首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Escherichia coli multidrug resistance protein E (EmrE) is an integral membrane protein spanning the inner membrane of Escherichia coli that is responsible for this organism's resistance to a variety of lipophilic cations such as quaternary ammonium compounds (QACs) and interchelating dyes. EmrE is a 12-kDa protein of four transmembrane helices considered to be functional as a multimer. It is an efflux transporter that can bind and transport cytoplasmic QACs into the periplasm using the energy of the proton gradient across the inner membrane. Isothermal titration calorimetry provides information about the stoichiometry and thermodynamic properties of protein-ligand interactions, and can be used to monitor the binding of QACs to EmrE in different membrane mimetic environments. In this study the ligand binding to EmrE solubilized in dodecyl maltoside, sodium dodecyl sulfate and reconstituted into small unilamellar vesicles is examined by isothermal titration calorimetry. The binding stoichiometry of EmrE to drug was found to be 1:1, demonstrating that oligomerization of EmrE is not necessary for binding to drug. The binding of EmrE to drug was observed with the dissociation constant (K(D)) in the micromolar range for each of the drugs in any of the membrane mimetic environments. Thermodynamic properties demonstrated this interaction to be enthalpy-driven with similar enthalpies of 8-12 kcal/mol for each of the drugs in any of the membrane mimetics.  相似文献   

2.
Small multidrug resistance (SMR) protein family member, SugE, is an integral inner membrane protein that confers host resistance to antiseptic quaternary cation compounds (QCC). SugE studies generally focus on its resistance to limited substrates in comparison to SMR protein EmrE. This study examines the conformational characteristics of SugE protein in two detergents, sodium dodecyl sulphate (SDS) and dodecyl maltoside (DDM), commonly used to study SMR proteins. The influence of cetylpyridinium (CTP) and cetrimide (CET) using SugE aromatic residues (4W, 2Y, 1F) as intrinsic spectroscopic probes was also determined. Organically extracted detergent solubilized Escherichia coli SugE protein was examined by SDS-Tricine PAGE and various spectroscopic techniques. SDS-Tricine PAGE analysis of SugE in either detergent demonstrates the protein predominates as a monomer but also dimerizes in SDS. Far-UV region circular dichroism (CD) analysis determined that the overall α-helix content SugE in SDS and DDM was almost identical and unaltered by QCC. Near-UV region CD, fluorescence, and second-derivative ultraviolet absorption (SDUV) indicated that only DDM-SugE promoted hydrophobic environments for its Trp and Tyr residues that were perturbed by QCC addition. This study identified that only the tertiary structure of SugE protein in DDM is altered by QCC.  相似文献   

3.
The small multidrug resistance (SMR) protein family is a bacterial multidrug transporter family. As suggested by their title, SMR proteins are composed of four transmembrane alpha-helices of approximately 100-140 amino acids in length. Since their designation as a family, many homologues have been identified and characterized both structurally and functionally. In this review the topology, structure, drug resistance, drug binding, and transport mechanisms of the entire SMR protein family are examined. Additionally, updated bioinformatic analysis of predicted and characterized SMR protein family members was also conducted. Based on SMR sequence alignments and phylogenetic analysis of current members, we propose that this small multidrug resistance transporter family should be expanded into three subclasses: (i) the small multidrug pumps (SMP), (ii) suppressor of groEL mutation proteins (SUG), and a third group (iii) paired small multidrug resistance proteins (PSMR). The roles of these three SMR subclasses are examined, and the well-characterized members, such as Escherichia coli EmrE and SugE, are described in terms of their function and structural organization.  相似文献   

4.
The small multidrug resistance (SMR) protein family is a bacterial multidrug transporter family. As suggested by their title, SMR proteins are composed of four transmembrane α-helices of approximately 100-140 amino acids in length. Since their designation as a family, many homologues have been identified and characterized both structurally and functionally. In this review the topology, structure, drug resistance, drug binding, and transport mechanisms of the entire SMR protein family are examined. Additionally, updated bioinformatic analysis of predicted and characterized SMR protein family members was also conducted. Based on SMR sequence alignments and phylogenetic analysis of current members, we propose that this small multidrug resistance transporter family should be expanded into three subclasses: (i) the small multidrug pumps (SMP), (ii) suppressor of groEL mutation proteins (SUG), and a third group (iii) paired small multidrug resistance proteins (PSMR). The roles of these three SMR subclasses are examined, and the well-characterized members, such as Escherichia coli EmrE and SugE, are described in terms of their function and structural organization.  相似文献   

