首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
2.
Cold storage of potato (Solanum tuberosum L.) tubers is known to cause accumulation of reducing sugars. Hexose accumulation has been shown to be cultivar-dependent and proposed to be the result of sucrose hydrolysis via invertase. To study whether hexose accumulation is indeed related to the amount of invertase activities, two different approaches were used: (i) neutral and acidic invertase activities as well as soluble sugars were measured in cold-stored tubers of 24 potato cultivars differing in the cold-induced accumulation of reducing sugars and (ii) antisense potato plants with reduced soluble acid invertase activities were created and the soluble sugar accumulation in cold-stored tubers was studied. The cold-induced hexose accumulation in tubers from the different potato cultivars varied strongly (up to eightfold). Large differences were also detected with respect to soluble acid (50-fold) and neutral (5-fold) invertase activities among the different cultivars. Although there was almost no correlation between the total amount of invertase activity and the accumulation of reducing sugars there was a striking correlation between the hexose/sucrose ratio and the extractable soluble invertase activitiy. To exclude the possibility that other cultivar-specific features could account for the obtained results, the antisense approach was used to decrease the amount of soluble acid invertase activity in a uniform genetic background. To this end the cDNA of a cold-inducible soluble acid invertase (EMBL nucleicacid database accession no. X70368) was cloned from the cultivar Desirée, and transgenic potato plants were created expressing this cDNA in the antisense orientation under control of the constitutive 35S cauliflower mosaic virus promotor. Analysis of the harvested and cold-stored tubers showed that inhibition of the soluble acid invertase activity leads to a decreased hexose and an increased sucrose content compared with controls. As was already found for the different potato cultivars the hexose/sucrose ratio decreased with decreasing invertase activities but the total amount of soluble sugars did not significantly change. From these data we conclude that invertases do not control the total amount of soluble sugars in coldstored potato tubers but are involved in the regulation of the ratio of hexose to sucrose.The authors are grateful to Heike Deppner and Christiane Prüßner for tuber harvest and technical assistance during the further analysis. We thank Andrea Knospe for taking care of tissue culture, Birgit Schäfer for patient photographic work, Hellmuth Fromme and the greenhouse personnel for attending plant growth and development and Astrid Basner for elucidating the sequence of clone INV-19. The work was supported by the Bundesministerium für Forschung und Technologie (BMFT).  相似文献   

3.
可溶性酸性蔗糖酶是决定甜菜块根贮藏质量的关键酶。贮藏期间其活力的提高是由于蛋白质重新合成所致。不良的贮藏条件使块根汁液pH降低,膜透性增加,这两种因素与可溶性酸性蔗糖酶活力成正相关,与贮藏质量成负相关。  相似文献   

4.
Starch, total sugars, reducing sugars and protein contents and the specific activities of hydrolytic enzymes such as amylase, Phosphorylase, soluble acid invertase, wall-bound acid invertase, sucrose synthetase, acid and alkaline phosphatases and ribonuclease were determined in root forming, shoot forming and non-organ-forming callus cultures of tobacco. Organ-forming cultures not only showed higher amounts of the above metabolites but also higher enzyme activities compared to non-organ-forming cultures. The activities of these enzymes in relation to organogenesis is discussed.  相似文献   

5.
Enhanced amylase activity was observed during a 7-day-growth period in the cotyledons of PEG imposed water stressed chickpea seedlings grown in the presence of GA3 and kinetin, when compared with stressed seedlings. During the first 5 days of seedling growth, the seedlings growing under water deficit conditions as well as those growing in the presence of PGRs had a higher amylase activity in shoots than that of control seedlings. Neither GA3 nor kinetin increased the amylase activity of roots whereas IAA reduced root amylase activity. Activity of acid and alkaline invertases was maximum in shoots and at a minimum in cotyledons. Compared with alkaline invertase, acid invertase activity was higher in all the tissues. The reduced acid and alkaline invertase activities in shoots of stressed seedlings were enhanced by GA3 and kinetin. Roots of stressed seedlings had higher alkaline invertase activity and GA3 and IAA helped in bringing the level near to those in the controls. GA3 and kinetin increased the sucrose synthase (SS) and sucrose phosphate synthase (SPS) activities in cotyledons of stressed seedlings, whereas they brought the elevated level of SPS of stressed roots to near normal level. The higher level of reducing sugars in the shoots of GA3 and kinetin treated stressed seedlings could be due to the high acid invertase activity observed in the shoots, and the high level of bound fructose in the cotyledons of stressed seedlings could be due to the high activity of SPS in this tissue.  相似文献   

