首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R. Schmidt  H. Mohr 《Planta》1981,151(6):541-543
Mustard (Sinapis alba L.) seedlings were irradiated with continuous far-red light either with or without a pretreatment with 3 or 6 h of the same far-red light, separated by a 15 h dark period. The pretreatment increases the initial rate of anthocyanin accumulation — as caused by the 2nd light treatment — at least 6-fold but leads to an earlier cessation of anthocyanin accumulation. Moreover, the pretreatment seems to shorten the apparent lag-phase of anthocyanin accumulation considerably but it does not eliminate the lag. If the pretreatment with far-red light is terminated before the seedling reaches competence (with regard to phytochrome and anthocyanin synthesis) the pretreatment has no effect on the apparent lag-phase even though the future capacity of anthocyanin biogenesis is considerably stimulated by the pretreatment. The time course of induction of anthocyanin and that of phenylalanine ammonia-lyase (PAL) (Acton et al. 1980, Fig. 1) is in line with the concept that induction of PAL by light is a prerequisite for the onset of light-mediated anthocyanin synthesis.Abbreviation PAL phenylalanine ammonia-lyase  相似文献   

2.
Renate Grill  Daphne Vince 《Planta》1970,95(3):264-271
Summary When irradiated for a period of 48 hours with light of restricted wave-lengths in the red and far-red regions, maximum anthocyanin content in hypocotyls was found at 730 nm; in cotyledons the yield at 716 was almost equal to that at 730 nm.In hypocotyls the effectiveness of 703, 716 and 760 nm light was much increased if plants were transferred to red light after 6 hours. The intermediate wave-length band centred at 703 nm was ineffective when given alone but led to a high yield if followed by red light. When given before far-red light (standard far-red field), 6 hours at 703 nm reduced anthocyanin yield in the same way as red light; when given after 6 hours of far-red, however, 703 nm light did not act like red light to sustain a high rate of anthocyanin synthesis.It is concluded that two reactions are involved in the photocontrol of anthocyanin formation in turnip seedlings.  相似文献   

3.
Edgar Wagner  Hans Mohr 《Planta》1966,70(1):34-41
Zusammenfassung In einer früheren Arbeit (Bertsch und Mohr, 1965) haben wir bei der lichtinduzierten Anthocyansynthese des Senfkeimlings gefunden, daß eine Vorbestrahlung mit Dunkelrot die Wirkung einer nachfolgenden Bestrahlung mit Hellrot steigert. Eine Vorbestrahlung mit Hellrot hingegen reduziert die Wirksamkeit einer nachfolgenden Bestrahlung mit Dunkelrot (Tabelle 1). Die 48 St nach Beginn des Bestrahlungsprogramms vorhandene Menge an Anthocyan wurde als ein Maß für die Wirksamkeit der Sukzedanbestrahlungen angesehen. — In der vorliegenden Arbeit wurde mit Hilfe kinetischer Studien gezeigt, daß ein spezifischer Effekt der Dunkelrot-Vorbestrahlung nicht existiert. Der apparente Effekt ist darauf zurückzuführen, daß das zuerst gegebene Dunkelrot die lag-Phase für das nachfolgende Hellrot eliminiert. — Der Effekt, daß eine Hellrot-Vorbestrahlung die Wirkung von nachfolgendem Dunkelrot stark reduziert, ist hingegen real. Dieser Effekt muß auf einen Verlust an Phytochrom zurückgeführt werden.
Kinetical studies to interpret the effects of succedaneous irradiations with red and far-red on photomorphogenesis (anthocyanin synthesis in mustard seedlings, Sinapis alba L.)
Summary In a previous paper (Bertsch and Mohr, 1965) we reported that in light-induced anthocyanin synthesis of the mustard seedling (Sinapis alba L.) a preirradiation with far-red light increases the effectiveness of a following irradiation with red light, whereas a preirradiation with red reduces the effectiveness of a following irradiation with far-red (Table 1). The amount of anthocyanin present 48 hours after the onset of the irradiation programme was taken as a gauge for the effectiveness of the irradiation with succedaneous red and far-red (and vice versa).In the present paper it is shown—using detailed kinetical studies (Fig. 1 and 2) —that a specific potentiating effect of the preceding far-red is not involved. The apparent effect is due to the fact that the preceding far-red eliminates the lag-phase for the following red (Fig. 1). — On the other hand, the depressing effect of red light preceding far-red is very real. This latter effect must be attributed to a loss of phytochrome.We demonstrate in the present paper that the effects of succedaneous red and far-red irradiations can be attributed altogether to phytochrome if several assumptions concerning the stability of phytochrome 730 (Hartmann, 1966; Wagner and Mohr, 1966) are made. These assumptions seem to be well justified. — In any case our kinetical studies have revealed no data which indicate that in red or far-red light we have to deal with anything else except phytochrome.
  相似文献   