5.
Problems related to interaction of drugs with the dialysis membrane and to protein binding must be overcome in order to develop automated methods for drug analysis based on on-line dialysis, trace enrichment and HPLC. In order to study these problems, clozapine and its active metabolite N-desmethylclozapine were chosen as model compounds because they were found to interact with the dialysis membrane, and clozapine is highly protein bound. Addition of a cationic surfactant, dodecylethyldimethyl ammonium bromide, to the donor solution and to the plasma samples was found to inhibit interaction of the drugs with surfaces. The protein binding in plasma was disrupted prior to dialysis by lowering the pH with hydrochloric acid and the plasma proteins were solubilised with glycerol. The results obtained were used to develop a fully automated method for the determination of clozapine and N-desmethylclozapine in human plasma. More than 100 samples could be analysed within 24 h. The limit of detection in human plasma was 0.050 μmol/1 for clozapine and 0.055 μmol/1 for N-desmethylclozapine. Linearity was found for drug concentrations between 0.25–3 μmol/1. The relative standard deviations were between 1.2–6.7% and the method was applicable for therapeutic drug monitoring.  相似文献   

6.

Background  

Members of the small multidrug resistance (SMR) protein family are integral membrane proteins characterized by four α-helical transmembrane strands that confer resistance to a broad range of antiseptics and lipophilic quaternary ammonium compounds (QAC) in bacteria. Due to their short length and broad substrate profile, SMR proteins are suggested to be the progenitors for larger α-helical transporters such as the major facilitator superfamily (MFS) and drug/metabolite transporter (DMT) superfamily. To explore their evolutionary association with larger multidrug transporters, an extensive bioinformatics analysis of SMR sequences (> 300 Bacteria taxa) was performed to expand upon previous evolutionary studies of the SMR protein family and its origins.  相似文献   

7.
Cyclotides are bioactive cyclic peptides isolated from plants that are characterized by a topologically complex structure and exceptional resistance to enzymatic or thermal degradation. With their sequence diversity, ultra-stable core structural motif, and range of bioactivities, cyclotides are regarded as a combinatorial peptide template with potential applications in drug design. The mode of action of cyclotides remains elusive, but all reported biological activities are consistent with a mechanism involving membrane interactions. In this study, a diverse set of cyclotides from the two major subfamilies, Möbius and bracelet, and an all-d mirror image form, were examined to determine their mode of action. Their lipid selectivity and membrane affinity were determined, as were their toxicities against a range of targets (red blood cells, bacteria, and HIV particles). Although they had different membrane-binding affinities, all of the tested cyclotides targeted membranes through binding to phospholipids containing phosphatidylethanolamine headgroups. Furthermore, the biological potency of the tested cyclotides broadly correlated with their ability to target and disrupt cell membranes. The finding that a broad range of cyclotides target a specific lipid suggests their categorization as a new lipid-binding protein family. Knowledge of their membrane specificity has the potential to assist in the design of novel drugs based on the cyclotide framework, perhaps allowing the targeting of peptide drugs to specific cell types.  相似文献   

8.
More than 20% of the genes sequenced thus far appear to encode polytopic transmembrane proteins involved in a multitude of critical functions, particularly energy and signal transduction. Many are important with regard to human disease (e.g., depression, diabetes, drug resistance), and many drugs are targeted to membrane transport proteins (e.g., fluoxetine and omeprazole). However, the number of crystal structures of membrane proteins, especially ion-coupled transporters, is very limited. Recently, an inward-facing conformer of the Escherichia coli lactose permease (LacY), a paradigm for the Major Facilitator Superfamily, which contains almost 4000 members, was solved at about 3.5 A in collaboration with Jeff Abramson and So Iwata at Imperial College London. This intensively studied membrane transport protein is composed of two pseudo-symmetrical 6-helix bundles with a large internal cavity containing bound sugar and open to the cytoplasm only. Based on the structure and a large body of biochemical and biophysical evidence, a mechanism is proposed in which the binding site is alternatively accessible to either side of the membrane.  相似文献   

