首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic CCK analogues in which positions 28 and 31 have been replaced by lysine residues and whose side chains are bridged by a succinic moiety, were synthesized. They were tested for their ability to inhibit the binding of 125I-BH-CCK-8 to isolated rat pancreatic acini and to guinea pig brain membranes. These cyclic CCK-analogues were compared to the potent CCK analogue Boc-[Nle28,31]-CCK-7 and to Boc-Trp-Leu-Asp-Phe-NH2, analogue of CCK-4. These cyclic compounds appeared to be highly selective for central CCK receptors.  相似文献   

2.
Agnes RS  Ying J  Kövér KE  Lee YS  Davis P  Ma SW  Badghisi H  Porreca F  Lai J  Hruby VJ 《Peptides》2008,29(8):1413-1423
Prolonged opioid exposure increases the expression of cholecystokinin (CCK) and its receptors in the central nervous system (CNS), where CCK may attenuate the antinociceptive effects of opioids. The complex interactions between opioid and CCK may play a role in the development of opioid tolerance. We designed and synthesized cyclic disulfide peptides and determined their agonist properties at opioid receptors and antagonist properties at CCK receptors. Compound 1 (Tyr-c[d-Cys-Gly-Trp-Cys]-Asp-Phe-NH(2)) showed potent binding and agonist activities at delta and mu opioid receptors but weak binding to CCK receptors. The NMR structure of the lead compound displayed similar conformational features of opioid and CCK ligands.  相似文献   

3.
Somatostatin binding to its receptors on rat pancreatic acinar membranes was characterized with [125I-Tyr1]somatostatin. Binding at 24 degrees C was rapid reaching a maximum after 60 min and was reversible upon the addition of 1 microM unlabeled ligand. Scatchard analysis revealed a single class of binding sites, with a Kd of 0.32 +/- 0.03 nM and a binding capacity of 600 +/- 54 fmol/mg of protein. Specificity for the somatostatin was demonstrated with the inhibition of labeled hormone binding by somatostatin analogs in proportion to their biological activities. When [125I-Tyr1]somatostatin was cross-linked to its receptors with the photoreactive cross-linker n-hydroxysuccinimidyl-4-azidobenzoate, the hormone was associated with Mr = 90,000 protein. Similar mobilities of the radioactive band were observed in the presence and absence of dithiothreitol. In contrast to other unrelated peptides, cholecystokinin (CCK) and its analogs directly reduced [125I-Tyr1] somatostatin binding to isolated membranes. The effect of CCK was one-half-maximal at 3 nM and maximal at 100 nM. In the presence of 3 nM CCK8, the binding capacity for somatostatin was decreased to 237 +/- 39 fmol/mg of protein without a significant change in affinity. Dibutyryl cyclic GMP, a CCK receptor antagonist, blocked this action of CCK8 indicating that the CCK receptor mediated the decrease in [125-Tyr1]somatostatin binding. In contrast cerebral cortex membranes, which also possess a somatostatin receptor, were not regulated by CCK. These results indicate, therefore, that 1) purified pancreatic acinar plasma membranes contain specific receptors for somatostatin, 2) the receptor has an apparent Mr of about 90,000, and 3) the binding of somatostatin to its receptor on pancreatic plasma membranes is regulated by CCK analogs acting via the CCK receptor.  相似文献   

4.
The electrophysiological effects of Boc-D-Asp-Tyr(SO3H)-Nle-D-Lys-Trp-Nle-Asp-Phe-NH2 (compound I) and Boc-gamma-D-Glu-Tyr(SO3H)-Nle-D-Lys-Trp-Nle-Asp-Phe-NH2 (compound II), two cyclic cholecystokinin analogs with high selectivity for CCK-B receptors, as well as the effects of the linear enzyme-resistant analog Boc-[Nle28,Nle31]-CCK7 (BDNL), were compared with those of CCK8 using extracellular recordings in rat hippocampal slices in vitro. Bath applications of the three synthetic compounds resulted in concentration-dependent and reversible increases in single-unit activity. Comparison of equieffective concentrations yielded the following potency rank order: BDNL greater than CCK8 greater than compound II greater than compound I. There was a close correlation (r = .96, slope = 0.98) between the excitatory activities of the analogs and their potencies in displacing radiolabelled CCK8 from CCK-B receptors on rat brain membranes.  相似文献   

