首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A specific antiserum to rat liver spermidine/spermine N1-acetyltransferase was used to study the induction of this protein. The antiserum had no effect on the spermidine acetylating capacity of crude nuclear extracts and very little effect on the activity present in crude cytosolic extracts from control rat tissues indicating that most of this activity is not due to spermidine/spermine N1-acetyltransferase. Treatment of rats with carbon tetrachloride, spermidine, thioacetamide, or methylglyoxal bis(guanylhydrazone) produced a substantial increase in the spermidine acetylating capacity of rat liver cytosolic extracts which was exclusively due to an increase in the immunoprecipitable spermidine/spermine N1-acetyltransferase protein. Exact measurement of the extent of this increase was not possible because the basal amount was too low to determine precisely but the amount of this enzyme increased about 250-fold with 6 h of treatment with carbon tetrachloride, about 25-fold at 6 h after spermidine, about 23-fold at 24 h after thioacetamide and up to 300-fold at 24 h after methylglyoxal bis(guanylhydrazone). Treatment of rats with spermidine also increased spermidine/spermine N1-acetyltransferase in other tissues including lung, kidney, and pancreas. The spermidine/spermine N1-acetyltransferase protein was found to turn over very rapidly with a half-life of about 15 min in thioacetamide-treated rats and 180 min after carbon tetrachloride.  相似文献   

2.
Subcellular distribution of spermidine/spermine N1-acetyltransferase   总被引:1,自引:0,他引:1  
The subcellular distribution of the polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase (SSAT) was studied in L56Br-C1 cells treated with 10 microM N(1),N(11)-diethylnorspermine (DENSPM) for 24 h. Cells were fractioned into three subcellular fractions. A particulate fraction containing the mitochondria was denoted as the mitochondrial fraction. After DENSPM treatment, an increase in SSAT activity was mainly found in the mitochondrial fraction. Western blot analysis showed an increased level of the SSAT protein in the mitochondrial fraction compared to the cytosolic fraction. Immunofluorescence microscopy and immunogold labeling transmission electron microscopy also showed a mitochondrial association of SSAT. Transmission electron microscopy revealed that the endoplasmic reticulum was devoid of ribosomes in DENSPM-treated cells, in contrast to control cells that contained ample ribosomes. An increased SSAT activity in connection with the mitochondria may be part of the mechanism of DENSPM-induced apoptosis.  相似文献   

3.
The N1-acetylation of spermidine and spermine by spermidine/spermine acetyltransferase (SSAT) is a crucial step in the regulation of the cellular polyamine levels in eukaryotic cells. Altered polyamine levels are associated with a variety of cancers as well as other diseases, and key enzymes in the polyamine pathway, including SSAT, are being explored as potential therapeutic drug targets. We have expressed and purified human SSAT in Escherichia coli and characterized its kinetic and chemical mechanism. Initial velocity and inhibition studies support a random sequential mechanism for the enzyme. The bisubstrate analogue, N1-spermine-acetyl-coenzyme A, exhibited linear, competitive inhibition against both substrates with a true Ki of 6 nM. The pH-activity profile was bell-shaped, depending on the ionization state of two groups exhibiting apparent pKa values of 7.27 and 8.87. The three-dimensional crystal structure of SSAT with bound bisubstrate inhibitor was determined at 2.3 A resolution. The structure of the SSAT-spermine-acetyl-coenzyme A complex suggested that Tyr140 acts as general acid and Glu92, through one or more water molecules, acts as the general base during catalysis. On the basis of kinetic properties, pH dependence, and structural information, we propose an acid/base-assisted reaction catalyzed by SSAT, involving a ternary complex.  相似文献   

