首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pathophysiology underlying mitochondrial dysfunction in insulin-resistant skeletal muscle is incompletely characterized. To further delineate this we investigated the interaction between insulin signaling, mitochondrial regulation, and function in C2C12 myotubes and in skeletal muscle. In myotubes elevated insulin and glucose disrupt insulin signaling, mitochondrial biogenesis, and mitochondrial bioenergetics. The insulin-sensitizing thiazolidinedione pioglitazone restores these perturbations in parallel with induction of the mitochondrial biogenesis regulator PGC-1alpha. Overexpression of PGC-1alpha rescues insulin signaling and mitochondrial bioenergetics, and its silencing concordantly disrupts insulin signaling and mitochondrial bioenergetics. In primary skeletal myoblasts pioglitazone also up-regulates PGC-1alpha expression and restores the insulin-resistant mitochondrial bioenergetic profile. In parallel, pioglitazone up-regulates PGC-1alpha in db/db mouse skeletal muscle. Interestingly, the small interfering RNA knockdown of the insulin receptor in C2C12 myotubes down-regulates PGC-1alpha and attenuates mitochondrial bioenergetics. Concordantly, mitochondrial bioenergetics are blunted in insulin receptor knock-out mouse-derived skeletal myoblasts. Taken together these data demonstrate that elevated glucose and insulin impairs and pioglitazone restores skeletal myotube insulin signaling, mitochondrial regulation, and bioenergetics. Pioglitazone functions in part via the induction of PGC-1alpha. Moreover, PGC-1alpha is identified as a bidirectional regulatory link integrating insulin-signaling and mitochondrial homeostasis in skeletal muscle.  相似文献   

2.
In the past decade, the development of new DNA, RNA, and protein technologies has greatly incremented the knowledge about the organization and expression of mitochondrial DNA. The complete base sequence of mitochondrial DNA of several animals is known and many data are rapidly accumulating on the mitochondrial genomes of other systems. Here we discuss the results so far obtained that disclosed unexpected features of mitochondrial genetics. Furthermore, mitochondrial DNA has become established as a powerful tool for evolutionary studies in animals. Evidences are presented demonstrating that the evolution of mitochondrial DNA has proceeded in different ways in the various taxonomic groups. Data on heteroplasmic animals, which demonstrate the rapid evolution of mitochondrial DNA, are also presented.  相似文献   

3.
High levels of Fis1, a pro-fission mitochondrial protein, trigger autophagy   总被引:2,自引:0,他引:2  
Damaged mitochondria can be eliminated in a process of organelle autophagy, termed mitophagy. In most cells, the organization of mitochondria in a network could interfere with the selective elimination of damaged ones. In principle, fission of this network should precede mitophagy; but it is unclear whether it is per se a trigger of autophagy. The pro-fission mitochondrial protein Fis1 induced mitochondrial fragmentation and enhanced the formation of autophagosomes which could enclose mitochondria. These changes correlated with mitochondrial dysfunction rather than with fragmentation, as substantiated by Fis1 mutants with different effects on organelle shape and function. In conclusion, fission associated with mitochondrial dysfunction stimulates an increase in autophagy.  相似文献   

4.
Phadnis N  Mehta R  Meednu N  Sia EA 《DNA Repair》2006,5(7):829-839
Mitochondrial DNA is predicted to be highly prone to oxidative damage due to its proximity to free radicals generated by oxidative phosphorylation. Base excision repair (BER) is the primary repair pathway responsible for repairing oxidative damage in nuclear and mitochondrial genomes. In yeast mitochondria, three N-glycosylases have been identified so far, Ntg1p, Ogg1p and Ung1p. Ntg1p, a broad specificity N-glycosylase, takes part in catalyzing the first step of BER that involves the removal of the damaged base. In this study, we examined the role of Ntg1p in maintaining yeast mitochondrial genome integrity. Using genetic reporters and assays to assess mitochondrial mutations, we found that loss of Ntg1p suppresses mitochondrial point mutation rates, frameshifts and recombination rates. We also observed a suppression of respiration loss in the ntg1-Delta cells in response to ultraviolet light exposure implying an overlap between BER and UV-induced damage in the yeast mitochondrial compartment. Over-expression of the BER AP endonuclease, Apn1p, did not significantly affect the mitochondrial mutation rate in the presence of Ntg1p, whereas Apn1p over-expression in an ntg1-Delta background increased the frequency of mitochondrial mutations. In addition, loss of Apn1p also suppressed mitochondrial point mutations. Our work suggests that both Ntg1p and Apn1p generate mutagenic intermediates in the yeast mitochondrial genome.  相似文献   