4.
Light Control of Anthocyanin Biosynthesis in Zea Seedlings   总被引:2,自引:0,他引:2  
Evidence for involvement of two non-photosynthetic pigments in photoinduction of anthocyanin biosynthesis in the roots and mesocotyls of Zea mays L. seedlings is presented. Short (5 min), low energy (4.5 × 103 J m?2) fluences of red light neither induced anthocyanin synthesis nor enhanced phenylalanine ammonia-lyase activity in dark-grown maize seedlings. Little anthocyanin synthesis and no enhancement of phenylalanine ammonia-lyase activity was induced by continuous far-red light. Continuous white or blue light induced both anthocyanin synthesis and enhanced phenylalanine ammonia-lyase activity. These results show that phytochrome alone cannot induce anthocyanin synthesis in maize seedlings. However, a strong phytochrome mediation of white light induced pigment synthesis was demonstrated. This effect was not demonstrable with white light enhanced phenylalanine ammonia-lyase activity, indicating that phytochrome controls another step in anthocyanin biosynthesis.  相似文献   

5.
B. Steinitz  R. Bergfeld 《Planta》1977,133(3):229-235
The ability to respond to phytochrome (Pfr, the far-red light absorbing from of phytochrome) with anthocyanin synthesis appears first in some marginal regions of the abaxial epidermis of the mustard cotyledons and from there spreads gradually over the entire tissue (transient phase). The pertinent pattern is independent of environmental influences such as light quality and nutritional culture conditions. The competence for Pfr in the epidermal cells, with regard to the initial action of Pfr (concerning anthocyanin synthesis), appears considerably earlier than the ability for actual anthocyanin synthesis. An electron microscopical study of the ultrastructural changes occurring in vacuoles and plastids of the epidermal cells during the transient phase showed that a correlation only exists between the differentiation of central cell vacuoles, originating from the aleurone vacuoles, and the appearance of the ability to accumulate anthocyanin. It is suggested that the formation of a central cell vacuole is a prerequisite for anthocyanin accumulation in the epidermal cells of the mustard seedling cotyledons.Abbreviations Pr, Pfr red and far-red absorbing forms of phytochrome - HS Hoagland's nutrient solution  相似文献   

6.
A. M. Steiner 《Planta》1968,82(3):223-234
Summary Short term changes in the soluble sugar, starch, and cell-wall carbohydrate content of the mustard seedling have been studied in the different organs during phytochrome induced photomorphogenesis in continuous far-red. The program was: imbibition of seeds 36 hrs dark far-red irradiation. Kinetics have been followed up to 12 hrs after the onset of irradiation.There are no substantial changes in carbohydrate content in the cotyledons and the radicle. In the cotyledons in far-red after a lag-phase of 3 hrs, there is a decrease in oligosaccharide content, and after a lag-phase of 6 hrs, an increase in cell-wall synthesis. The reducing sugar and starch content is not altered upon irradiation. In the radicle immediately after the onset of far-red, there is a temporary rise in the reducing sugar and cell-wall carbohydrate content. However, 6 hrs later the values in far-red again parallel those of the dark control.The important phytochrome dependent changes take place in the hypocotyl. In far-red after a lag-phase of 3 hrs the glucose accumulation is markedly retarded, the sucrose and starch content no longer increased, and the fructose content even decreases below the 3 hrs value. The glucose: fructose ratio, which is constant in dark, is shifted in favour of glucose. The lag-phase of phytochrome controlled hypocotyl elongation is about 1 hr, the lag-phase of the inhibition of cell-wall carbohydrate synthesis is in about the same order of magnitude.There seems to be neither any immediate connection between sugar content and cell-wall carbohydrate synthesis, as shown by the difference in lag-phases, nor does there seem to be any direct relationship between hypocotyl inhibition and overall synthesis of cell-wall material. The relative inhibition of cell-wall synthesis is less than one third of that of hypocotyl elongation (Figs. 5,6). Apparently phytochrome controls hypocotyl elongation by influencing the cell-wall structure.In spite of the fact that fat degradation is higher in far-red than in dark and respiration higher in dark than in far-red (Friederich, 1968), 6 hrs after the onset of far-red the increase of total carbohydrate content declines compared with that in dark. This finding leads to the conclusion that the efficiency of the fat-carbohydrate-transformation is higher in dark than in far-red.  相似文献   

