首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is considerable interest in pneumococcal protein antigens capable of inducing serotype-independent immunoprotection and of improving, thereby, existing vaccines. We report here on the immunogenic properties of a novel surface antigen encoded by ORF spr1875 in the R6 strain genome. An antigenic fragment encoded by spr1875, designated R4, was identified using a Streptococcus pneumoniae phage displayed genomic library after selection with a human convalescent serum. Immunofluorescence analysis with anti-R4 antisera showed that Spr1875 was expressed on the surface of strains belonging to different serotypes. Moreover, the gene was present with little sequence variability in 27 different pneumococcal strains isolated worldwide. A mutant lacking Spr1875 was considerably less virulent than the wild type D39 strain in an intravenous mouse model of infection. Moreover, immunization with the R4 recombinant fragment, but not with the whole Spr1875 protein, induced significant protection against sepsis in mice. Lack of protection after immunization with the whole protein was related to the presence of immunodominant, non-protective epitopes located outside of the R4 fragment. In conclusion, our data indicate that Spr1875 has a role in pneumococcal virulence and is immunogenic. As the R4 fragment conferred immunoprotection from experimental sepsis, selected antigenic fragments of Spr1875 may be useful for the development of a pneumococcal protein-based vaccine.  相似文献   

2.
3.
We have characterized a temperate phage (MM1) from a clinical isolate of the multiply antibiotic-resistant Spanish/American 23F Streptococcus pneumoniae clone (Spain(23F)-1 strain). The 40-kb double-stranded genome of MM1 has been isolated as a DNA-protein complex. The use of MM1 DNA as a probe revealed that the phage genome is integrated in the host chromosome. The host and phage attachment sites, attB and attP, respectively, have been determined. Nucleotide sequencing of the attachment sites identified a 15-bp core site (5'-TTATAATTCATCCGC-3') that has not been found in any bacterial genome described so far. Sequence information revealed the presence of an integrase gene (int), which represents the first identification of an integrase in the pneumococcal system. A 1.5-kb DNA fragment embracing attP and the int gene contained all of the genetic information needed for stable integration of a nonreplicative plasmid into the attB site of a pneumococcal strain. This vector will facilitate the introduction of foreign genes into the pneumococcal chromosome. Interestingly, DNAs highly similar to that of MM1 have been detected in several clinical pneumococcal isolates of different capsular types, suggesting a widespread distribution of these phages in relevant pathogenic strains.  相似文献   

4.
Understanding the growth of bacterial pathogens in a micronutrient restricted host environment can identify potential virulence proteins that help overcome this nutritional barrier to productive infection. In this study, we investigated the pneumococcal protein expression response to iron limitation using an in vitro model. We identified S. pneumoniae TIGR4 proteins by 2-D LC ESI MS/MS and determined significant changes in protein expression in response to iron restriction using computer-intensive random resampling methods. Differential protein expression was studied in the context of a S. pneumoniae TIGR4 protein interaction network using Pathway Studio. Our analysis showed that pneumococcal iron restriction response was marked by increased expression of known virulence factors like PsaA. It involved changes in the expression of stress response, and phase variation and biofilm formation proteins. The net effect of changes in all these biological processes could increase the virulence of S. pneumoniae TIGR4 during in vivo infection.  相似文献   

5.
6.
Streptococcus pneumoniae contains many proteins that have not been evaluated as potential protective vaccine antigens. In this study we isolated proteins from a serotype 3 strain of S. pneumoniae for use in mouse immunisation studies. Separation of the protein mix was achieved by SDS-PAGE electrophoresis followed by electro-elution to isolate individual proteins. This procedure successfully separated 21 fractions from which six proteins were selected based on purity and quantity and were initially denoted by their molecular masses: 14-, 34-, 38-, 48-, 57- and 75-kDa. The immunogenicity of these proteins was investigated in a mucosal immunisation model in mice involving a primary inoculation to the intestinal Peyer's patches followed by an intra-tracheal boost two weeks later. The immune response was assessed by enhancement of pulmonary clearance of infection, recruitment of phagocytes to the lungs and induction of an antibody response. Two of the proteins, the 14-kDa identified as a L7/L12 ribosomal protein, and the 34-kDa identified as glyceraldehyde-3-phosphate dehydrogenase resulted in up to 99% and 94%, respectively, enhanced clearance of infection within 5 h following pulmonary challenge with S. pneumoniae. This study has shown that novel pneumococcal proteins have the potential to be vaccine candidates to enhance clearance of an acute mucosal S. pneumoniae infection.  相似文献   