9.
Proton-dependent multidrug efflux systems.   总被引:26,自引:0,他引:26       下载免费PDF全文
Multidrug efflux systems display the ability to transport a variety of structurally unrelated drugs from a cell and consequently are capable of conferring resistance to a diverse range of chemotherapeutic agents. This review examines multidrug efflux systems which use the proton motive force to drive drug transport. These proteins are likely to operate as multidrug/proton antiporters and have been identified in both prokaryotes and eukaryotes. Such proton-dependent multidrug efflux proteins belong to three distinct families or superfamilies of transport proteins: the major facilitator superfamily (MFS), the small multidrug resistance (SMR) family, and the resistance/ nodulation/cell division (RND) family. The MFS consists of symporters, antiporters, and uniporters with either 12 or 14 transmembrane-spanning segments (TMS), and we show that within the MFS, three separate families include various multidrug/proton antiport proteins. The SMR family consists of proteins with four TMS, and the multidrug efflux proteins within this family are the smallest known secondary transporters. The RND family consists of 12-TMS transport proteins and includes a number of multidrug efflux proteins with particularly broad substrate specificity. In gram-negative bacteria, some multidrug efflux systems require two auxiliary constituents, which might enable drug transport to occur across both membranes of the cell envelope. These auxiliary constituents belong to the membrane fusion protein and the outer membrane factor families, respectively. This review examines in detail each of the characterized proton-linked multidrug efflux systems. The molecular basis of the broad substrate specificity of these transporters is discussed. The surprisingly wide distribution of multidrug efflux systems and their multiplicity in single organisms, with Escherichia coli, for instance, possessing at least nine proton-dependent multidrug efflux systems with overlapping specificities, is examined. We also discuss whether the normal physiological role of the multidrug efflux systems is to protect the cell from toxic compounds or whether they fulfil primary functions unrelated to drug resistance and only efflux multiple drugs fortuitously or opportunistically.  相似文献   

10.
The M2 protein, a proton channel, from Influenza A has been structurally characterized by X‐ray diffraction and by solution and solid‐state NMR spectroscopy in a variety of membrane mimetic environments. These structures show substantial backbone differences even though they all present a left‐handed tetrameric helical bundle for the transmembrane domain. Variations in the helix tilt influence drug binding and the chemistry of the histidine tetrad responsible for acid activation, proton selectivity and transport. Some of the major structural differences do not arise from the lack of precision, but instead can be traced to the influences of the membrane mimetic environments. The structure in lipid bilayers displays unique chemistry for the histidine tetrad, which binds two protons cooperatively to form a pair of imidazole‐imidazolium dimers. The resulting interhistidine hydrogen bonds contribute to a three orders of magnitude enhancement in tetramer stability. Integration with computation has provided detailed understanding of the functional mechanism for proton selectivity, conductance and gating of this important drug target.  相似文献   

11.
The fungal ATP-binding cassette (ABC) transporter Cdr1 protein (Cdr1p), responsible for clinically significant drug resistance, is composed of two transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). We have probed the nature of the drug binding pocket by performing systematic mutagenesis of the primary sequences of the 12 transmembrane segments (TMSs) found in the TMDs. All mutated proteins were expressed equally well and localized properly at the plasma membrane in the heterologous host Saccharomyces cerevisiae, but some variants differed significantly in efflux activity, substrate specificity, and coupled ATPase activity. Replacement of the majority of the amino acid residues with alanine or glycine yielded neutral mutations, but about 42% of the variants lost resistance to drug efflux substrates completely or selectively. A predicted three-dimensional homology model shows that all the TMSs, apart from TMS4 and TMS10, interact directly with the drug-binding cavity in both the open and closed Cdr1p conformations. However, TMS4 and TMS10 mutations can also induce total or selective drug susceptibility. Functional data and homology modeling assisted identification of critical amino acids within a drug-binding cavity that, upon mutation, abolished resistance to all drugs tested singly or in combinations. The open and closed Cdr1p models enabled the identification of amino acid residues that bordered a drug-binding cavity dominated by hydrophobic residues. The disposition of TMD residues with differential effects on drug binding and transport are consistent with a large polyspecific drug binding pocket in this yeast multidrug transporter.  相似文献   