7.
The regulation of endogenous levels of ascorbic acid in soybean by far-red absorbing form of phytochrome (Pfr) and by cryptic red light signal (CRS) was studied. Cryptic red light signal is produced by red light pre-irradiation of a photoreceptor other than far-red absorbing form of phytochrome (Pfr) and CRS amplifies the action of phytochrome. The endogenous level of ascorbic acid levels enhanced by phytochrome was amplified by CRS. The lifetime of CRS was from 0 to 2 h and the peak of enhancement of ascorbic acid due to CRS was between 16 to 24 h of dark incubation after the end of the treatment. CRS was found to be ineffective on UV-B enhanced endogenous levels of ascorbic acid.Key words: ascorbic acid, cryptic red light signal, glycine max, phytochrome, ultraviolet-BThe phytochrome mediated morphogenesis involves the conversion of Pr [red absorbing form] to Pfr [far-red absorbing form] and the magnitude of the response is dependent on Pfr/P tot ratio established at the end of the irradiation.1 In broom Sorghum anthocyanin synthesis induced by red light [R1] is reversible with far-red light. But a second red pulse [R2] given after the reversal resulted in increased anthocyanin production compared to the first pulse [R1]. When the red pulse was repeatedly given after every reversal with far-red, the anthocyanin production increased proportionately to the number of previously given pulses.2 Thus red pre-treatment induced a change in the cellular physiological state or change in content of a relevant substance[s] which is designated as Cryptic Red Light Signal [CRS] associated with red signal transduction.2 CRS was first characterized in detail in Broom Sorghum as Pfr amplifying signal produced by red pre-irradiation. CRS is inactive in the absence of Pfr but enhances the action of Pfr. CRS escapes reversal when the plants are exposed to far-red and is probably produced by a different species of phytochrome, distinct from the conventional reversible phytochrome.3We have investigated whether CRS influences other phytochrome regulated processes in plants in addition to anthocyanin synthesis. We chose another process, the synthesis of endogenous ascorbic acid, which is also regulated by conventional phytochrome.4 In soybean, the endogenous level of ascorbic acid is enhanced by conventional far-red reversible form of phytochrome. In addition, an independent UV-B photoreceptor [non reversible with far-red light] also enhances the endogenous synthesis of ascorbic acid in soybean. By using repeated pulses of red light, we have demonstrated that the Cryptic Red Signal is operative in soybean also and it amplifies the red light induced enhancement in the level of ascorbic acid. That CRS is active only in the presence of Pfr is demonstrated by the fact that pre-irradiation with red light is ineffective in amplifying UV-B induced enhancement of ascorbic acid levels. A similar observation on UV-B induced anthocyanin synthesis has been made in Broom Sorghum.2 A separate UV-B photoreceptor independent of phytochrome operates in the plants.5 Although CRS is presumably produced by pre-irradiation with red light, it does not enhance UV-B induced anthocyanin synthesis or ascorbic acid synthesis in the absence of formation of Pfr by the second red pulse.The life-time of CRS was determined as 6 h in 20°C and 3 h in 24°C grown seedlings of Broom Sorghum with reference to anthocyanin synthesis.2 The life-time of CRS determined in soybean seedlings grown at 25°C was upto 1 h.6 Since growing seedlings at a low temperature enhanced the effectiveness of CRS in Broom Sorghum, it was concluded that low temperature may either extend the lifetime of CRS or generate higher amount of CRS.2 Although the exact nature of CRS is yet to be analyzed, work in our laboratory has established the universal nature of this signal and evidences have been obtained for CRS effect in promoting red light induced hypocotyls inhibition in Cucumber seedlings and also red light induced synthesis of betacyanins in Amaranthus seedlings (submitted for publication).  相似文献   