6.
The application of gibberellic acid (GA3,10 μ M ) as a root drench to 16-day-old plants of Phaseolus vulgaris L. cv. Masterpiece stimulated growth of the stem internodes and reduced root growth. GA3 treatment did not affect the export of 14C from a primary leaf to which [14C]-sucrose was applied, but greatly increased upward translocation to the elongation region of the stem at the expense of transport to the hypocotyl and root system. The observed changes in the patterns of growth and [14C]-labelled assimilate distribution were correlated with an increase in the specific activity of acid invertase in the elongating stem internodes and a decrease in invertase activity in the hypocotyl and root. Sucrose concentration in the elongating internodes fell substantially after treatment with GA3 while the concentration of hexose sugars increased. We suggest that by stimulating acid invertase synthesis in the elongating internodes, GA3 acts to establish a more favourable sucrose gradient between these sinks and source leaves. Under source-limiting conditions this, in turn, will lead to a reduced rate of assimilate translocation to competing sinks in the root system.  相似文献   

7.
Cold‐induced sweetening (CIS) is a serious post‐harvest problem for potato tubers, which need to be stored cold to prevent sprouting and pathogenesis in order to maintain supply throughout the year. During storage at cold temperatures (below 10 °C), many cultivars accumulate free reducing sugars derived from a breakdown of starch to sucrose that is ultimately cleaved by acid invertase to produce glucose and fructose. When affected tubers are processed by frying or roasting, these reducing sugars react with free asparagine by the Maillard reaction, resulting in unacceptably dark‐coloured and bitter‐tasting product and generating the probable carcinogen acrylamide as a by‐product. We have previously identified a vacuolar invertase inhibitor (INH2) whose expression correlates both with low acid invertase activity and with resistance to CIS. Here we show that, during cold storage, overexpression of the INH2 vacuolar invertase inhibitor gene in CIS‐susceptible potato tubers reduced acid invertase activity, the accumulation of reducing sugars and the generation of acrylamide in subsequent fry tests. Conversely, suppression of vacuolar invertase inhibitor expression in a CIS‐resistant line increased susceptibility to CIS. The results show that post‐translational regulation of acid invertase by the vacuolar invertase inhibitor is an important component of resistance to CIS.  相似文献   

8.
Palmarosa inflorescence with partially opened spikelets is biogenetically active to incorporate [U-14C]sucrose into essential oil. The percent distribution of14C-radioactivity incorporated into geranyl acetate was relatively higher as compared to that in geraniol, the major essential oil constituent of palmarosa. At the partially opened spikelet stage, more of the geraniol synthesized was acetylated to form geranyl acetate, suggesting that majority of the newly synthesized geraniol undergoes acetylation, thus producing more geranyl acetate.In vitro development of palmarosa inflorescence, fed with [U-14C]sucrose, resulted in a substantial reduction in percent label from geranyl acetate with a corresponding increase in free geraniol, thereby suggesting the role of an esterase in the production of geraniol from geranyl acetate. At time course measurement of14CO2 incorporation into geraniol and geranyl acetate substantiated this observation. Soluble acid invertase was the major enzyme involved in the sucrose breakdown throughout the inflorescence development. The activities of cell wall bound acid invertase, alkaline invertase and sucrose synthase were relatively lower as compared to the soluble acid invertase. Sucrose to reducing sugars ratio decreased till fully opened spikelets stage, concomitant with increased acid invertase activity and higher metabolic activity. The phenomenon of essential oil biosynthesis has been discussed in relation to changes in these physiological parameters.  相似文献   