5.
Mitochondria undergo dramatic rearrangement during Drosophila spermatogenesis. In wild type testes, the many small mitochondria present in pre-meiotic spermatocytes later aggregate, fuse, and interwrap in post-meiotic haploid spermatids to form the spherical Nebenkern, whose two giant mitochondrial compartments later unfurl and elongate beside the growing flagellar axoneme. Drp1 encodes a dynamin-related protein whose homologs in many organisms mediate mitochondrial fission and whose Drosophila homolog is known to govern mitochondrial morphology in neurons. The milton gene encodes an adaptor protein that links mitochondria with kinesin and that is required for mitochondrial transport in Drosophila neurons. To determine the roles of Drp1 and Milton in spermatogenesis, we used the FLP-FRT mitotic recombination system to generate spermatocytes homozygous for mutations in either gene in an otherwise heterozygous background. We found that absence of Drp1 leads to abnormal clustering of mitochondria in mature primary spermatocytes and aberrant unfurling of the mitochondrial derivatives in early Drp1 spermatids undergoing axonemal elongation. In milton spermatocytes, mitochondria are distributed normally; however, after meiosis, the Nebenkern is not strongly anchored to the nucleus, and the mitochondrial derivatives do not elongate properly. Our work defines specific functions for Drp1 and Milton in the anchoring, unfurling, and elongation of mitochondria during sperm formation.  相似文献   

6.
Aging is a natural, complex, and multifactorial biological process associated with impairment of bioenergetic function, increased oxidative stress, attenuated ability to respond to stresses, and increased risk of contracting age-associated diseases. Oxidative stress is widely thought to underpin many aging processes. The mitochondrion, the powerhouse of the cell, is considered the most important cellular organelle to contribute to the aging process, mainly through respiratory chain dysfunction and formation of reactive oxygen species, leading to damage to mitochondrial proteins, lipids, and mitochondrial DNA. Cardiolipin, a phospholipid located at the level of the inner mitochondrial membrane, is known to be intimately involved in several mitochondrial bioenergetic processes as well as mitochondrial-dependent steps in apoptosis and mitochondrial membrane stability and dynamics. Alterations to cardiolipin structure, content, and acyl chain composition have been associated with mitochondrial dysfunction in multiple tissues in several physiopathological conditions and aging. In this review, we discuss several aspects of mitochondrial bioenergetic alterations in aging and the role played by reactive oxygen species and cardiolipin in these alterations.  相似文献   

7.
Mcl-1 is a major anti-apoptotic Bcl-2 family protein. It is well known that Mcl-1 can interact with certain pro-apoptotic Bcl-2 family proteins in normal cells to neutralize their pro-apoptotic functions, thus prevent apoptosis. In addition, it was recently found that Mcl-1 can also inhibit mitochondrial calcium uptake. The detailed mechanism, however, is still not clear. Based on Yeast Two-Hybrid screening and co-immunoprecipitation, we identified a mitochondrial protein p32 (C1qbp) as a novel binding partner of Mcl-1. We found that p32 had a number of interesting properties: (1) p32 can positively regulate UV-induced apoptosis in HeLa cells. (2) Over-expressing p32 could significantly promote mitochondrial calcium uptake, while silencing p32 by siRNA suppressed it. (3) In p32 knockdown cells, Ruthenium Red treatment (an inhibitor of mitochondrial calcium uniporter) showed no further suppressive effect on mitochondrial calcium uptake. In addition, in Ruthenium Red treated cells, Mcl-1 also failed to suppress mitochondrial calcium uptake. Taken together, our findings suggest that p32 is part of the putative mitochondrial uniporter that facilitates mitochondrial calcium uptake. By binding to p32, Mcl-1 can interfere with the uniporter function, thus inhibit the mitochondrial Ca2+ uploading. This may provide a novel mechanism to explain the anti-apoptotic function of Mcl-1.  相似文献   