5.
[3H]Boc[Nle28,31]CCK2733 ([3H]BDNL-CCK7) is a new ligand for cholecystokinin (CCK) receptors, endowed with a high specific activity (100 Ci/mmol). Binding sites for this ligand were visualized in the rat brain by autoradiography [3H]BDNL-CCK7 binds specifically to an apparent single class of CCK receptors on rat striatum sections with a Kd of 1.76 nM and a Bmax of 57 fmol/mg protein. Unsulfated CCK8 was two times less potent than sulfated CCK8 to displace binding of [3H]BDNL-CCK7. Binding sites for [3H]BDNL-CCK7 were present in many brain regions, the highest concentrations occurring in cortex, olfactory bulbs, nucleus accumbens, and medium to high concentrations in striatum, hippocampus, and several nuclei of thalamus, hypothalamus and amygdala. In the same experimental conditions, the binding sites for [125I]BH-CCK8 showed similar specificity and localization. We thus used both ligands to investigate the subregional distributions of CCK receptors in nucleus accumbens and hippocampus, where a highly organized topography of action of CCK has been reported. In nucleus accumbens, the CCK binding sites were concentrated in the anterior portion of the nucleus, whereas very low densities were observed within medial posterior nucleus accumbens, where injection of CCK has been shown to potentiate dopamine-induced hyperlocomotion. p]In hippocampus, CCK receptors were concentrated in the polymorphic zone of the hilus of the dentate gyrus and in stratum lacunosum moleculare of Ammon's horn. Very few receptors were observed in other regions of hippocampus, including stratum pyramidale and stratum moleculare. This is in contrast with the presence of numerous CCK terminals and the potent effect of CCK in these areas. The distributions of CCK receptors reported here in both nucleus accumbens and hippocampus were discussed in correlation with the distribution of CCK neurons and terminals, the related anatomical pathways, and the pharmacological profiles of the effects of CCK in these regions.  相似文献   

6.
A new CCK8 related peptide, Boc[Nle28,Nle31]CCK27-33 (Boc[diNle]CCK7) was synthesized and tested for cholecystokinic activity, at both the peripheral and the central level. This analogue, protected against both chemical oxidation and enzymatic degradation by aminopeptidases, was shown to be equipotent to CCK8 in releasing amylase from rat pancreas fragments. In addition, the EC50 values of Boc[diNle]CCK7 in the guinea pig gallbladder and ileum contraction assays (3.2 nM and 3.0 nM respectively) were similar to those of CCK8 (6.0 nM and 2.0 nM). Moreover both Boc[diNle]CCK7 and CCK8 elicited similar effects on the open field test over the same concentrations range. These results demonstrate the ability of Boc[diNle]CCK7 to be a suitable tool for investigating the physiological role of native CCK8.  相似文献   

7.
Radioligand binding studies of neurotransmitter receptors have provided discrimination at the molecular level, permitting the differentiation of multiple receptor subtypes for several biogenic amines. Using this paradigm we have labeled two distinct receptors each for cholecystokinin (CCK) and for adenosine. Adenosine receptors were labeled in brain with [3H]N6-cyclohexyladenosine (3H-CHA) and [3H]1,3-diethyl-8-phenylxanthine (3H-DP). The adenosine receptor labeled by 3H-CHA appears to be an A1 site, associated with reduction of adenylate cyclase activity, while 3H-DP sites resemble A2 receptors linked to adenylate cyclase enhancement. Cholecystokinin-33 labeled by the Bolton-Hunter procedure with 125I(125I-BH-CCK) labels different receptors in brain and pancreas. The pancreatic receptor does not react with CCK derivatives of fewer than eight amino acids, while the brain receptor does recognize pentagastrin, the carboxyl-terminal five amino acids of CCK. The "brain type" CCK receptor may normally interact with CCK-4, the carboxyl-terminal tetrapeptide of CCK, recently identified as a unique neuropeptide highly concentrated in the brain. CCK-8, the other major molecular form of CCK, may be the endogenous ligand for the "pancreatic type" receptor.  相似文献   