9.
Carbohydrate metabolism in growing rice seedlings under arsenic toxicity   总被引:7,自引:0,他引:7  
We studied in the seedlings of two rice cultivars (Malviya-36 and Pant-12) the effect of increasing levels of arsenic in situ on the content of sugars and the activity of several enzymes of starch and sucrose metabolism: alpha-amylase (EC 3.2.1.1), beta-amylase (EC 3.2.1.2), starch phosphorylase (EC 2.4.1.1), acid invertase (EC 3.2.1.26), sucrose synthase (EC 2.4.1.13) and sucrose phosphate synthase (EC 2.4.1.14). During a growth period of 10-20 d As2O3 at 25 and 50 microM in the growth medium caused an increase in reducing, non-reducing and total soluble sugars. An increased conversion of non-reducing to reducing sugars was observed concomitant with As toxicity. The activities of alpha-amylase, beta-amylase and sucrose phosphate synthase declined, whereas starch phosphorylase, acid invertase and sucrose synthase were found to be elevated. Results indicate that in rice seedlings arsenic toxicity causes perturbations in carbohydrate metabolism leading to the accumulation of soluble sugars by altering enzyme activity. Sucrose synthase possibly plays a positive role in synthesis of sucrose under As-toxicity.  相似文献   

10.
R.R. Walker  J.S. Hawker 《Phytochemistry》1976,15(12):1881-1884
During a 9 day period after anthesis the concentration of reducing sugars showed a 6-fold increase in fruits of Citrullus lanatus, and a 2-fold increase in those of Capsicum annuum. These increases were associated with acid invertase, the specific activity of which was high in ovaries at anthesis and which increased 5-fold in watermelon and 1.5-fold in pepper during the same period. Sucrose synthase apparently plays only a minor role in sucrose hydrolysis. Changes in sugar concentrations and both acid invertase and sucrose synthase activities were similar in fruits developed both after pollination or hormone (NAA) treatment of ovaries. In non-pollinated ovaries of watermelon there was also an increase in invertase activity up to 6 days after anthesis which paralleled the increase in activity in seeded and parthenocarpic fruits. However, there was no increase in either reducing sugars or sucrose, indicating that sucrose is not imported into non-pollinated ovaries. Utilisation of reserve starch may help prolong the life of non-pollinated ovaries for up to one week after anthesis.  相似文献   

11.
姚绍嫦  黄鼎  谭勇  顾晋源  李良波  黄荣韶 《广西植物》2021,41(11):1939-1948
为提高牛大力块根的产量与品质,该研究以不同发育时期(移栽6、12、18、24、30、36个月)的牛大力块根为材料,采用紫外分光光度法对糖类含量及其相关酶活性进行测定,研究它们在牛大力块根发育过程中的动态变化规律。结果表明:(1)牛大力块根的生长发育进程可初步划分为形成期(移栽6~12个月)、迅速膨大期(移栽12~24个月)与稳定膨大期(移栽24~36个月)三个阶段。淀粉与蔗糖分别是牛大力块根中主要的多糖与可溶性糖。在牛大力块根发育过程中,多糖类物质的含量逐渐增加,而可溶性糖含量逐渐减少,两者之间呈显著负相关,推测可溶性糖的分解代谢有利于促进多糖类物质的积累。(2)蔗糖的分解代谢是蔗糖合酶(SUS)、蔗糖磷酸合酶(SPS)、酸性转化酶(AI)与中性转化酶(NI)等多种相关酶协同作用的结果。SUS在牛大力块根发育过程中发挥着既催化蔗糖合成,又催化蔗糖分解的双重调节作用,SUS(合成)的活性不断上升,至移栽36个月达到峰值,极显著高于其他时期; SUS(分解)的活性从移栽6个月至24个月逐渐上升,但在块根稳定膨大期稍有下降; 其净活性为催化蔗糖分解,在移栽12个月达到最高。转化酶AI和NI的活性均在块根发育过程中逐渐上升,且AI活性高于NI活性,提示AI可能在蔗糖代谢分解过程中发挥更重要的作用。该研究结果可为今后深入研究牛大力多糖类成分积累和调控机制提供理论依据,并为提高牛大力药材的产量与品质提供技术指导。  相似文献   