4.
The polyamines, spermidine and spermine, are abundant organic cations participating in many important cellular processes. We have previously shown that the rate-limiting enzyme of polyamine catabolism, spermidine/spermine N 1-acetyltransferase (SSAT), has an alternative mRNA splice variant (SSATX) which undergoes degradation via nonsense-mediated mRNA decay (NMD) pathway, and that the intracellular polyamine level regulates the ratio of the SSATX and SSAT splice variants. The aim of this study was to investigate the effect of SSATX level manipulation on SSAT activity in cell culture, and to examine the in vivo expression levels of SSATX and SSAT mRNA. Silencing SSATX expression with small interfering RNA led to increased SSAT activity. Furthermore, transfection of SSAT-deficient cells with mutated SSAT gene (which produced only trace amount of SSATX) yielded higher SSAT activity than transfection with natural SSAT gene (which produced both SSAT and SSATX). Blocking NMD in vivo by protein synthesis inhibitor cycloheximide resulted in accumulation of SSATX mRNA, and like in cell culture, the increase of SSATX mRNA was prevented by administration of polyamine analog N 1 ,N 11 -diethylnorspermine. Although SSATX/total SSAT mRNA ratio did not correlate with polyamine levels or SSAT activity between different tissues, increasing polyamine levels in a given tissue led to decreased SSATX/total SSAT mRNA ratio and vice versa. Taken together, the regulated unproductive splicing and translation of SSAT has a physiological relevance in modulating SSAT activity. However, in addition to polyamine level there seems to be additional factors regulating tissue-specific alternative splicing of SSAT.  相似文献   

5.
We studied the involvement of protein kinase C in the induction of spermidine/spermine N1-acetyltransferase, a rate-limiting enzyme of polyamine degradation, in bovine lymphocytes. When phytohemagglutinin (PHA) and H-7, a protein kinase inhibitor, were added simultaneously to lymphocyte cultures, the elevation caused by PHA of spermidine/spermine N1-acetyltransferase activity at 24 h after administration was reduced. In cells treated with a lower concentration of PHA, the acetyltransferase activity was enhanced with 12-o-tetradecanoyl phorbol-13-acetate (TPA), an activator of protein kinase C, and reached the level of cells with a higher concentration of PHA. PHA did not cause maximum induction of the enzyme in cells treated with 160 ng/ml TPA. The induction of this acetyltransferase with PHA is probably mediated by protein kinase C.  相似文献   

6.
Extreme inducibility of spermidine/spermine acetyltransferase (SSAT) by bis-ethyl derivatives of spermine in human large cell lung carcinoma and melanoma cells has prompted biochemical characterization of the purified enzyme. Treatment of human MALME-3 melanoma cells with 10 microM N1,N11-bis(ethyl)norspermine (BENSPM) for 48-72 h increased SSAT activity by some 1000- to 4000-fold and enabled purification of the enzyme by established procedures--binding on immobilized spermine and elution with spermine followed by binding on Matrex Blue A and elution with coenzyme A. The enzyme showed a single band by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a single subunit species and molecular weight of approximately 20,300 Da. By gel permeation chromatography, the holoenzyme was found to have a molecular weight of 80,000 Da, suggesting a total of four identical subunits. Purified SSAT had a specific activity of 285 mumol/min/mg for spermidine and Km values of 5.9 microM for acetylcoenzyme A, 55 microM for spermidine, 5 microM for spermine, 36 microM for N1-acetylspermine, 1.6 microM for norspermidine, and 4 microM for norspermine. Homologs of BENSPM were found to be competitive inhibitors of spermidine acetylation, with Ki values of 0.8 microM for BENSPM, 1.9 microM for N1,N12-bis-(ethyl)spermine and 17 microM for N1,N14-bis-(ethyl)-homospermine. Correlation of these values with the relative abilities of the homologs to increase SSAT in intact cells suggests that formation of an enzyme inhibitor complex may play a contributing role in enzyme induction.  相似文献   

7.
Spermidine/spermine N1-acetyltransferase is the rate-limiting enzyme in the catabolism of cellular polyamines. Using a combination of cDNA library screening and anchored PCR methodologies, a full length cDNA designated AP3/F7 corresponding to the human SSAT was cloned using RNA from the human large cell undifferentiated lung carcinoma line NCI H157. The resulting cDNA clone is 1,060 base pairs with a 513 base open reading frame coding for a 171 amino acid protein, with a predicted subunit molecular weight of 20,023. The 5' non-coding region of AP3/F7 is 165 bases and the 3' untranslated region is 382 bases with a polyadenylation site 20 bases 5' to the poly(A) tail. This full length cDNA should be an aid in the study of the regulation of spermidine/spermine N1-acetyltransferase expression and the significance of the acetyltransferase in polyamine metabolism.  相似文献   