8.
A new hepatapeptide cholecystokinin (CCK) analog, JMV-180 (Boc-Tyr(SO3-)-Nle-Gly-Trp-Nle-Asp-2-phenylethylester), acts as an agonist at high affinity CCK receptors on rat pancreatic acini to stimulate amylase release but unlike cholecystokinin octapeptide (CCK8) does not act on low affinity CCK receptors to inhibit amylase release (Galas, M. D., Lignon, M. F., Rodriguez, M., Mendre, C., Fulcrand, P., Laur, J., and Martinez, J. (1988) Am. J. Physiol. 254, G176-G188). To investigate the biochemical mechanisms initiated by CCK acting on each class of CCK receptor, the effects of JMV-180 and CCK8 on amylase release, Ca2+ mobilization, and phospholipid hydrolysis were studied in isolated rat pancreatic acini. When acini were loaded with the intracellular Ca2+ chelator BAPTA, amylase release stimulated by both JMV-180 and CCK8 was reduced. Measurement of 45Ca2+ efflux and cytosolic free calcium concentration ([Ca2+]i) by the fluorescence of fura-2-loaded acini in a stirred cuvette showed that JMV-180 induced a concentration-dependent increase but with a maximal response only two-thirds that induced by CCK8. When [Ca2+]i of individual fura-2-loaded acinar cells was measured by microspectrofluorometry, all concentrations of JMV-180 (1 nM-10 microM) induced repetitive transient [Ca2+]i spikes (Ca2+ oscillations). By contrast, stimulation with a high concentration of CCK8 (1 nM) caused a large increase in [CA2+]i followed by a small sustained elevation of [Ca2+]i. The measurement of inositol trisphosphate (IP3) production by both [3H]inositol labeling and 1,4,5-IP3 radioreceptor assay showed that JMV-180 had only minimal effects at 10 microM in contrast to the large increase induced by high concentrations of CCK8 (more than 1 nM). JMV-180 blocked the effect of a high concentration of CCK8 on both [Ca2+]i and 1,4,5-IP3 productions but did not affect the response to carbamylcholine. JMV-180 caused a delayed monophasic stimulation of 1,2-diacylglycerol (DAG) sustained to 60 min without the early increase in DAG observed in response to CCK8. Furthermore, JMV-180 stimulated the release of [3H]choline metabolites, primarily phosphorylated choline, from [3H]choline-labeled acini at low concentrations and to the same extent as CCK8. Since JMV-180 interacts not only with high affinity CCK receptors as an agonist but also with low affinity CCK receptors as a functional antagonist, the present results indicate that the occupancy of high affinity state receptors by CCK induces Ca2+ oscillations, DAG formation from phosphatidylcholine hydrolysis, and amylase release with minimal phosphatidylinositol 4,5-bisphosphate hydrolysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The properties of high affinity CCK8 binding sites of guinea-pig and rat brain cortex were compared using [3H]pCCK8. Large differences were observed, with the KD value being significantly higher in the rat (KD = 1.25 nM) than in guinea-pig brain (KD = 0.18 nM). Both sites exhibited different specificities for various CCK8 analogues, the selectivity factors KI rat/KI guinea-pig varied from 0.9 for CCK4 to 64 for cyclic CCK8-related compounds. Significant differences in the inhibition of [3H]pCCK8 binding by monovalent and nucleotides cations were also observed. These results could be explained by a difference in receptor environment or by a species difference in the proportion of CCK8 receptor-subtypes.  相似文献   

10.
Previous study has shown that cholecystokinin (CCK) octapeptide (CCK-8) suppressed the binding of opioid receptors to the universal opioid agonist [3H]etorphine. In the present study, highly selective tritium-labeled agonists for the mu-[(tryrosyl-3,5-3H][D-Ala2,MePhe4,Gly-ol5]enkephalin ([3H]DAGO], delta- ([tyrosyl-3,5-3H][D-Pen2,5]enkephalin ([3H]DPDPE], and kappa- ([3H]U69,593) opioid receptors were used to clarify which type(s) of opioid receptor in rat brain homogenates is suppressed by CCK-8. In the competition experiments, CCK-8 suppressed the binding of [3H]DAGO and [3H]U69,593 but not that of [3H]DPDPE to the respective opioid receptor. This effect was blocked by the CCK antagonist proglumide at 1 mumol/L. In the saturation experiments, CCK-8 at concentrations of 0.1 nmol/L to 1 mumol/L decreased the Bmax of [3H]DAGO binding sites without affecting the KD; on the other hand, CCK-8 increased the KD of [3H]U69,593 binding without changing the Bmax. The results suggest that CCK-8 inhibits the binding of mu- and kappa-opioid receptors via the activation of CCK receptors.  相似文献   