7.
8.
Streptococcus pneumoniae naturally colonizes the nasopharynx as a commensal organism and sometimes causes infections in remote tissue sites. This bacterium is highly capable of resisting host innate immunity during nasopharyngeal colonization and disseminating infections. The ability to recruit complement factor H (FH) by S. pneumoniae has been implicated as a bacterial immune evasion mechanism against complement-mediated bacterial clearance because FH is a complement alternative pathway inhibitor. S. pneumoniae recruits FH through a previously defined FH binding domain of choline-binding protein A (CbpA), a major surface protein of S. pneumoniae. In this study, we show that CbpA binds to human FH, but not to the FH proteins of mouse and other animal species tested to date. Accordingly, deleting the FH binding domain of CbpA in strain D39 did not result in obvious change in the levels of pneumococcal bacteremia or virulence in a bacteremia mouse model. Furthermore, this species-specific pneumococcal interaction with FH was shown to occur in multiple pneumococcal isolates from the blood and cerebrospinal fluid. Finally, our phagocytosis experiments with human and mouse phagocytes and complement systems provide additional evidence to support our hypothesis that CbpA acts as a bacterial determinant for pneumococcal resistance to complement-mediated host defense in humans.  相似文献   

9.
Mycoplasma pneumoniae is the leading cause of atypical pneumonia in children and young adults. Bacterial colonization can occur in both the upper and the lower respiratory tracts and take place both endemically and epidemically worldwide. Characteristically, the infection is chronic in onset and recovery and both humoral and cell-mediated mechanisms are involved in the response to bacterial colonization. To identify bacterial proteins recognized by host antibody responses, a whole-genome M. pneumoniae library was created and displayed on lambda bacteriophage. The challenge of such a library with sera from individuals hospitalized for mycoplasmal pneumonia allowed the identification of a panel of recombinant bacteriophages carrying B-cell epitopes. Among the already known M. pneumoniae B-cell antigens, our results confirmed the immunogenicity of P1 and P30 adhesins. Also, the data presented in this study localized, within their sequences, the immunodominant epitopes recognized by human immunoglobulins. Furthermore, library screening allowed the identification of four novel immunogenic polypeptides, respectively, encoded by fragments of the MPN152, MPN426, MPN456 and MPN-500 open reading frames, highlighting and further confirming the potential of lambda display technology in antigen and epitope discovery.  相似文献   

10.
Differential fluorescence induction (DFI) in Streptococcus pneumoniae was used as a method for the discovery of genes activated in specific growth environments. Competence stimulatory peptide (CSP) was used as the model inducing system to identify differentially expressed genes. To identify CSP-induced promoters, a plasmid library was constructed by inserting random pieces of S. pneumoniae chromosomal DNA upstream of the promoterless gfpmut2 gene in an Escherichia coli/S. pneumoniae shuttle vector. S. pneumoniae carrying the library were induced with CSP and enriched for green fluorescent protein (GFP)-expressing bacteria using fluorescence-activated cell sorting. A total of 886 fluorescent clones was screened, and 12 differentially activated promoter elements were identified. Sequence analysis of these clones revealed that three were associated with novel competence loci, one of which we show is essential for DNA uptake, and six are known CSP-inducible promoters. We also explored whether competence proteins have a role in virulence and found that mutations in three CSP-inducible genes resulted in attenuated virulence phenotypes in either of two murine infection models. These results demonstrate the utility of DFI as a method for identifying differentially expressed genes in S. pneumoniae and the potential utility of applying DFI to other Gram-positive bacteria.  相似文献   

11.
Excreted secreted antigens of the protozoan parasite Toxoplasma gondii play a key role in stimulating the host immune system during acute and chronic infection. With the aim of identifying the immunodominant epitopes of T. gondii antigens involved in the human B-cell response against the parasite, we employed a novel immunological approach. A library of cDNA fragments from T. gondii tachyzoites was displayed as fusion proteins to the amino-terminus of lambda bacteriophage capsid protein D. The lambdaD-tachyzoite library was then affinity-selected by using a panel of sera of pregnant women, all infected with the parasite. Some of the clones identified through this procedure matched the sequence of the dense granule GRA1 protein (p24), allowing us to identify its antigenic regions. In particular, the analysis of human antibody response against the recombinant GRA1 antigen fragments revealed the existence of an immunodominant epitope (epi-24 peptide).  相似文献   