8.
Abstract. It is well established that seedlings of mustard ( Sinapis alba L.) synthesize juvenile anthocyanin only if treated with light pulses or continuous light. The light effects are considered to be due to the operation of phytochrome. Here we show that the responsiveness of anthocyanin synthesis to a saturating red light pulse or to continuous far-red light varies as a function of time and is strongly influenced by a light pretreatment prior to competence. Competence appears approximately 25 h after sowing. The starting point of anthocyanin synthesis, which is 27 h after sowing, and the lag- phase of this response, which is 2 h, are not affected by light pretreatments prior to competence. It is concluded that quantitative interpretations of phytochrome responses based entirely on properties of phytochrome can no longer be considered adequate.  相似文献   

9.
The role of light reactions in anthocyanin synthesis was studied in both attached and detached corollas of Petunia hybrida (cv. Hit Parade Rosa), the latter grown in vitro in media containing 150 m M sucrose and 50 μ M gibberellic acid (GA). Light was essential for the synthesis of anthocyanin in detached corollas, whereas in intact corollas its effect was only to enhance anthocyanin synthesis. Continuous white light at a fluence rate of at least 20 μmol m−2 s−1 was needed for anthocyanin synthesis in detached corollas. Blue light was more effective than red or green, and far-red was ineffective. Pigmentation of detached corollas exposed to light was inhibited by the photosynthetic inhibitor 3-(4-dichlorophenyl)-1,1-dimethylurea (DCMU). The chloroplast uncoupler NH4Cl did not affect anthocyanin synthesis, which was, however, inhibited by the blocking of ATP synthesis in both the chloroplast and the mitochondria by dicyclohexylcarbodiimide (DCCD). Sucrose uptake in vitro was inhibited by DCMU and by darkness, and was promoted equally by blue and red light. The activity of phenylalanine ammonialyase (EC 4.3.1.5) was inhibited in detached corollas grown in the dark or in the light in the presence of DCMU. The activity of chalcone isomerase (EC 5.5.1.6) was not affected by light. These findings suggest that at least two different light reactions are involved in the regulation of anthocyanin synthesis in petunia corollas, namely the high irradiance reaction (HIR) and photosynthesis.  相似文献   

10.
11.
12.
Zusammenfassung Chloramphenicol (CAP) steigert in einem gewissen Konzentrationsbereich (etwa 20–40 g/ml) die durch Dunkelrot (DR) ausgelöste Anthocyansynthese des Senfkeimlings. Die lag-Phase sowie der Zeitpunkt der Beendigung der Anthocyansynthese werden durch das Antibioticum nicht beeinflußt. Mit und ohne CAP beobachtet man bei allen untersuchten DR-Intensitäten eine konstante Akkumulationsrate an Anthocyan über einen Zeitraum von mindestens 24 Std. —Die Steigerung der Akkumulationsrate durch CAP (20 g/ml) liegt stets im Bereich von 25%, auch wenn die DR-Intensität auf die Hälfte oder ein Viertel gesenkt wird (Wirkung des CAP=25% · Wirkung des DR). Man kann daraus formal schließen, daß CAP und DR unabhängig voneinander die Anthocyansynthese beeinflussen. Molekular läßt sich der Sachverhalt folgendermaßen deuten: CAP hemmt bei einer Konzentration von 20 g/ml die Proteinsynthese der Plastiden. Dadurch wird der Phenylalanin-pool in den Kotyledonen erhöht. Da diese geringe CAP-Konzentration die cytoplasmatische Proteinsynthese noch nicht hemmt, kann die Anthocyansynthese ungestört ablaufen. Da Phenylalanin als eine Vorstufe der Flavonoidsynthese fungiert, führt das erhöhte Angebot an dieser Substanz zu einer Steigerung der Anthocyansynthese.
The increase of phytochrome-mediated anthocyanin synthesis in the mustard seedling (Sinapis alba L.) by chloramphenicol
Summary Chloramphenicol (CAP) within a certain range of concentration (about 20–30g/ml) increases the rate of far-red mediated anthocyanin accumulation in the mustard seedling (Sinapis alba L.) (Fig. 1). The lag-phase after the onset of far-red and the time of termination of anthocyanin synthesis are not influenced by the presence of the antibiotic (Fig. 2). With and without CAP we observe a constant rate of anthocyanin accumulation over a period of at least 24 hours after the lag-phase at all far-red intensities investigated (Fig. 2). The percentage increase of the rate of anthocyanin accumulation which is due to CAP (20 g/ml) is independent of the far-red intensity applied and always amounts to about 25% (Table). Formally one can conclude that CAP and far-red seem to act as two independent factors in a multiplicative system. On the molecular level the observations can possibly be explained as follows: CAP at a concentration of 20 g/ml inhibits protein synthesis of the plastids. This inhibition leads to an increase of the pool of phenylalanine in the cotyledons. Because the small concentration of CAP does not interfere with protein synthesis (enzyme synthesis) in the cytoplasm, far-red mediated anthocyanin synthesis can proceed normally. Since phenylalanine acts as a precursor of flavonoids the increased pool of this substance will lead to an increase in the rate of anthocyanin accumulation.
  相似文献   