12.
Abstract Over thirty years of studies have established that conjugative transfer of plasmid-encoded resistance to drugs and heavy metals can take place at high frequency between various organisms under laboratory conditions. The detected transfer frequencies in soil, in aquatic environments, and in the urogenital and respiratory tracts of healthy animals and man have generally been low. However, the conversion of bacteria from susceptible to resistant to antibiotics has been observed often during antimicrobial therapy. This has formed a challenge for the antibacterial treatment of pathogenic bacteria and called for the evaluation of the extent of conjugative transfer in various environments. Several biochemical and physicochemical factors inhibit conjugation, show preferential toxicity against plasmid-bearing cells, or stimulate plasmid curing. These factors include various agents such as detergents, anesthetics, mutagens and antibiotics which affect membrane potential, membrane permeability, protein synthesis and the processing of DNA. The application of the data on these agents, summarized in this review, might be helpful in preventing drug multi-resistance from spreading. Also these data might be valuable in studies which use conjugation as a tool or which treat the molecular mechanisms involved in conjugation.  相似文献   

13.
TBsmr is a secondary active multidrug transporter from Mycobacterium tuberculosis that transports a plethora of compounds including antibiotics and fluorescent dyes. It belongs to the small multidrug resistance (SMR) superfamily and is structurally and functionally related to E. coli EmrE. Of particular importance is the link between protein function, oligomeric state and lipid composition. By freeze fracture EM, we found three different size distributions in three different lipid environments for TBsmr indicating different oligomeric states. The link of these states with protein activity has been probed by fluorescence spectroscopy revealing significant differences. The drug binding site has been probed further by 19F-MAS NMR through chemical labeling of native cysteine residues showing a water accessible environment in agreement with the alternating access model.  相似文献   

14.
Multidrug resistance ABC transporters   总被引:11,自引:0,他引:11  
Chang G 《FEBS letters》2003,555(1):102-105
Clinical multidrug resistance is caused by a group of integral membrane proteins that transport hydrophobic drugs and lipids across the cell membrane. One class of these permeases, known as multidrug resistance ATP binding cassette (ABC) transporters, translocate these molecules by coupling drug/lipid efflux with energy derived from the hydrolysis of ATP. In this review, we examine both the structures and conformational changes of multidrug resistance ABC transporters. Together with the available biochemical and structural evidence, we propose a general mechanism for hydrophobic substrate transport coupled to ATP hydrolysis.  相似文献   

15.
Reconstitution of integral membrane proteins into membrane mimetic environments suitable for biophysical and structural studies has long been a challenge. Isotropic bicelles promise the best of both worlds-keeping a membrane protein surrounded by a small patch of bilayer-forming lipids while remaining small enough to tumble isotropically and yield good solution NMR spectra. However, traditional methods for the reconstitution of membrane proteins into isotropic bicelles expose the proteins to potentially destabilizing environments. Reconstituting the protein into liposomes and then adding short-chain lipid to this mixture produces bicelle samples while minimizing protein exposure to unfavorable environments. The result is higher yield of protein reconstituted into bicelles and improved long-term stability, homogeneity, and sample-to-sample reproducibility. This suggests better preservation of protein structure during the reconstitution procedure and leads to decreased cost per sample, production of fewer samples, and reduction of the NMR time needed to collect a high quality spectrum. Furthermore, this approach enabled reconstitution of protein into isotropic bicelles with a wider range of lipid compositions. These results are demonstrated with the small multidrug resistance transporter EmrE, a protein known to be highly sensitive to its environment.  相似文献   