11.
A superfusion system was used to study the effects of excitatory amino acids (EAA) on release of [3H]dopamine ([3H]DA) previously taken up by rat substantia nigra (SN) slices. The EAA tested (20-250 microM), with the exception of quisqualate and kainate, markedly evoked [3H]DA release from nigral slices when Mg2+ ions were omitted from the superfusion medium. The EAA receptor agonists exhibited the following relative potency in stimulating [3H]DA release: L-glutamate (L-Glu) greater than N-methyl-D-aspartate (NMDA) greater than NM(D,L)A greater than D-Glu much greater than quisqualate = kainate. D-2-Amino-5-phosphonovalerate (100-200 microM), an antagonist for NMDA receptors, substantially reduced [3H]DA release evoked by L-Glu or NMDA. In contrast, L-Glu diethyl ester (100-200 microM) produced a lesser blocking effect on [3H]DA release evoked by the EAA. Further experiments showed that the NMDA-mediated release of [3H]DA was totally suppressed by the omission of Ca2+ or by the addition of tetrodotoxin (0.1 microM) to the superfusion medium. In addition, strychnine, an antagonist for glycine (Gly) receptors, significantly decreased NMDA (100 microM)-evoked as well as glycine (100 microM)-evoked release of [3H]DA from nigral slices. The results shown support the idea that activation of NMDA subtype receptors in SN may trigger a Ca2+-dependent release of DA from dendrites of nigro-striatal DA-containing neurons. Furthermore, a transsynaptic mechanism that may partially involve Gly-containing interneurons is proposed to account for some of the events mediating NMDA receptor activation and DA release in SN.  相似文献   

12.
The presence of high concentrations of both dopamine and cholecystokinin (CCK) in the striatum and in various limbic structures suggests that the CCK may not only influence dopaminergic transmission, but it also may be relevant to the psychopathology of schizophrenia and to the therapeutic effects of neuroleptics. By using a synaptosomal fraction isolated from the mouse cerebral cortex and [propionyl-3H]CCK8-sulphate ([3H]CCK8S) as a ligand, a single binding site for [3H]CCK8 with aK d value of 1.04 nM and aB max value of 42.9 fmol/mg protein was identified. The competitive inhibition of [3H]CCK8S binding by related peptides produced an order of potency of CCK8-sulphated (IC50=5.4 nM)>CCK8-unsulfated (IC50=40 nM) and >CCK4 (IC50=125 nM). The regional distribution of [3H]CCK8S binding in the mouse brain was highest in the olfactory bulb (34.3±5.6 fmol/mg protein) > cerebral cortex > cerebellum > olfactory tubercle > striatum > pons-medulla > mid brain > hippocampus > hypothalamus (12.4±2.1 fmol/mg protein). The repeated administration of haloperidol (2.5 mg/kg/tid) increased the binding of [3H]CCK8S in cerebral cortex from 31.8±1.7 to 38.9±5.2 fmol/mg protein. The varied distribution of CCK8S receptors may signify nonuniform functions for the octapeptide in the brain.  相似文献   

13.
The cholecystokinin (CCK) receptor in purified plasma membranes prepared from mouse pancreatic acini had a binding affinity of 1.8 nM, an acid pH optimum between 6.0 and 6.5, and an analog specificity of CCK8 greater than CCK33 greater than desulphated CCK8 greater than CCK4. Binding of CCK to its receptor was abolished by pretreatment of plasma membranes with trypsin. When [125I]CCK was cross-linked to its receptors with disuccinimidyl suberate, and the preparation solubilized and subjected to gel electrophoresis and autoradiography, the hormone was associated with Mr 80 000 protein in both the presence and absence of the reducing agent dithiothreitol.  相似文献   

14.
We investigated the importance of sulfation of gastrin or cholecystokinin (CCK) on influencing their affinity for gastrin or CCK receptors by comparing the abilities of sulfated gastrin-17 (gastrin-17-II), desulfated gastrin-17 (gastrin-17-I), CCK-8 and desulfated CCK-8 [des(SO3)CCK-8] to interact with CCK or gastrin receptors on guinea pig pancreatic acini. For inhibiting binding of 125I-gastrin to gastrin receptors, gastrin-17-II (Kd 0.08 nM) greater than CCK-8 (Kd 0.4 nM) greater than gastrin-17-I (Kd 1.5 nM) greater than des(SO3)CCK-8 (Kd 28 nM). For inhibiting binding of 125I-Bolton Hunter-labeled CCK-8 to CCK receptors the relative potencies were: CCK-8 much greater than des(SO3)CCK-8 = gastrin-17-II greater than gastrin-17-I. Each peptide interacted with both high and low affinity CCK binding sites. The relative abilities of each peptide to interact with high affinity CCK receptors showed a close correlation with their abilities to cause half-maximal stimulation of enzyme secretion. These results demonstrate that, in contrast to older studies, sulfation of both CCK and gastrin increase their affinities for both gastrin and CCK receptors. Moreover, the gastrin receptor is relatively insensitive to the position of the sulfate moiety, whereas the CCK receptor is extremely sensitive to both the presence and exact position of the sulfate moiety.  相似文献   