13.
Phytochromes regulate light- and sucrose-dependent anthocyanin synthesis and accumulation in many plants. Mesophyll-specific phyA alone has been linked to the regulation of anthocyanin accumulation in response to far-red light in Arabidopsis thaliana. However, multiple mesophyll-localized phytochromes were implicated in the photoregulation of anthocyanin accumulation in red-light conditions. Here, we report a role for mesophyll-specific phyA in blue-light-dependent regulation of anthocyanin levels and novel roles for individual phy isoforms in the regulation of anthocyanin accumulation under red illumination. These results provide new insight into spatial- and isoform-specific regulation of pigmentation by phytochromes in A. thaliana.Key words: anthocyanin, Arabidopsis, photomorphogenesis, photoreceptor, phytochrome  相似文献   

14.
Phytochrome-induced increases in enzyme activities for phenylalanine ammonia-lyase (EC 4.3.1.5) and chalcone isomerase (EC 5.5.1.6), and in amounts of the related end products, anthocyanin and the flavonol, quercetin, were measured in cotyledons of mustard (Sinapis alba L.). There was no correlation between the activities of these enzymes and the rate of anthocyanin accumulation; however, some correlation was found with the quercetin accumulation rate. Since anthocyanin and flavonol accumulation is spatially separated in mustard (flavonols in the upper epidermis, anthocyanin in the lower epidermis), it was possible to measure anthocyanin-associated phenylalanine ammonia-lyase independently. This activity correlated well with the accumulation rate for anthocyanin during the first few hours after induction. The phytochrome effect on anthocyanin formation differed from that on quercetin formation: anthocyanin was strongly induced by continuous far-red light and by both continuous red light and red light pulses, whereas quercetin was only effectively induced by continuous far-red light.Abbreviations CHI chalcone isomerase - PAL phenylalanine ammonia-lyase  相似文献   

15.
The fhy3 mutation of Arabidopsis impairs phytochrome A (phyA)-mediated inhibition of hypocotyl growth without affecting the levels of phyA measured spectrophotometrically or immunochemically. We investigated whether the fhy3-1 mutation has similar effects on very low fluence responses (VLFR) and high irradiance responses (HIR) of phyA. When exposed to hourly pulses of far-red light, etiolated seedlings of the wild type or of the fhy3-1 mutant showed similar inhibition of hypocotyl growth, unfolding of the cotyledons, anthocyanin synthesis, and greening upon transfer to white light. In the wild type, continuous far-red light was significantly more effective than hourly far-red pulses (at equal total fluence). In the fhy3-1 mutant, hourly pulses were as effective as continuous far-red light, i.e. the failure of reciprocity typical of HIR was not observed. Germination was similarly promoted by continuous or pulsed far-red in wild-type and fhy3-1 seeds. Thus, for hypocotyl growth, cotyledon unfolding, greening, and seed germination, the fhy3-1 mutant retains VLFR but is severely impaired in HIR. These data are consistent with the idea that VLFR and HIR involve divergent signaling pathways of phyA.  相似文献   