8.
In Saccharomyces cerevisiae, mitochondrial fusion requires at least two outer membrane proteins, Fzo1p and Ugo1p. We provide direct evidence that the dynamin-related Mgm1 protein is also required for mitochondrial fusion. Like fzo1 and ugo1 mutants, cells disrupted for the MGM1 gene contain numerous mitochondrial fragments instead of the few long, tubular organelles seen in wild-type cells. Fragmentation of mitochondria in mgm1 mutants is rescued by disrupting DNM1, a gene required for mitochondrial division. In zygotes formed by mating mgm1 mutants, mitochondria do not fuse and mix their contents. Introducing mutations in the GTPase domain of Mgm1p completely block mitochondrial fusion. Furthermore, we show that mgm1 mutants fail to fuse both their mitochondrial outer and inner membranes. Electron microscopy demonstrates that although mgm1 mutants display aberrant mitochondrial inner membrane cristae, mgm1 dnm1 double mutants restore normal inner membrane structures. However, mgm1 dnm1 mutants remain defective in mitochondrial fusion, indicating that mitochondrial fusion requires Mgm1p regardless of the morphology of mitochondria. Finally, we find that Mgm1p, Fzo1p, and Ugo1p physically interact in the mitochondrial outer membrane. Our results raise the possibility that Mgm1p regulates fusion of the mitochondrial outer membrane through its interactions with Fzo1p and Ugo1p.  相似文献   

9.
In healthy cells, fusion and fission events participate in regulating mitochondrial morphology. Disintegration of the mitochondrial reticulum into multiple punctiform organelles during apoptosis led us to examine the role of Drp1, a dynamin-related protein that mediates outer mitochondrial membrane fission. Upon induction of apoptosis, Drp1 translocates from the cytosol to mitochondria, where it preferentially localizes to potential sites of organelle division. Inhibition of Drp1 by overexpression of a dominant-negative mutant counteracts the conversion to a punctiform mitochondrial phenotype, prevents the loss of the mitochondrial membrane potential and the release of cytochrome c, and reveals a reproducible swelling of the organelles. Remarkably, inhibition of Drp1 blocks cell death, implicating mitochondrial fission as an important step in apoptosis.  相似文献   

10.
Opening of a non-specific, high conductance permeability transition pore or megachannel in the inner mitochondrial membrane causes onset of the mitochondrial permeability transition, which is characterized by mitochondrial swelling, depolarization and uncoupling. Inducers of the permeability transition include Ca2+, oxidant stress and a permissive pH greater than 7.0. Blockers include cyclosporin A, trifluoperazine and pH < 7. Using laser scanning confocal microscopy, we developed techniques to visualize onset of the mitochondrial permeability transition in situ in living cells. In untreated cells, the permeability transition pore is continuously closed and does not 'flicker' open. By contrast, the pore opens in liver and heart cells after exposure to oxidant chemicals, calcium ionophore, hypoxia and ischemia/reperfusion, causing mitochondrial uncoupling and aggravation of ATP depletion. In injury to hepatocytes from tert-butylhydroperoxide, an analog of lipid hydroperoxides generated during oxidative stress, onset of the mitochondrial permeability transition is preceded by oxidation of mitochondrial pyridine nucleotides, mitochondrial generation of oxygen radicals and an increase of mitochondrial Ca2+, all inducers of the mitochondrial permeability transition. In ischemia, the acidosis of anaerobic metabolism protects strongly against cell death. During reperfusion, recovery of pH to normal levels is a stress that actually precipitates cell killing. Onset of the mitochondrial permeability transition may be responsible, in part, for this pH-dependent injury, or pH paradox. The mitochondrial permeability transition may also be responsible for a variety of pathological phenomena. In particular, the mitochondrial permeability transition may underlie Reye's syndrome and Reye's-like drug toxicities. In conclusion, multiple mechanisms contribute to cell injury after hypoxia, ischemia/reperfusion and toxic chemicals, but a common final pathway leading to acute cellular nec rosis may be ATP depletion after mitochondrial failure. One important mechanism causing mitochondrial failure is the mitochondrial permeability transition, which both uncouples oxidative phosphorylation and accelerates ATP hydrolysis. Interventions that block this pH-dependent phenomenon protect against onset of cell death. (Mol Cell Biochem 174: 159–165, 1997)  相似文献   

11.
Oxidative stress and mitochondrial dysfunction have been linked to neurodegenerative disorders such as Parkinson's and Alzheimer's disease. However, it is not yet understood how endogenous mitochondrial oxidative stress may result in mitochondrial dysfunction. Most prior studies have tested oxidative stress paradigms in mitochondria through either chemical inhibition of specific components of the respiratory chain, or adding an exogenous insult such as hydrogen peroxide or paraquat to directly damage mitochondria. In contrast, mice that lack mitochondrial superoxide dismutase (SOD2 null mice) represent a model of endogenous oxidative stress. SOD2 null mice develop a severe neurological phenotype that includes behavioral defects, a severe spongiform encephalopathy, and a decrease in mitochondrial aconitase activity. We tested the hypothesis that specific components of the respiratory chain in the brain were differentially sensitive to mitochondrial oxidative stress, and whether such sensitivity would lead to neuronal cell death. We carried out proteomic differential display and examined the activities of respiratory chain complexes I, II, III, IV, V, and the tricarboxylic acid cycle enzymes alpha-ketoglutarate dehydrogenase and citrate synthase in SOD2 null mice in conjunction with efficacious antioxidant treatment and observed differential sensitivities of mitochondrial proteins to oxidative stress. In addition, we observed a striking pattern of neuronal cell death as a result of mitochondrial oxidative stress, and were able to significantly reduce the loss of neurons via antioxidant treatment.  相似文献   