16.
Ethidium multidrug resistance protein (EmrE) is a member of the small multidrug resistance family of proteins and is responsible for resistance in Escherichia coli to a diverse group of lipophilic cations. Research is beginning to elucidate structural information as well as substrate binding and extrusion mechanisms for this protein. However, the choice of membrane mimetic environment to perform structural studies needs to be made. In this study EmrE was solubilized in different membrane mimetic environments to investigate the influence of environment on the structure and dynamics of the protein by comparing the fluorescence properties of emission maxima, peak shifts, relative intensities, acrylamide quenching constants, and polarization. Taken together, the different fluorescence observations on EmrE in the various membrane mimetic systems tested suggest that the tryptophan residues in EmrE are present in the most flexible and exposed state when solubilized in methanol, followed by sodium dodecyl sulfate and urea. The two detergents N-dodecyl-beta-D-maltoside (DM) and polyoxyethylene(8)dodecyl ether, for the most part, only display subtle differences between the spectral properties with DM best representing the lipid environment. The conformation of EmrE is clearly more open and dynamic in detergent relative to being reconstituted in small unilamellar vesicles. The fluorescence observations of EmrE solubilized in trifluoroethanol shows an environment that is similar to that of EmrE solubilized in detergents. Additionally, secondary structure was monitored by circular dichroism (CD). The CD spectra were similar among the different solubilizing conditions, suggesting little difference in alpha-helical content. This work establishes groundwork for the choice of solubilizing conditions for future structural, folding, and ligand binding studies.  相似文献   

17.
The biology of the P-glycoproteins   总被引:1,自引:0,他引:1  
Conclusions The initial discovery of p-glycoprotein in the plasma membrane of MDR cancer cell lines was followed quickly by the cloning of its gene. Sequence analysis of cloned cDNAs revealed that p-glycoprotein was a member of the ABC family of membrane transporters. Subsequent biochemical characterization demonstrated the binding of chemotherapeutic drugs and ATP to p-glycoprotein. P-glycoprotein-mediated drag transport and drug-stimulated ATPase activity were documented in plasma membrane vesicles and in proteoliposomes containing the partially purified protein. P-glycoprotein was shown to be phosphorylated and the effect of this modification on the protein's biological function was explored. P-glycoproteins were found in many normal tissues and their overexpression was documented in numerous cancers. An important role for p-glycoprotein in intrinsic and acquired drug resistance in clinical oncology was established. Despite all that has been learned about p-glycoprotein over the last few years, additional studies will be necessary to address the many questions that have been left unanswered. Determination of p-glycoprotein structure and membrane topology should help elucidate the nature of chemotherapeutic drug binding sites and the mechanism whereby drug movement is coupled to ATP hydrolysis. Complete purification and functional reconstitution of p-glycoprotein into defined lipid vesicles will permit further characterization of drug transport and ATPase activity and give us the means by which p-glycoprotein's apparent dual function as a transporter and a channel can be clarified. Structural and functional studies on p-glycoprotein will also provide information needed to develop specified inhibitors that can be used clinically to overcome MDR in cancer patients. Further study of the mechanisms whereby p-glycoprotein expression is induced and regulated during malignant transformation is indicated. The development of biliary phospholipid deficiency in mdr2 knockout mice and xenobiotic hypersensitivity in mdr3 knockout mice have given us the first clues into the normal physiologic roles for the p-glycoproteins. The search for endogenous substrates for the p-glycoproteins will continue to be an area of active investigation.Continued investigation of p-glycoprotein's functions should result in better understanding of an important class of prokaryotic and eukaryotic membrane transporters. The potential of exploiting the knowledge garnered from these studies in the treatment of neoplastic, parasitic and inherited and acquired liver disease may be greater than we can now imagine.  相似文献   