15.
The binding of somatostatin-14 (S-14) to rat pancreatic acinar cell membranes was characterized using [125I-Tyr11]S-14 as the radioligand. Maximum binding was observed at pH 7.4 and was Ca2+-dependent. Such Ca2+ dependence of S-14 receptor binding was not observed in other tissues. Scatchard analysis of the competitive inhibition by S-14 of [125I-Tyr11]S-14 binding revealed a single class of high affinity sites (Kd = 0.5 +/- 0.07 nM) with a binding capacity (Bmax) of 266 +/- 22 fmol/mg of protein. [D-Trp8]S-14 and structural analogs with halogenated Trp moiety exhibited 2-32-fold greater binding affinity than S-14, [D-F5-Trp8]S-14 being the most potent. [Tyr11]S-14 was equipotent with S-14. The affinity of somatostatin-28 for binding to these receptors was 50% of that of S-14. Cholecystokinin octapeptide (CCK-8) inhibited the binding of [125I-Tyr11]S-14, but its inhibition curve was not parallel to that of S-14. In the presence of 1 nM CCK-8, the Bmax of S-14 receptors was reduced to 150 +/- 17 fmol/mg of protein. Dibutyryl cyclic GMP, a CCK receptor antagonist, partially reversed the inhibitory action of CCK-8, suggesting that CCK receptors mediate the inhibition of S-14 receptor binding. GDP, GTP, and guanyl-5'-yl imidodiphosphate inhibit S-14 receptor binding in this tissue. The inhibition was shown to be due to decrease in binding capacity and not due to change in affinity. Specifically bound [125I-Tyr11]S-14 cross-linked to the S-14 receptors was found associated with three proteins of approximate Mr = 200,000, 80,000, and 70,000 which could be detected under both reducing and nonreducing conditions. Finally, pancreatic acinar cell S-14 receptors were shown to be down-regulated by persistent hypersomatostatinemia 1 week after streptozotocin-induced diabetes characterized by decreased Bmax (105 +/- 13 fmol/mg of protein) without any change in affinity. We conclude that pancreatic acinar cell membrane S-14 receptors require Ca2+ for maximal binding and thus differ from S-14 receptors in other tissues, S-14 receptors in this tissue also exhibit selective ligand specificities, these receptors are regulated by CCK-8 and guanine nucleotides, three receptor proteins of apparent Mr = 200,000, 80,000, and 70,000 specifically bind S-14, and (v) these receptors are regulated by S-14 in vivo as evidenced by decreased binding in streptozotocin diabetic rats characterized by hypersomatostatinemia.  相似文献   

16.
[3H]Pentagastrin binds specifically to an apparent single class of CCK receptors on slide-mounted sections of rat brain (KD=5.6 nM; Bmax=36.6 fmol/mg protein). This specific binding is temperature-dependant and regulated by ions and nucleotides. The relative potencies of C-terminal fragments of CCK-8(SO3H), benzotript and proglumide in inhibiting specific [3H]pentagastrin binding to CCK brain receptors reinforce the concept of different brain and pancreas CCK receptors. CCK receptors were visualized by using tritium-sensitive LKB film analyzed by computerized densitometry. CCK receptors are highly concentrated in the cortex, dentate gyrus, granular and external plexiform layers of the olfactory bulb, anterior olfactory nuclei, olfactory tubercle, claustrum, accumbens nucleus, some nuclei of the amygdala, thalamus and hypothalamus.  相似文献   