12.
Developing pods of pea ( Pisum sativum L. cv. Alaska no 7) were used to study the enzymes of sucrose metabolism. Acid and neutral invertase (EC 3.2.1.26). sucrose synthase (SS, EC 2.4.1.13) and sucrose phosphate synthase (SPS, EC 2.4.1.14) have been localized in the soluble fraction. Acid invertase activity was also present in the insoluble fraction and in pea ovary apoplast. In pea pods, sucrose breakdown was dominated by the invertase pathway. SS specific activity only increased at late stages of parthenocarpic pod development, while SPS did so in pods obtained by pollination. Changes in time course of invertase activities have been correlated with the growth rate of fruits induced to develop either by fertilization or by exogenous application of giberellic acid (GA), 2,4-dichloro-phenoxy acetic acid (2,4-D) or 6-benzylaminopurine (6-BAP). The soluble neutral activities might be associated with pod elongation, while the acid ones were rather related to assimilate import by the induced fruits. Application of gibberellic acid to non-pollinated ovaries significantly enhanced the soluble neutral invertase activity before any ovary outgrowth was detected (up to 2 h after treatment). Within the same period of time. GA-treated ovaries showed a decrease in the acid invertase activity of the soluble fraction and an increase of the acid invertase activity in the apopiast. preceding in time the increment of the acid invertase activity associated with the insoluble fraction. Our results suggest that the early GA response may be mediated through a promotion of processes of protein secretion.  相似文献   

13.
Higher amylase activity in cotyledons of kinetin treated salt stressed (75 mM NaCl) chickpea (Cicer arietinum L. cv. PBG-1) seedlings, as compared to salt stressed seedlings was observed during a growth period of 7 d. The activities of acid and alkaline invertases were maximum in shoots and minimum in cotyledons under all conditions. The reduced shoot invertase activities under salt stress were enhanced by kinetin with a simultaneous increase in reducing sugar content. Kinetin increased the activities of sucrose synthase (SS) and sucrose phosphate synthase (SPS) in both the cotyledons and shoots of stressed seedlings. Kinetin appears to increase the turnover of sucrose in the shoots of stressed seedlings.  相似文献   

14.
Sucrose translocation and storage in the sugar beet   总被引:14,自引:9,他引:5       下载免费PDF全文
Several physiological processes were studied during sugar beet root development to determine the cellular events that are temporally correlated with sucrose storage. The prestorage stage was characterized by a marked increase in root fresh weight and a low sucrose to glucose ratio. Carbon derived from 14C-sucrose accumulation was partitioned into protein and structural carbohydrate fractions and their amino acid, organic acid, and hexose precursors. The immature root contained high soluble acid invertase activity (Vmax 20 micromoles per hour per milligram protein; Km 2 to 3 millimolar) which disappeared prior to sucrose storage. Sucrose storage was characterized by carbon derived from 14C-sucrose uptake being partitioned into the sucrose fraction with little evidence of further metabolism. The onset of storage was accompanied by the appearance of sucrose synthetase activity (Vmax 12 micromoles per hour per milligram protein; Km 7 millimolar). Neither sucrose phosphate synthetase nor alkaline invertase activities were detected during beet development. Intact sugar beet plants (containing a 100-gram beet) exported 70% of the translocate to the beet, greater than 90% of which was retained as sucrose with little subsequent conversions.  相似文献   

15.
Carbohydrate metabolism was investigated during spruce somatic embryogenesis. During the period of maintenance corresponding to the active phase of embryogenic tissue growth, activities of soluble acid invertase and alkaline invertase increased together with cellular glucose and fructose levels. During the same time, sucrose phosphate synthase (SPS) activity increased while sucrose synthase (SuSy) activity stayed constant together with the cellular sucrose level. Therefore, during maintenance, invertases were thought to generate the hexoses necessary for embryogenic tissue growth while SuSy and SPS would allow cellular sucrose to be kept at a constant level. During maturation on sucrose-containing medium, SuSy and SPS activities stayed constant whereas invertase activities were high during the early stage of maturation before declining markedly from the second to the fifth week. This decrease of invertase activities resulted in a decreased hexose:sucrose ratio accompanied by starch and protein deposition. Additionally, carbohydrate metabolism was strongly modified when sucrose in the maturation medium was replaced by equimolar concentrations of glucose and fructose. Essentially, during the first 2 weeks, invertase activities were low in tissues growing on hexose-containing medium while cellular glucose and fructose levels increased. During the same period, SuSy activity increased while the SPS activity stayed constant together with the cellular sucrose level. This metabolism reorganization on hexose-containing medium affected cellular protein and starch levels resulting in a decrease of embryo number and quality. These results provide new knowledge on carbohydrate metabolism during spruce somatic embryogenesis and suggest a regulatory role of exogenous sucrose in embryo development.  相似文献   

