain ACSs are termed ACSL1,3-6 and Acsl1,3-6, respectively. Splice variants of ACSL3, -4, -5, and -6 are cataloged. Suggestions for naming other family members and for the nonmammalian acyl-CoA synthetases are made.  相似文献   

12.
We have employed a new pseudosubstrate, beta-(2-furyl)propionyl coenzyme A (FPCoA), to study the functional properties of two enzymes, fatty acyl-CoA dehydrogenase from porcine liver and fatty acyl-CoA oxidase from Candida tropicalis, involved in the oxidation of fatty acids. Previous studies from our laboratory have shown that the dehydrogenase exhibits oxidase activity at the rate of dissociation of the product charge-transfer complex. This raises the question of the difference in functionality between these two flavoproteins. To investigate these differences, we have compared the pH dependence of product formation, the isotope effects using tetradeuterio-FPCoA, and the spectral properties and chemical reactivity of the product charge-transfer complexes formed with the two enzymes. The pH dependencies of the reaction of FPCoA with electron-transfer flavoprotein (ETF) for the dehydrogenase and of the reaction of FPCoA with O2 for the oxidase are quite similar. Both reactions proceed more rapidly at basic pH values while substrate binds more tightly at acidic pH values. These data for both enzymes are consistent with a mechanism in which enzyme is involved in protonation of the carbonyl group of substrate followed by base-catalyzed removal of the C-2 proton from substrate. The C-2 anion of substrate may then serve as the active species in reduction of enzyme-bound flavin. The deuterium isotope effects for both enzyme systems are primary across the entire pH range, assuring that the chemically important step of substrate oxidation is rate limiting in these steady-state kinetic experiments. The two enzymes differ in the chemical reactivity of their product charge-transfer complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Long-chain acyl-CoA oxidases of Arabidopsis   总被引:7,自引:2,他引:5  
Full-length cDNAs coding for two distinct acyl-CoA oxidases were isolated by screening an Arabidopsis cDNA library. The genes for the two acyl-CoA oxidases have been termed AtACX1 and AtACX2. AtACX1 encodes a peptide of 664 amino acids possessing a molecular mass of 74.3 kDa. AtACX2 encodes a peptide of 691 amino acids in length with a molecular mass of 77.5 kDa. Peroxisomal targeting signals were identified in the primary sequences. AtACX1 has a putative PTS1, whereas AtACX2 has a characteristic PTS2. Expression of AtACX1 and AtACX2 in Escherichia coli gave active enzymes for enzymatic and biochemical analysis. AtACX1 was active with both medium-and long-chain saturated fatty acyl-CoAs and showed maximal activity with C14-CoA. Activity with mono-unsaturated acyl-CoAs was slightly higher than with the corresponding saturated acyl-CoA. AtACX2 was active with long-chain acyl-CoAs and showed maximal activity with C18-CoA. AtACX2 activity with mono-unsaturated acyl-CoAs was approximately twice as high as with the corresponding saturated acyl-CoA. Both enzymes have an apparent Km of approximately 5 microM with the preferred substrate. Northern analysis was conducted to determine the expression patterns of AtACX1 and AtACX2 during germination and in various tissues of a mature plant. The two genes showed generally similar expression profiles and steady-state mRNA levels in seedlings and mature tissues, but subtle differences were observed. Enzymatic analyses of plant extracts revealed that AtACX1 and AtACX2 are members of a family that includes acyl-CoA oxidases specific for shorter-chain acyl-CoAs. Through expression of antisense constructs of the individual genes, we were able to decrease long-chain oxidase activity only in antisense AtACX1 plants. Seedlings with long-chain oxidase activity reduced down to 30% of wild-type levels germinated and established normally; however, reduced root growth appeared to be a general feature of antisense AtACX1 plants.  相似文献   

14.
15.
The monosaccharide transporter(-like) gene family in Arabidopsis   总被引:4,自引:0,他引:4  
Büttner M 《FEBS letters》2007,581(12):2318-2324
The availability of complete plant genomes has greatly influenced the identification and analysis of phylogenetically related gene clusters. In Arabidopsis, this has revealed the existence of a monosaccharide transporter(-like) gene family with 53 members, which play a role in long-distance sugar partitioning or sub-cellular sugar distribution and catalyze the transport of hexoses, but also polyols and in one case also pentoses and tetroses. An update on the currently available information on these Arabidopsis monosaccharide transporters, on their sub-cellular localization and physiological function will be given.  相似文献   