12.
In animal cell, mitochondria are the main sites of the synthesis of ATP required for cell functioning and survival. On the other hand, mitochondria play a key role in initiating cell programmed death (apoptosis). In addition, defects in the mitochondrial genome and in the nuclear genome encoding mitochondrial proteins may result in malfunctioning of these organelles and, as result, in diseases of the whole organism. This article contains basic information on the functioning of oxidative phosphorylation and on mitochondrial production of reactive oxygen species. It also describes initiation of apoptosis at the mitochondrial level. Finally, it briefly presents some most common genetic defects responsible for "mitochondrial diseases".  相似文献   

13.
The number and morphology of mitochondria within a cell are precisely regulated by the mitochondrial fission and fusion machinery. The human protein, hFis1, participates in mitochondrial fission by recruiting the Drp1 into the mitochondria. Using short hairpin RNA, we reduced the expression levels of hFis1 in mammalian cells. Cells lacking hFis1 showed sustained elongation of mitochondria and underwent significant cellular morphological changes, including enlargement, flattening, and increased cellular granularity. In these cells, staining for acidic senescence-associated beta-galactosidase activity was elevated, and the rate of cell proliferation was greatly reduced, indicating that cells lacking hFis1 undergo senescence-associated phenotypic changes. Reintroduction of the hFis1 gene into hFis1-depleted cells restored mitochondrial fragmentation and suppressed senescence-associated beta-galactosidase activity. Moreover, depletion of both hFis1 and OPA1, a critical component of mitochondrial fusion, resulted in extensive mitochondrial fragmentation and markedly rescued cells from senescence-associated phenotypic changes. Intriguingly, sustained elongation of mitochondria was associated with decreased mitochondrial membrane potential, increased reactive oxygen species production, and DNA damage. The data indicate that sustained mitochondrial elongation induces senescence-associated phenotypic changes that can be neutralized by mitochondrial fragmentation. Thus, one of the key functions of mitochondrial fission might be prevention of the sustained extensive mitochondrial elongation that triggers cellular senescence.  相似文献   

14.
Several mitochondrial outer membrane proteins—mitochondrial fission protein 1 (Fis1), mitochondrial fission factor (Mff), mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51, respectively)—have been proposed to promote mitochondrial fission by recruiting the GTPase dynamin-related protein 1 (Drp1), but fundamental issues remain concerning their function. A recent study supported such a role for Mff but not for Fis1. In addition, it is unclear whether MiD49 and MiD51 activate or inhibit fission, because their overexpression causes extensive mitochondrial elongation. It is also unknown whether these proteins can act in the absence of one another to mediate fission. Using Fis1-null, Mff-null, and Fis1/Mff-null cells, we show that both Fis1 and Mff have roles in mitochondrial fission. Moreover, immunofluorescence analysis of Drp1 suggests that Fis1 and Mff are important for the number and size of Drp1 puncta on mitochondria. Finally, we find that either MiD49 or MiD51 can mediate Drp1 recruitment and mitochondrial fission in the absence of Fis1 and Mff. These results demonstrate that multiple receptors can recruit Drp1 to mediate mitochondrial fission.  相似文献   

15.
BACKGROUND: Understanding the interdependence of mitochondrial and cellular functioning in health and disease requires detailed knowledge about the coupling between mitochondrial structure, motility, and function. Currently, no rapid approach is available for simultaneous quantification of these parameters in single living cells. METHODS: Human skin fibroblasts were pulse-loaded with the mitochondria-selective fluorescent cation rhodamine 123. Next, mitochondria were visualized using video-rate (30 Hz) confocal microscopy and real-time image averaging. To highlight the mitochondria, the acquired images were binarized using a novel image processing strategy. RESULTS: Our approach enabled rapid and simultaneous quantification of mitochondrial morphology, mass, potential, and motility. It was found that acute inhibition of mitochondrial complex I (NADH:ubiquinone oxidoreductase) by means of rotenone transiently reduced mitochondrial branching, area, and potential. In contrast, mitochondrial motility was permanently reduced. CONCLUSIONS: We present and validate a novel approach for rapid, unbiased, and simultaneous quantification of multiple mitochondrial parameters in living cells. Because this method is automated, large numbers of cells can be analyzed in a short period of time.  相似文献   