8.
Treatment of rats with spermidine, spermine or sym-norspermidine led to a substantial induction of spermidine/spermine N1-acetyltransferase activity in liver, kidney and lung. The increase in this enzyme, which was determined independently of other acetylases by using a specific antiserum, accounted for all of the increased acetylase activity in extracts from rats treated with these polyamines. Spermine was the most active inducer, and the greatest effect was seen in liver. Liver spermidine/spermine N1-acetyltransferase activity was increased about 300-fold within 6 h of treatment with 0.3 mmol/kg doses of spermine; activity in kidney increased 30-fold and activity in the lung 15-fold under these conditions. The increased spermidine/spermine N1-acetyltransferase activity led to a large increase in the liver putrescine content and a decline in spermidine. These changes are due to the oxidation by polyamine oxidase of the N1-acetylspermidine formed by the acetyltransferase. Our results indicated that spermidine was the preferred substrate in vivo of the acetylase/oxidase pathway for the conversion of the higher polyamines into putrescine. The induction of the spermidine/spermine N1-acetyltransferase by polyamines may provide a mechanism by which excess polyamines can be removed.  相似文献   

9.
10.
11.
12.
Rat liver spermidine/spermine N1-acetyltransferase was found to be strongly inhibited by the dyes Cibacron F3GA, Coomassie Brilliant Blue and Congo Red. Inhibition was competitive with respect to acetyl-CoA and Ki values of 0.7 microM and 52 microM were determined for Cibacron F3GA and Coomassie Brilliant Blue respectively. The enzyme was strongly retained by columns of Affi-Gel Blue, which contains Cibacron F3GA linked to agarose. It was not eluted from this adsorbent in the presence of 10 mM-spermidine/0.5 M-NaCl/50 mM-Tris/HCl, pH 7.5, but was released by 1 mM-CoA in 10 mM-spermidine/50 mM-Tris/HCl, pH 7.5. These results are consistent with the presence in the enzyme of a dinucleotide fold that binds acetyl CoA and has a high affinity for Cibacron F3GA. The spermidine/spermine N1-acetyltransferase was irreversibly inactivated by exposure to butane-2,3-dione in sodium borate, pH 7.8, or by exposure to phenylglyoxal or camphorquinone-10-sulphonic acid. All of these reagents are known to interact with arginine residues in proteins under the conditions in which they inactivated the acetyltransferase. Inactivation was prevented by the presence of acetyl-CoA or CoA, but to a lesser extent by 3'-dephospho-CoA and not at all by NAD or adenosine. This protection suggests that an arginine residue at the active site is involved in the binding of the acetyl-CoA substrate. Treatment of the assay mixture but not the spermidine N1-acetyltransferase with alkaline phosphatase prevented the reaction taking place. This suggests that the apparent loss of enzyme activity in response to alkaline phosphatase reported by Matsui, Otani, Kamei & Morisawa [(1982) FEBS Lett. 150, 211-213] is due to dephosphorylation of the acetyl-CoA substrate and that the 3'-phosphate group is essential for activity.  相似文献   

13.
The superinduction of the polyamine catabolic enzyme spermidine/spermine N1-acetyltransferase (SSAT) has been implicated in the cell type-specific cytotoxic activity of some polyamine analogues. We now report that one polyamine analogue, 1, 12-dimethylspermine (DMSpm), produces a large induction of SSAT with no significant effects on growth in the human large cell lung carcinoma line, NCI H157. This cell line has been demonstrated to respond to other analogues with SSAT superinduction and cell death. Treatment of the lung cancer cell line with DMSpm produces a rapid increase in SSAT activity and a near complete depletion of the natural polyamines. Additionally, DMSpm supports cell growth in cells which have been depleted of their natural polyamines by the ornithine decarboxylase inhibitor, 2-difluoromethylornithine. The current results suggest that significant induction of SSAT can occur in the absence of cytotoxicity when the inducing polyamine analogue can support growth and that increased SSAT activity alone is not sufficient for cytotoxicity to occur. © 1995 Wiley-Liss Inc.  相似文献   

14.
Phorbol 12-myristate-13-acetate (PMA) is shown to induce spermidine/spermine N1-acetyltransferase, a rate-limiting enzyme of polyamine biodegradation, in bovine lymphocytes. When PMA and phytohemagglutinin (PHA) were added simultaneously, the enzyme activity was stimulated synergistically. The ability of phorbol esters to stimulate the enzyme activity was consistent with their tumor-promoting ability. Phorbol, which is not a tumor promotor, was incapable of stimulating the enzyme activity. Phorbol diacetate weakly stimulated the activity of the acetylase. Phorbol dibutyrate had a similar stimulatory effect to PMA. These results suggest that the spermidine/spermine N1-acetyltransferase may play an important role in changes in polyamine levels in phorbol ester-treated cells and that the increase in the enzyme activity may have some relationship to the control of cell growth and differentiation by phorbol esters.  相似文献   