17.
Abstract: This study was directed at the issue of whether or not subpopulations of cholecystokinin (CCK) receptors exist within the CNS. This was achieved through the use of two radiolabelled probes, namely [125I] Bolton-Hunter (BH) CCK 8 and [3H]pentagastrin (Boc-β-Ala CCK 4), in comparative studies under identical conditions. Both probes bound with high affinity to the mouse cerebral cortical CCK receptor binding site with apparent equilibrium dissociation constants (KD) of 1.9 nM and 1.4 nM for [3H]pentagastrin and [125I]BH CCK 8, respectively. The maximal binding capacity was 1.05 and 1.15 pmol/g weight for the tritium and iodinated probes, respectively. Hill analysis yielded Hill numbers close to unity, suggesting the absence of more than one binding site and the lack of cooperativity of CCK receptor binding. Kinetic studies revealed binding site homogeneity in that no evidence of multiphasic dissociation curves was seen. Computerised analysis of displacement binding data using LIGAND established that both radiolabelled probes bound to a single site, with the one-site model providing the best fit of the data. Similar rank orders of potency were obtained for various fragments of CCK 8 in competing for the CCK receptor, labelled with either probe. Both CCK 8 and CCK 4 bound with roughly equinanomolar affinity. These studies demonstrate that both CCK 8 and its shorter C-terminal fragment CCK 4 bind to a single class of high-affinity binding site, with as yet no evidence of CNS CCK receptor multiplicity.  相似文献   

18.
Bombesin and cholecystokinin (CCK) peptides act as signalling molecules in both the central nervous system and gastrointestinal tract [1-4]. It was reported recently that nicotinic acid adenine dinucleotide phosphate (NAADP) releases Ca2+ from mammalian brain microsomes [5] and triggers Ca2+ signals in pancreatic acinar cells, where it is proposed to mediate CCK-evoked Ca2+ signals [6]. Here, for the first time, we have finely resolved bombesin-induced cytosolic Ca2+ oscillations in single pancreatic acinar cells by whole-cell patch-clamp monitoring of Ca2+-dependent ionic currents [6-8]. Picomolar concentrations of bombesin and CCK evoked similar patterns of cytosolic Ca2+ oscillations, but high, desensitising, NAADP concentrations selectively inhibited CCK, but not bombesin-evoked signals. Inhibiting inositol trisphosphate (IP3) receptors with a high concentration of caffeine blocked both types of oscillations. We further tested whether NAADP is involved in Ca2+ signals triggered by activation of the low-affinity CCK receptor sites. Nanomolar concentrations of CCK evoked non-oscillatory Ca2+ signals, which were not affected by desensitising NAADP receptors. Our results suggest that Ca2+-release channels gated by the novel Ca2+-mobilising molecule NAADP are only essential in specific Ca2+-mobilising pathways, whereas the IP3 receptors are generally required for Ca2+ signals. Thus, the same cell may use different combinations of intracellular Ca2+-releasing messengers to encode different external messages.  相似文献   

19.
The binding of cholecystokinin (CCK) to its receptors on guinea pig gastric chief cell membranes were characterized by the use of 125I-CCK-octapeptide (CCK8). At 30 degrees C optimal binding was obtained at acidic pH in the presence of Mg2+, while Na+ reduced the binding. In contrast to reports on pancreatic and brain CCK receptors, scatchard analysis of CCK binding to chief cell membranes revealed two classes of binding sites. Whereas, in the presence of a non-hydrolyzable GTP analog, GTP gamma S, only a low affinity site of CCK binding was observed. Chief cell receptors recognized CCK analogs, with an order of potency of: CCK8 greater than gastrin-I greater than CCK4. Although all CCK receptor antagonists tested (dibutyryl cyclic GMP, L-364718 and CR1409) inhibited labeled CCK binding to chief cell membranes, the relative potencies of these antagonists in terms of inhibiting labeled CCK binding were different from those observed in either pancreatic membranes or brain membranes. The results indicate, therefore, that on gastric chief cell membranes there exist specific CCK receptors, which are coupled to G protein. Furthermore, chief cell CCK receptors may be distinct from pancreatic or brain type CCK receptors.  相似文献   

20.
A library of cyclic CCK8 analogues, containing unnatural amino acids in the peptide sequence, is prepared using solid-phase synthesis. The structure of these cyclic peptides is based on a previously synthesised compound, cyclo-CCK8, selective for CCK(1) receptor. Structure-activity investigations are performed by evaluating the binding properties of the new analogues. In particular, the binding ability of the cyclic CCK8 analogues is tested by nuclear medicine studies on cell line transfected with CCK(1) receptor. Compounds named cyclo-A4-cyclo-A7 show binding constant in the range 6.0-8.0 microM, with an improved affinity over the previous described cyclo-CCK8, but almost comparable IC(50) values among new analogues towards CCK(1) were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号