16.
The regulation of sugar uptake and accumulation in bean pod tissue   总被引:15,自引:12,他引:3       下载免费PDF全文
Sacher JA 《Plant physiology》1966,41(1):181-189
The identity, localization and physiological significance of enzymes involved in sugar uptake and accumulation were determined for endocarp tissue of pods of Kentucky Wonder pole beans (Phaseolus vulgaris). An intracellular, alkaline invertase (pH optimum, 8) was assayed in extracted protein, as well as enzymes involved in sucrose synthesis, namely, uridinediphosphate (UDP-glucose pyrophosphorylase and UDP-glucose-fructose transglucosylase). Indirect evidence indicated the presence also of hexokinase, phosphohexoseisomerase and phosphoglucomutase. The data suggested that sucrose synthesis occurred in the cytoplasm, and that both sugar storage and an alkaline invertase occurred in the vacuole. The latter functions to hydrolyze accumulated sucrose. An outer space invertase (pH optimum, 4.0) was detected, but was variable in occurrence. Although its activity at the cell surface enhanced sucrose uptake, sucrose may be taken up unaltered.

Over a wide range of concentrations of exogenous glucose the sucrose/reducing sugar ratio of accumulated sugars remained unchanged at about 20. Synthesis of sucrose appears to be requisite to initial accumulation from glucose or fructose, as free hexoses do not increase at the apparent saturating concentration for uptake. Sucrose accumulation from exogenous hexose represents a steady-state value, in which sucrose is transported across the tonoplast into the vacuole at a rate equivalent to its rate of synthesis. Evidence indicates that this component of the accumulation process involves active transport of sucrose against a concentration gradient. The ratio of sucrose/reducing sugars in the accumulated sugars immediately after a period of uptake was inversely related to the level of inner space invertase. Within 16 hours after a period of accumulation, practically all of the sugar occurs as glucose and fructose.

The absence of competition among hexoses and sucrose indicated that a common carrier was not involved in their uptake. From a series of studies on the kinetics of uptake of glucose and fructose, including competition studies, the effects of inhibitors, radioactive assay of accumulated sugars and the distribution of label in accumulated sucrose it appeared that rate limitation for glucose or fructose uptake resides in the sequence of reactions leading to sucrose synthesis, rather than in a process mediated by a carrier protein.

  相似文献   

17.
Gibberellic acid and sucrose play significant roles in the increases in invertase and growth in Avena stem segments. About 80% of invertase is readily solubilized, whereas the rest is in the cell wall fraction. The levels of both types of invertase change in a similar manner in the response to gibberellic acid and sucrose treatment. The work described here was carried out with only the soluble enzyme. In response to a treatment, the level of invertase activity typically follows a pattern of increase followed by decrease; the increase in activity is approximately correlated with the active growth phase, whereas the decrease in activity is initiated when growth of the segments slows. A continuous supply of gibberellic acid retards the decline of enzyme activity. When gibberellic acid was pulsed to the segments treated with or without sucrose, the level of invertase activity increased at least twice as high in the presence of sucrose as in its absence, but the lag period is longer with sucrose present. Cycloheximide treatments effectively abolish the gibberellic acid-promoted growth, and the level of enzyme activity drops rapidly. Decay of invertase activity in response to cycloheximide treatment occurs regardless of gibberellic acid or sucrose treatment or both, and it is generally faster when the inhibitor is administered at the peak of enzyme induction than when given at its rising phase. Pulses with sucrose, glucose, fructose, or glucose + fructose elevate the level of invertase significantly with a lag of about 5 to 10 hours. The increase in invertase activity elicited by a sucrose pulse is about one-third that caused by a gibberellic acid pulse given at a comparable time during mid-phase of enzyme induction, and the lag before the enzyme activity increases is nearly twice as long for sucrose as for gibberellic acid. Moreover, the gibberellic acid pulse results in about three times more growth than the sucrose pulse. Our studies support the view that gibberellic acid, as well as substrate (sucrose) and end products (glucose and fructose), play a significant role in regulating invertase levels in Avena stem tissue, and that such regulation provides a mechanism for increasing the level of soluble saccharides needed for gibberellic acid-promoted growth.  相似文献   