15.
Tumor necrosis factor alpha (TNFalpha) is a potent pleiotropic cytokine produced by many cells in response to inflammatory stress. The molecular mechanisms responsible for the multiple biological activities of TNFalpha are due to its ability to activate multiple signal transduction pathways, including nuclear factor kappaB (NFkappaB), which plays critical roles in cell proliferation and survival. TNFalpha displays both apoptotic and antiapoptotic properties, depending on the nature of the stimulus and the activation status of certain signaling pathways. Here we show that TNFalpha can lead to the induction of NFkappaB signaling with a concomitant increase in spermidine/spermine N(1)-acetyltransferase (SSAT) expression in A549 and H157 non-small cell lung cancer cells. Induction of SSAT, a stress-inducible gene that encodes a rate-limiting polyamine catabolic enzyme, leads to lower intracellular polyamine contents and has been associated with decreased cell growth and increased apoptosis. Stable overexpression of a mutant, dominant negative IkappaBalpha protein led to the suppression of SSAT induction by TNFalpha in these cells, thereby substantiating a role of NFkappaB in the induction of SSAT by TNFalpha. SSAT promoter deletion constructs led to the identification of three potential NFkappaB response elements in the SSAT gene. Electromobility shift assays, chromatin immunoprecipitation experiments and mutational studies confirmed that two of the three NFkappaB response elements play an important role in the regulation of SSAT in response to TNFalpha. The results of these studies indicate that a common mediator of inflammation can lead to the induction of SSAT expression by activating the NFkappaB signaling pathway in non-small cell lung cancer cells.  相似文献   

16.
The anti-tumor agent methylglyoxal bis(guanylhydrazone) was found to be a competitive inhibitor of spermidine/spermine N1-acetyltransferase with a Ki of about 8 microM. Treatment of rats with this drug lead to a very large increase in the total amount of spermidine/spermine N1-acetyltransferase in liver, kidney and spleen. The total increase as measured using a specific antiserum amounted to 700-fold in liver and 100-fold in kidney within 18 h of treatment with 80 mg/kg doses. At least part of this induction was due to a pronounced increase in the half-life of the acetyltransferase which increased from 15 min to more than 12 h. The very large increase in the amount of the enzyme is likely to overwhelm the direct inhibition, and a net increase in the acetylation of polyamines by this enzyme would be expected to occur after treatment with methylglyoxal bis(guanylhydrazone). The acetylated polyamines are known to be rapidly degraded by polyamine oxidase producing putrescine. Direct evidence that a substantial part of the increase in the content of putrescine in the liver of rats treated with methylglyoxal bis(guanylhydrazone) occurs via the induction of this acetylase/oxidase pathway was obtained. These results indicate that methylglyoxal bis(guanylhydrazone) affects cellular polyamine levels not only by means of its inhibitory effect on S-adenosylmethionine decarboxylase and diamine oxidase but also by the induction of spermidine/spermine N1-acetyltransferase. They also raise the possibility that the enormous increase in this enzyme which occurs with higher doses may contribute to the very severe toxicity of methylglyoxal bis(guanylhydrazone).  相似文献   