12.
Streptococcus pneumoniae is a leading cause of mortality in young children. While successful conjugate polysaccharide vaccines exist, a less expensive serotype-independent protein-based pneumococcal vaccine offers a major advancement for preventing life-threatening pneumococcal infections, particularly in developing nations. IL-17A-secreting CD4+ T cells (T(H)17) mediate resistance to mucosal colonization by multiple pathogens including S. pneumoniae. Screening an expression library containing >96% of predicted pneumococcal proteins, we identified antigens recognized by T(H)17 cells from mice immune to pneumococcal colonization. The identified antigens also elicited IL-17A secretion from colonized mouse splenocytes and human PBMCs suggesting that similar responses are primed during natural exposure. Immunization of two mouse strains with identified antigens provided protection from pneumococcal colonization that was significantly diminished in animals treated with blocking CD4 or IL-17A antibodies. This work demonstrates the potential of proteomic screening approaches to identify specific antigens for the design of subunit vaccines against mucosal pathogens via harnessing T(H)17-mediated immunity.  相似文献   

13.
构建T7噬菌体单链抗体(scFv)库筛选抗乙型肝炎病毒表面抗原抗体.从抗-HBs阳性患者外周血淋巴细胞中提取总RNA,反转录合成cDNA第1条链,PCR分别扩增抗体重链可变区基因(VH)和轻链可变区基因(VL),经重叠延伸拼接(SOE)PCR组成scFv基因,并将其与T7噬菌体载体的2个臂相连接.体外包装后,在宿主菌BLT5403中,扩增重组噬菌体抗体库.以乙型肝炎病毒表面抗原进行4轮“吸附-洗脱-扩增”的筛选,酶免疫实验检测抗体活性.所建抗体库库容为1.53×107,扩增后初级库滴度为2.42×1010pfu/mL.以乙型肝炎病毒表面抗原筛选后抗体出现特异性富集,经酶免疫实验鉴定,得到2株与HBsAg抗原特异结合的噬菌体抗体,成功构建了抗HBsAg蛋白T7噬菌体抗体库.  相似文献   

14.
A new Arabidopsis thaliana (ecotype Columbia) genomic library has been constructed in Yeast Artificial Chromosomes: the CIC library (for CEPH, INRA and CNRS). Optimization of plant culture conditions and protoplast preparation allowed the recovery of large amounts of viable protoplasts. Mechanical shearing of DNA was minimized by isolation of DNA from protoplasts embedded in agarose. Cloning of large inserts was favored by including two successive size fractionation steps (after partial Eco RI digestion and after ligation with the vector arms), which selected DNA fragments larger than 350 kb. The library consists of 1152 clones with an average insert size of 420 kb. Clones carrying chloroplast DNA and various nuclear repeated sequences have been identified. Twenty-one per cent of the clones are found to contain chloroplast DNA. Therefore, the library represents around four nuclear genome equivalents. The clones containing 5S rDNA genes, 18S-25S rDNA sequences and the 180 bp paracentromeric repeated element account for 3.6%, 8.9% and 5.8%, respectively. Only one clone was found to carry the 160 bp paracentromeric repeated element. Given the smaller size of clones carrying Arabidopsis repeated DNA, the average size of remaining clones is around 480 kb. The library was screened by PCR amplification using pairs of primers corresponding to sequences dispersed in the genome. Seventy out of 76 pairs of primers identified from one to seven YAC clones. Thus at least 92% of the genome is represented in the CIC library. The survey of the library for clones containing unlinked DNA sequences indicates that the proportion of chimeric clones is lower than 10%.  相似文献   

15.
Streptococcus pneumoniae is a major bacterial respiratory pathogen. Current licensed pneumococcal polysaccharide and polysaccharide–protein conjugate vaccines are administered by an intramuscular injection. In order to develop a new-generation vaccine that can be administered in a needle-free mucosal manner, we have constructed early 1 and 3 gene regions (E1/E3) deleted, replication-defective adenoviral vectors encoding pneumococcal surface antigen A (PsaA), the N-fragment of pneumococcal surface protein A (N-PspA), and the detoxified mutant pneumolysin (PdB) from S. pneumoniae strain D39. Intranasal vaccination with the three adenoviral vectors (Ad/PsaA, Ad/N-PspA, and Ad/PdB) in mice resulted in robust antigen-specific serum immunoglobulin G responses, as demonstrated by an enzyme-linked immunosorbent assay. In addition, nasal mucosal vaccination with the combination of the three adenoviral vectors conferred protection against S. pneumoniae strain D39 colonization in mouse lungs. Taken together, these data demonstrate the feasibility of developing a mucosal vaccine against S. pneumoniae using recombinant adenoviruses for antigen delivery.  相似文献   

16.
Host antibody response is a crucial defense against pathogenic infection. Here, we report a novel technique allowing quantitative measurement of polyclonal antibody response in vivo. This involves expression of a combinatorial library of target proteins from a candidate pathogen on the surface of yeast Saccharomyces cerevisiae. After mixing with serum/plasma from infected or immunized subjects, positive yeast clones were isolated via fluorescence-activated cell sorting (FACS). Using this technique, we have studied mouse immunized serum with recombinant hemagglutinin (HA) protein from a human influenza H5N1 strain (A/Anhui/1/2005) and convalescent plasma from an infected human in China. Our technique has identified novel antigenic domains targeted by serum/plasma and allowed calculation of the relative proportion of the antibody response against each domain. We believe such systematic measurement of an antibody response is unprecedented, and applying this method to different pathogens will improve understanding of protective immunity and guide development of vaccines and therapeutics.  相似文献   