16.
Summary The substitution of far-red for the first six hours of a prolonged irradiation with red light resulted in a large increase in anthocyanin yield, which was greater than the combined yields from far-red and red when the two treatments were given separately. When intermittent far-red irradiation was followed by a single short exposure to red, a considerable amount of anthocyanin was formed, although each treatment given separately had little effect. Four hours continuous far-red alone yielded some anthocyanin and also resulted in a further large increase in the effect of a short red treatment; this terminal red effect was fully reversible by a subsequent brief exposure to far-red. It is concluded that at least two photochemical reactions are involved in the responses to red and far-red, the first leading to the formation of substrate(s) used in the second reaction.When red light preceded exposure to the far-red/red irradiation sequence, the far-red enhancement effect was almost entirely lost and the anthocyanin yield approached that in red light. The effect of the red pre-irradiation treatment is attributed to destruction of phytochrome and it is suggested that phytochrome is the only pigment mediating anthocyanin synthesis in red and far-red. A possible interpretation is that the high-energy reaction in far-red and the low energy red/far-red reversible reaction are mediated by different forms of phytochrome.The substitution of blue for the first six hours of a prolonged irradiation with red light also resulted in a synergistic increase in anthocyanin yield; the enhancement effect of blue light was, however, not prevented by prior exposure to red. It is concluded that phytochrome is not the only pigment mediating the reactions occurring in blue light. The synergism between blue and red suggests that the high-energy reaction in blue light may lead to the production of substrates for phytochrome action.
Zusammenfassung Die Substitution der ersten 6 Std einer Hellrot-Dauerbestrahlung durch Dunkelrot führte zu einem starken Anstieg im Anthocyangehalt, der höher war als die Summe aus Dunkelrot und Hellrot, wenn beide Bestrahlungen getrennt gegeben wurden. Folgte auf intermittierende Dunkelrot-Bestrahlung eine einmalige Dosis Hellrot, bildete sich eine beträchtliche Menge Anthocyan, obwohl jede Bestrahlung für sich kaum wirksam war. 4 Std Dauerdunkelrot induzierten bereits meßbare Anthocyanbildung, die durch kurze Hellrot-Bestrahlung weiter gesteigert werden konnte; der Effekt dieser terminalen Dosis Hellrot konnte durch nachfolgende kurze Dunkelrot-Bestrahlung wieder rückgängig gemacht werden. Daraus wird geschlossen, daß wenigstens zwei photochemische Reaktionen bei Bestrahlung mit Hellrot und Dunkelrot ablaufen, wobei die erste Substrat(e) für die zweite produziert.Wurde vor einer Dunkelrot-Hellrot-Sequenz mit Hellrot bestrahlt, ging die fördernde Wirkung von Dunkelrot fast vollständig verloren und der Anthocyangehalt entsprach annähernd dem in Hellrot. Der Effekt der Hellrot-Vorbestrahlung wird auf die Destruktion von Phytochrom zurückgeführt und es wird vermutet, daß Phytochrom das einzige Pigment ist, das bei der Anthocyansynthese in Hellrot und Dunkelrot beteiligt ist. Eine mögliche Interpretation wäre, daß die Hochenergiereaktion in Dunkelrot und die Hellrot-Dunkelrot reversible Niederenergiereaktion durch verschiedene Formen von Phytochrom vermittelt werden.Die Substitution der ersten 6 Std einer Dauerbelichtung mit Hellrot durch Blau ergab ebenfalls eine synergistische Zunahme im Anthocyangehalt. Der fördernde Effekt von Blaulicht konnte jedoch durch Vorbestrahlung mit Hellrot nicht verhindert werden. Daraus wird geschlossen, daß Phytochrom nicht das einzige Pigment sein kann, das die Reaktionen in Blaulicht vermittelt. Der Synergismus zwischen Blau und Hellrot läßt vermuten, daß die Hochenergiereaktion in Blau zur Produktion von Substrat führt, mit dem Phytochrom reagieren kann.
  相似文献   

17.
Mohr  Hans  Bienger  Ilse 《Planta》1967,75(2):180-184
Summary Phytochrome-mediated anthocyanin synthesis of the mustard seedling can be blocked by moderate concentrations of Actinomycin D (10 g/ml in the solution around the seedling) if the substance is applied before the onset of far-red light (Fig. 1). If, however, the seedlings are irradiated with far-red for 6 hours, transferred to the dark for one hour, incubated with Act. D for 3 hours (in the dark) and then re-irradiated with continuous far-red, anthocyanin synthesis can only partially be inhibited (Fig. 2). — There are good arguments that the physiological action of the small stationary concentration of P730 which is left in the plant after we turn off the far-red light will virtually stop at the moment when the light is turned off (Wagner and Mohr, 1966a). Furthermore the P730-dependent mRNAs which are involved in anthocyanin synthesis seem to be shortlived (Lange and Mohr, 1965; Mohr and Senf, 1966; Durst and Mohr, 1966). Considering these arguments and the results of the present paper we cannot but conclude that genes which have once been activated by P730 will not return to the original state—at least with respect to Act. D sensitivity—even when the activating (or de-repressing) agent (P730 in our case) has disappeared.
Experimente zur Wirkung von Actinomycin D auf die durch Phytochrom bewirkte Anthocyansynthese
  相似文献   