16.
Mammalian liver peroxisomes are capable of beta-oxidizing a variety of substrates including very long chain fatty acids and the side chains of the bile acid intermediates di- and trihydroxycoprostanic acid. The first enzyme of peroxisomal beta-oxidation is acyl-CoA oxidase. It remains unknown whether peroxisomes possess one or several acyl-CoA oxidases. Peroxisomal oxidases from rat liver were partially purified by (NH4)2SO4 precipitation and heat treatment, and the preparation was subjected to chromatofocusing, chromatography on hydroxylapatite and dye affinity matrices, and gel filtration. The column eluates were assayed for palmitoyl-CoA and trihydroxycoprostanoyl-CoA oxidase activities and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The results revealed the presence of three acyl-CoA oxidases: 1) a fatty acyl-CoA oxidase with a pI of 8.3 and an apparent molecular mass of 145 kDa. The enzyme consisted mainly of 52- and 22.5-kDa subunits and could be induced by clofibrate treatment; 2) a noninducible fatty acyl-CoA oxidase with a pI of 7.1 and an apparent molecular mass of 427 kDa. It consisted mainly, if not exclusively, of one polypeptide component of 71 kDa; and 3) a noninducile trihydroxycoprostanoyl-CoA oxidase with a pI of 7.1 and an apparent molecular mass of 139 kDa. It consisted mainly, if not exclusively, of one polypeptide component of 69 kDa. Our findings are probably related to the recent discovery of two species of acyl-CoA oxidase mRNA in rat liver (Miyazawa, S., Hayashi, H., Hijikata, M., Ishii, N., Furata, S., Kagamiyama, H., Osumi, T., and Hashimoto, T. (1987) J. Biol. Chem. 262, 8131-8137) and they probably also explain why in human peroxisomal beta-oxidation defects an accumulation of very long chain fatty acids is not always accompanied by an excretion of bile acid intermediates and vice versa.  相似文献   

17.
The R2R3-MYB gene family in Arabidopsis thaliana   总被引:25,自引:0,他引:25  
MYB factors represent a family of proteins that include the conserved MYB DNA-binding domain. In contrast to animals, plants contain a MYB-protein subfamily that is characterised by the R2R3-type MYB domain. 'Classical' MYB factors, which are related to c-Myb, seem to be involved in the control of the cell cycle in animals, plants and other higher eukaryotes. Systematic screens for knockout mutations in MYB genes, followed by phenotypic analyses and the dissection of mutants with interesting phenotypes, have started to unravel the functions of the 125 R2R3-MYB genes in Arabidopsis thaliana. R2R3-type MYB genes control many aspects of plant secondary metabolism, as well as the identity and fate of plant cells.  相似文献   

18.
Until recently, only cytosolic acyl-CoA binding proteins (ACBPs) have been characterized. The isolation of an Arabidopsis thaliana cDNA encoding a novel membrane-associated ACBP that accumulates in developing seeds, designated ACBP1, has provided evidence for the existence of membrane-associated forms of ACBPs (Chye, 1998, Plant Mol. Biol. 38, 827-838). We now report on the isolation of its corresponding gene from an A. thaliana Columbia genomic library using the ACBP1 cDNA as a hybridization probe. Nucleotide sequence analysis of Arabidopsis ACBP1 showed that its promoter lacks a TATA box, resembling the promoters of rat, Drosophila and human genes encoding cytosolic ACBP and suggesting that it is a housekeeping gene. We show by Western blot analysis that ACBP1 expression in developing seeds coincides with lipid deposition and that homologues of membrane-associated ACBP1 exist in other plants. Using light microscopy, we show that ACBP1 is strongly expressed in the embryo at the cotyledons, hypocotyl, procambium of the axis and in most peripheral cells of the cotyledons and hypocotyl. Immunogold labelling localized ACBP1 to vesicles, to the plasma membrane especially at epidermal cells of heart, torpedo and cotyledonary stage embryos, and to the cell wall of the outer integument cells at the seed coat. Our results suggest that ACBP1 is involved in intermembrane lipid transport from the ER via vesicles to the plasma membrane where it could maintain a membrane-associated acyl pool; its immunolocalization to the cell wall of outer integument cells at the seed coat suggests a role in cuticle and cutin formation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号