17.
Streptococcus pneumoniae (pneumococcus) is able to form biofilms in vivo and previous studies propose that pneumococcal biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections are characterized by a high prevalence of lysogenic bacteriophages (phages) residing quiescently in their host chromosome. We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA) is a key factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms, that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction, constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors biofilm formation by the remaining bacterial population.  相似文献   

18.
The ZmpC zinc metalloproteinase of Streptococcus pneumoniae, annotated in the type 4 genome as SP0071, was found to cleave human matrix metalloproteinase 9 (MMP-9). The previously described IgA protease activity was confirmed to be specifically linked to the IgA1-protease/SP1154 zinc metalloproteinase. MMP-9 is a protease cleaving extracellular matrix gelatin and collagen and is activated by proteolytic cleavage like most proteases. MMP-9 is a human protease and is involved in a variety of physiological and pathological matrix degrading processes, including tissue invasion of metastases and opening of the blood-brain barrier. While TIGR4 (serotype 4) and G54 (serotype 19) pneumococcal genome strains have a highly conserved copy of zmpC, the genome of R6 (a derivative of serotype 2 D39 strain) lacks zmpC. Both the analysis for zmpC presence and MMP-9 cleavage activity in various pneumococcal strains showed correlation of ZmpC with MMP-9 cleavage activity. When assaying clinical isolates of S. pneumoniae, the zmpC gene was not found in any of the nasal and conjunctival swab isolates, but it was present in 1 out of 13 meningitis isolates and in 6 out of 11 pneumonia isolates. In a murine pneumonia model, infection with a zmpC-mutant reduced mortality at 3-4 days post-infection by 75%, when compared with infection with wild-type strains. These data indicate that the ZmpC pneumococcal protease may play a role in pneumococcal virulence and pathogenicity in the lung.  相似文献   

19.
Excreted secreted antigens of the protozoan parasite Toxoplasma gondii play a key role in stimulating the host immune system during acute and chronic infection. With the aim of identifying the immunodominant epitopes of T. gondii antigens involved in the human B-cell response against the parasite, we employed a novel immunological approach. A library of cDNA fragments from T. gondii tachyzoites was displayed as fusion proteins to the amino-terminus of lambda bacteriophage capsid protein D. The lambdaD-tachyzoite library was then affinity-selected by using a panel of sera of pregnant women, all infected with the parasite. Some of the clones identified through this procedure matched the sequence of the dense granule GRA1 protein (p24), allowing us to identify its antigenic regions. In particular, the analysis of human antibody response against the recombinant GRA1 antigen fragments revealed the existence of an immunodominant epitope (epi-24 peptide).  相似文献   

20.
E Díaz  R Lpez    J L García 《Journal of bacteriology》1992,174(17):5516-5525
The first temperate bacteriophage (EJ-1) of Streptococcus pneumoniae with Myoviridae morphotype A1 isolated from a clinical atypical strain has been purified and characterized. This phage has a double-stranded linear genome about 42 kb long, but in contrast to the other pneumococcal temperate phages that have been characterized so far, EJ-1 does not contain any protein covalently linked to it. We have sequenced a fragment of EJ-1 DNA containing the ejl gene, encoding a cell wall lytic enzyme (EJL amidase). This gene has been cloned and expressed in Escherichia coli, and the EJL enzyme was purified and biochemically characterized as an N-acetylmuramyl-L-alanine amidase that shares many similarities with the major pneumococcal autolysin. The EJL amidase is a choline-dependent enzyme that needs the process of conversion to achieve full enzymatic activity, but in contrast to the wild-type pneumococcal LYTA amidase, this process was found to be reversible. Comparisons of the primary structure of this new lytic enzyme with that of the other cell wall lytic enzymes of S. pneumoniae and its bacteriophages characterized so far provided new insights as to the evolutionary relationships between phages and bacteria. The nucleotide sequences of the attachment site (attP) on the phage genome and one of the junctions created by the insertion of the prophage were determined. Interestingly, the attP site was located near the ejl gene, as previously observed for the pneumococcal temperate bacteriophage HB-3 (A. Romero, R. López, and P. García, J. Virol. 66:2860-2864, 1992). A stem-and-loop structure, some adjacent direct and inverted repeats, and two putative integration host factor-binding sites were found in the att sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号