18.
Clone 115 of Spirodela intermedia W. Koch grown in Hutner's medium with sucrose produces the glycoflavones vitexin and orientin in darkness or in light of various wavelengths. The anthocyanin cyanidin-3-monoglucoside was present only after prolonged illumination of the plants with white or blue light. No cyanidin-glucoside was formed under constant red light. The substitution of red, blue, or far-red light for the last 24 hours of culture under constant white light reduced each flavonoid over those maintained in white light or given 24 hours of darkness. Reducing the light intensity from 900 to 400 ft-c of constant cool-white fluorescent light had no appreciable influence on vitexin (4′-hydroxyl) but markedly reduced orientin and cyanidin-glucoside (both 3′4′-hydroxyl). Substituting alternate 12-hour periods of light and darkness for continuous light reduced the glycoflavones approximately 50% while cyanidin-glucoside was reduced about 85%. Most responses to red, blue, or far-red light are consistent with a phytochrome-controlled promotion of vitexin synthesis.

The evidence suggests that in S. intermedia: A) Environmental conditions which elicit cyanidin-glucoside and glycoflavone synthesis are different since a prolonged illumination with white light is required for the former but not the latter. B) The availability of a 3′4′-hydroxyl precursor for orientin and anthocyanin probably limits their synthesis in low intensity light. Since vitexin is essentially unaltered under these conditions this also suggests that acetate or malonate units for the A-ring and the deamination products of aromatic amino acids for the B-ring and carbons of the C-ring are not limiting factors. C) Light controls the biosynthesis of flavonols in the same manner as glycoflavones; under all experimental conditions the synthesis of kaempferol paralleled vitexin while quercetin responded in the same manner as crientin.

  相似文献   

19.
Shade-avoidance responses were examined for two species common to the coastal redwood forest, Sequoia sempervirens and Satureja douglasii. Sequoia seedlings demonstrated a shade-avoidance response when given end-of-day far-red light by increased hypocotyl, epicotyl, and first-node extension, and greater total number of needles and reduced anthocyanin concentration. Thus, Sequoia seedlings respond as sun-adapted plants. Satureja has several leaf monoterpene chemotypes that occur in different light environments including the redwood forest, and the types responded differently to the light treatments. The pulegone type responded to end-of-day far-red light as a sun-adapted plant with significant extension growth, increased leaf area and chlorophyll, and reduced anthocyanin. The isomenthone type responded as a shade-tolerant plant and did not exhibit extension growth nor a change in other parameters with end-of-day far-red light. However, the carvone and bicyclic types had variable responses depending on the parameter studied, which indicated genetic variation for these traits.  相似文献   

20.
Previously, it has been demonstrated that the red light-inducedanthocyanin accumulation in mung bean seedlings is mediatedby phytochrome [Dumortier and Vendrig Z. Pflanzenphysiol. 87:313 (1978)]. In this paper the importance of phytochrome forthe accumulation of anthocyanins in seedlings of mung beanswas studied in non-irradiated seedlings and in seedlings irradiatedwith 5 min R. A short FR-irradiation given early after sowing reduced theamount of anthocyanins which were normally found in non-irradiatedseedlings. This indicates that PFR may be important for at leastpart of the anthocyanin synthesis in the dark. As for the redlight-mediated anthocyanin accumulation, irradiation appearedto be most effective when given to seedlings at the age of 36–48hr. Although the seedlings were sensitive to red light irradiationbefore that time, they were not able to synthesize anthocyaninsuntil they had reached the age of 36 hr. Complete escape ofred/far-red reversibility occurred only when far-red was given12 hr after red, although partial escape could be observed witha shorter time-interval. Furthermore, the time-course of anthocyaninaccumulation after a two-fold R-irradiation was compared withthe effect of a single R-exposure. From the results could beconcluded that the pattern of anthocyanin accumulation is dependenton the time during which PFR is present in the seedlings. Theseexperiments also indicate that PFR not only plays a role inthe synthesis of anthocyanins but probably also in their degradation. The results of our study show that phytochrome is importantfor anthocyanin accumulation in non-irradiated mung bean seedlingsas well as in R-irradiated, and that it probably is also involvedin the degradation of the pigment. (Received January 18, 1982; Accepted April 30, 1982)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号