16.
Recently, mitochondria have been identified as important contributors to the virulence and drug tolerance of human fungal pathogens. In different scenarios, either hypo- or hypervirulence can result from changes in mitochondrial function. Similarly, specific mitochondrial mutations lead to either sensitivity or resistance to antifungal drugs. Here, we provide a synthesis of this emerging field, proposing that mitochondrial function in membrane lipid homeostasis is the common denominator underlying the observed effects of mitochondria in drug tolerance (both sensitivity and resistance). We discuss how the contrasting effects of mitochondrial dysfunction on fungal drug tolerance and virulence could be explained and the potential for targeting mitochondrial factors for future antifungal drug development.  相似文献   

17.
Oxidative stress, mitochondrial DNA mutation, and apoptosis in aging   总被引:4,自引:0,他引:4  
A wide spectrum of alterations in mitochondria and mitochondrial DNA (mtDNA) with aging has been observed in animals and humans. These include (i) decline in mitochondrial respiratory function; (ii) increase in mitochondrial production of reactive oxygen species (ROS) and the extent of oxidative damage to DNA, proteins, and lipids; (iii) accumulation of point mutations and large-scale deletions of mtDNA; and (iv) enhanced apoptosis. Recent studies have provided abundant evidence to substantiate the importance of mitochondrial production of ROS in aging. On the other hand, somatic mtDNA mutations can cause premature aging without increasing ROS production. In this review, we focus on the roles that ROS play in the aging-associated decline of mitochondrial respiratory function, accumulation of mtDNA mutations, apoptosis, and alteration of gene expression profiles. Taking these findings together, we suggest that mitochondrial dysfunction, enhanced oxidative stress, subsequent accumulation of mtDNA mutations, altered expression of a few clusters of genes, and apoptosis are important contributors to human aging.  相似文献   

18.
Myriad forms of endogenous and environmental stress disrupt mitochondrial function by impacting critical processes in mitochondrial homeostasis, such as mitochondrial redox system, oxidative phosphorylation, biogenesis, and mitophagy. External stressors that interfere with the steady state activity of mitochondrial functions are generally associated with an increase in reactive oxygen species, inflammatory response, and induction of cellular senescence (inflammaging) potentially via mitochondrial damage associated molecular patterns (DAMPS). Many of these are the key events in the pathogenesis of chronic obstructive pulmonary disease (COPD) and its exacerbations. In this review, we highlight the primary mitochondrial quality control mechanisms that are influenced by oxidative stress/redox system, including role of mitochondria during inflammation and cellular senescence, and how mitochondrial dysfunction contributes to the pathogenesis of COPD and its exacerbations via pathogenic stimuli.  相似文献   

19.
Cardiac mitochondrial bioenergetics, oxidative stress, and aging   总被引:2,自引:0,他引:2  
Mitochondria have been a central focus of several theories of aging as a result of their critical role in bioenergetics, oxidant production, and regulation of cell death. A decline in cardiac mitochondrial function coupled with the accumulation of oxidative damage to macromolecules may be causal to the decline in cardiac performance with age. In contrast, regular physical activity and lifelong caloric restriction can prevent oxidative stress, delay the onset of morbidity, increase life span, and reduce the risk of developing several pathological conditions. The health benefits of life long exercise and caloric restriction may be, at least partially, due to a reduction in the chronic amount of mitochondrial oxidant production. In addition, the available data suggest that chronic exercise may serve to enhance antioxidant enzyme activities, and augment certain repair/removal pathways, thereby reducing the amount of oxidative tissue damage. However, the characterization of age-related changes to cardiac mitochondria has been complicated by the fact that two distinct populations of mitochondria exist in the myocardium: subsarcolemmal mitochondria and interfibrillar mitochondria. Several studies now suggest the importance of studying both mitochondrial populations when attempting to elucidate the contribution of mitochondrial dysfunction to myocardial aging. The role that mitochondrial dysfunction and oxidative stress play in contributing to cardiac aging will be discussed along with the use of lifelong exercise and calorie restriction as countermeasures to aging. superoxide anion; longevity; postmitotic; calorie restriction; subsarcolemmal, interfibrillar, exercise  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号