18.
Shukla S  Rai V  Banerjee D  Prasad R 《Biochemistry》2006,45(7):2425-2435
Candida drug resistance protein 1 (Cdr1p), an ATP-dependent drug efflux pump, confers multidrug resistance in immunocompromised and debilitated patients. A member of the ATP-binding cassette (ABC) superfamily of membrane transporters, Cdr1p contains two nucleotide binding/utilization sites (NBDs) and two transmembrane domains (TMDs). We had earlier characterized Cdr1p by its overexpression as a GFP-tagged fusion protein that elicits oligomycin-sensitive ATPase activity and is linked to drug extrusion. However, it is essential to have highly purified Cdr1p to understand the detailed molecular basis of structure and functions of this protein. In this study, we have developed a two-step purification protocol using stably overexpressed His-tagged Cdr1p in Saccharomyces cerevisiae. Purified Cdr1p exhibited divalent cation-dependent ATPase activity [approximately 1.2 micromol (mg of protein)(-)(1) min(-)(1)] with an apparent K(M) in the range of 1.8 to 2.1 mM and V(max) between 1.0 and 1.4 micromol (mg of protein)(-)(1) min(-)(1). Unlike its close homologue human P-gp/MDR1, purified Cdr1p only moderately displayed drug stimulated ATPase activity. By exploiting intrinsic fluorescence intensity of purified Cdr1p, which contains 24 tryptophan residues, we could monitor defined conformational changes upon substrate drug and ATP binding. It is observed that ATP binding to Cdr1p (K(d) = approximately 1.7 mM) is not a prerequisite for drug binding, and both the mechanisms of drug as well as ATP binding, which induce specific conformational changes, occur independent of each other. Our study for the first time provides a catalytically active purified ABC transporter from a fungal pathogen, which is amenable to fluorescence measurements and thus would be useful in understanding the molecular basis of antifungal transport.  相似文献   

19.
A membrane protein recognized by monoclonal antibody SQM1 was identified in human squamous carcinomas, including those originating in the head and neck (SqCHN), lung and cervix. Cell lines derived from SqCHN of previously untreated patients expressed high amounts of this protein. In contrast, many cell lines established from SqCHN of patients previously treated with chemotherapy and/or radiation showed diminished amounts of this SQM1 protein. The expression of SQM1 antigen was determined in several SgCHN cell lines made resistant by exposure to methotrexate (MTX) in vitro. The parent cell lines all exhibited strong binding to SQM1 antibody. The MTX-resistant sublines showed much lower membrane binding of SQM1. The lowest SQM1 reactivity was found in cell lines with high resistance to MTX and with diminished rate of MTX transport. Some highly MTX-resistant cell lines which had high levels of dihydrofolate reductase, but which retained a high rate of MTX transport, also retained high levels of SQM1 binding. Reduced SQM1 protein was also found in SgCHN cells which developed resistance to the alkylating drug cis-platinum (CDDP) and which showed reduced membrane transport of CDDP. Cell growth kinetics and non-specific antigenic shifts were not responsible for the differences in SQM1 binding between the parent cell lines and their drug-resistant sublines. The finding of a novel protein which is reduced in cells resistant to MTX and CDDP could contribute to our understanding of the basic mechanisms of drug resistance. By detecting SQM1 protein in clinical specimens, it may be possible to monitor the development of drug resistance in tumors.Abbreviations SqCHN Squamous Carcinoma of the Head and Neck - MTX Methotrexate - CDDP Cis-Platinum - DHFR Dihydrofolate Reductase  相似文献   

20.
Quaternary ammonium compounds (QACs) are among the most commonly used disinfectants. There has been concern that their widespread use will lead to the development of resistant organisms, and it has been suggested that limits should be place on their use. While increases in tolerance to QACs have been observed, there is no clear evidence to support the development of resistance to QACs. Since efflux pumps are believe to account for at least some of the increased tolerance found in bacteria, there has been concern that this will enhance the resistance of bacteria to certain antibiotics. QACs are membrane-active agents interacting with the cytoplasmic membrane of bacteria and lipids of viruses. The wide variety of chemical structures possible has seen an evolution in their effectiveness and expansion of applications over the last century, including non-lipid-containing viruses (i.e., noroviruses). Selection of formulations and methods of application have been shown to affect the efficacy of QACs. While numerous laboratory studies on the efficacy of QACs are available, relatively few studies have been conducted to assess their efficacy in practice. Better standardized tests for assessing and defining the differences between increases in tolerance versus resistance are needed. The ecological dynamics of microbial communities where QACs are a main line of defense against exposure to pathogens need to be better understood in terms of sublethal doses and antibiotic resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号