18.
Sucrose phosphate synthase (UDP-glucose: D-fructose-6-phosphate-2-glucosyl transferase, EC 2.4.1.14), sucrose synthase (UDP-glucose: D-fructose-2-glucosyl transferase, EC 2.4.1.13) and invertase (β-D-fructofuranoside fructohydrolase, EC 3.2.1.26) were measured in toluene permeabilized cells of Chlorella vulgaris Beijerinck. All three activities were detected at all stages of the growth curve; sucrose synthase and sucrose phosphate synthase showed a zone of maximum activity, while invertase increased with time of growth. Sucrose phosphate synthase and sucrose synthase (sucrose synthesis direction) were stimulated by divalent cations and inhibited by UDP. This inhibition could be reversed by Mg2+ or Mn2+. Sucrose phosphate synthase activity was inhibited by inorganic phosphate and was enhanced by glucose-6-phosphate, but was insensitive to sucrose. Arbutine decreased sucrose synthase activity in both directions. Sucrose cleavage was inhibited by divalent cations and by pyrophosphate. The effects on the enzyme activities of the presence of 2,4-dichlorophenoxyacetic acid (2,4-D), gibberellic acid, abscisic acid and kinetin in the growth medium were investigated. Sucrose synthase activity was practically unaffected by all plant hormones tested, except for the presence of kinetin which stimulated the activity. Sucrose phosphate synthase activity was increased by both kinetin and abscisic acid. The effect of the latter was partially reversed by the presence of gibberellic acid. 2,4-D and kinetin were potent stimulators of invertase activity.  相似文献   

19.
Tomato (Lycopersicon esculentum L., cv. Sibirskii skorospelyi) and cucumber (Cucumis sativus L., cv. Konkurent) plants were grown in a soil culture in a greenhouse at an average daily temperature of 20°C and ambient illumination until the development of five and eight true leaves, respectively. During the subsequent three days, some plants were kept in a climatic chamber at 6°C in the light, whereas other plants remained in a greenhouse (control). The cold-resistance of cucumber leaves and roots, as assayed from the electrolyte leakage, was reduced after cold exposure stronger than cold-resistance of tomato organs. The ratio photosynthesis/dark respiration was lower in cucumber than in tomato leaves at all measurement temperatures. The concentrations of sugars (sucrose + glucose + fructose) increased in chilled tomato roots but decreased in cucumber roots. Cold exposure changed the activities of various invertase forms (soluble and insoluble acidic and alkaline invertases). The total invertase activity and the ratio of mono- to disaccharides increased. The lower cucumber cold-resistance is related to the higher sensitivity of its photosynthetic apparatus to chilling and, as a consequence, insufficient root supply with sugars.  相似文献   

20.
The present study was aimed at improving sprouting and establishment of bud chip seed stocks of sugarcane cultivar CoSe 92423 by pre-planting soaking in growth-promoting chemicals viz ethephon (0.1 g dm−3) and calcium chloride (1 g dm−3) along with water-soaked control for 24 h. Treated bud chips recorded higher bud sprouting, shoot height, root number, fresh weight of leaves, shoot and roots, and plant vigor index. In both the treatments, reducing sugars contents, acid invertase, and ATPase activity increased in developing sprouts; increase was about 86.5 and 40.7% in reducing sugars, 28 and 70% in acid invertase, and 15 and 23% in ATPase activities over control by ethephon and calcium chloride treatment, respectively. Reducing sugars contents and activity of acid invertase and ATPase enzymes of sprouted buds exhibited significant positive correlation with bud sprouting and plant vigor index. These findings indicate that soaking of bud chips in growth-promoting chemicals viz ethephon (0.1 g dm−3) and calcium chloride (1 g dm−3) solutions helps in enhancing bud sprouting, root growth, and plant vigor by altering some of the key biochemical attributes essential for the early growth and better establishment of bud chips under field conditions which is otherwise poor in untreated chips.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号