17.
The substrate specificity and kinetic mechanism of spermidine N1-acetyltransferase from rat liver was investigated using a highly purified (18 000-fold) preparation from the livers of rats in which the enzyme was induced by treatment with carbon tetrachloride (1.5 ml/kg body wt. 6h before death). The enzyme catalysed the acetylation of spermidine, spermine, sym-norspermidine, sym-norspermine, N-(3-aminopropyl)-cadaverine, N1-acetylspermine, 3,3'-diamino-N-methyldipropylamine and 1,3-diaminopropane, but was inactive with putrescine, cadaverine, sym-homospermidine and N1-acetylspermidine. These results suggest that the enzyme is highly specific for the acetylation of a primary amino group that is separated by a three-carbon aliphatic chain from another nitrogen atom (i.e. the substrates are of the type H2N[CH2]3NHR). The maximal rates of acetylation of 1,3-diaminopropane and 3,3'-diamino-N-methyldipropylamine were much lower than the maximal rates with spermidine or sym-norspermidine as substrates, suggesting a preference for a secondary amino group bearing the aminopropyl group that is acetylated. The best substrates for acetylation were sym-norspermidine and sym-norspermine, which had Km values of about 10 micrograms and Vmax. values of about 2 mumol of product/min per mg of enzyme compared with Km of 130 microM and Vmax. of 1.3 mumol/min per mg for spermidine. N1-Acetylspermidine (the product of the reaction) and N8-acetylspermidine were weak inhibitors and were competitive with spermidine, having Ki values of about 6.6 mM and 0.4 mM respectively. N1-Acetylspermidine was a non-competitive inhibitor with respect to acetyl-CoA. CoA was also inhibitory to the reaction, showing non-competitive kinetics when either [acetyl-CoA] or [spermidine] was varied. These results suggest that the reaction occurs via an ordered Bi Bi mechanism in which spermidine binds first and N1-acetyl-spermidine is the final product to be released.  相似文献   

18.
Spermidine/spermine N1-acetyltransferase (SSAT) appears to be the rate-limiting enzyme of polyamine catabolism, yet studies of its regulation have been limited by the low amounts of SSAT in uninduced cells. A system for studying SSAT was established by stably transfecting Chinese hamster ovary cells with a construct where SSAT cDNA was under control of the cytomegalovirus promoter. Thirteen of 44 clones expressed significantly increased SSAT activity (650-1900 compared with 24 pmol/min/mg protein in control cells). SSAT activity was directly proportional to SSAT protein, which turned over very rapidly (t(1)/(2) of 29 min) and was degraded through the ubiquitin/proteasomal pathway. The increased SSAT activity caused perturbations in polyamine homeostasis and led to a reduction in the rate of growth under clonal conditions. N1,N12-bis(ethyl)spermine greatly increased SSAT activity in controls and SSAT transfected clones (to about 10 and 60 nmol/min/mg protein, respectively). N1, N12-Bis(ethyl)spermine caused an increase in the SSAT half-life and a slight increase in SSAT mRNA, but these changes were insufficient to account for the increase in SSAT protein suggesting that translational regulation of SSAT must also occur.  相似文献   

19.
Exposure of rat L6 cells in culture to exogenous polyamines led to a very large increase in the activity of spermidine/spermine N1-acetyltransferase. Spermine was more potent than spermidine in bringing about this increase, but in both cases the elevated acetyltransferase activity increased the cellular conversion of spermidine into putrescine. The N1-acetyltransferase turned over very rapidly in the L6 cells, with a half-life of 9 min after spermidine and 18 min after spermine. A wide variety of synthetic polyamine analogues also brought about a substantial induction of spermidine/spermine N1-acetyltransferase activity. These included sym-norspermidine, sym-norspermine, sym-homospermidine, N4-substituted spermidine derivatives, 1,3,6-triaminohexane, 1,4,7-triaminoheptane and deoxyspergualin, which were comparable with spermidine in their potency, and N1N8-bis(ethyl)spermidine, N1N9-bis(ethyl)homospermidine, methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone) and 1,1'-[(methylethanediylidene)dinitrilo]bis(3-amino-guanidine ), which were even more active than spermidine. It is suggested that these polyamine analogues may bring about a decrease in cellular polyamines not only by inhibiting biosynthesis but by stimulating the degradation of spermidine into putrescine.  相似文献   

20.
Isolated rat lens was punctured with a needle at a single point in the equatorial region and was incubated at 37 degrees C. Spermidine/spermine N1-acetyltransferase activity was increased about 5-fold at 8 h after the puncture. Concomitantly, putrescine content in the lens increased markedly at 8-16 h after the puncture, while spermidine levels were slightly depressed. Pretreatment of the lens with actinomycin D or cycloheximide blocked the increases of spermidine/spermine N1-acetyltransferase activity and putrescine content. Ornithine decarboxylase, on the other hand, was not induced to a detectable degree by this stimulus and 5 mM difluoromethylornithine could not block the increase of putrescine content. Polyamine oxidase showed a relatively constant activity that was sufficient for the metabolism of newly formed N1-acetylspermidine. These results suggested that, in the punctured lens, the polyamine levels were regulated predominantly by the activity of spermidine/spermine N1-acetyltransferase, but not by the induction of ornithine decarboxylase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号