首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The error rate of asparagine (Asn) and glutamine (Gln) amide rotamers in protein crystal structures is in the order of 20% and as a consequence the current Protein Database (PDB) contains approximately half a million incorrect Asn and Gln side-chain rotamers. Here we present NQ-Flipper, a web service based on knowledge-based potentials of mean force to automatically detect and correct erroneous rotamers. We achieve excellent agreement with expert curated data.  相似文献   

2.
Renfrew PD  Butterfoss GL  Kuhlman B 《Proteins》2008,71(4):1637-1646
Amino acid side chains adopt a discrete set of favorable conformations typically referred to as rotamers. The relative energies of rotamers partially determine which side chain conformations are more often observed in protein structures and accurate estimates of these energies are important for predicting protein structure and designing new proteins. Protein modelers typically calculate side chain rotamer energies by using molecular mechanics (MM) potentials or by converting rotamer probabilities from the protein database (PDB) into relative free energies. One limitation of the knowledge‐based energies is that rotamer preferences observed in the PDB can reflect internal side chain energies as well as longer‐range interactions with the rest of the protein. Here, we test an alternative approach for calculating rotamer energies. We use three different quantum mechanics (QM) methods (second order Møller‐Plesset (MP2), density functional theory (DFT) energy calculation using the B3LYP functional, and Hartree‐Fock) to calculate the energy of amino acid rotamers in a dipeptide model system, and then use these pre‐calculated values in side chain placement simulations. Energies were calculated for over 36,000 different conformations of leucine, isoleucine, and valine dipeptides with backbone torsion angles from the helical and strand regions of the Ramachandran plot. In a subset of cases these energies differ significantly from those calculated with standard molecular mechanics potentials or those derived from PDB statistics. We find that in these cases the energies from the QM methods result in more accurate placement of amino acid side chains in structure prediction tests. Proteins 2008. © 2007 Wiley‐Liss, Inc.  相似文献   

3.
Glycosaminoglycans (GAGs) affect human physiology and pathology by modulating more than 500 proteins. GAG-protein interactions are generally assumed to be ionic and nonspecific, but specific interactions do exist. Here, we present a simple method to identify the GAG-binding site (GBS) on proteins that in turn helps predict high specific GAG–protein systems. Contrary to contemporary thinking, we found that the electrostatic potential at basic arginine and lysine residues neither identifies the GBS consistently, nor its specificity. GBSs are better identified by considering the potential at neutral hydrogen bond donors such as asparagine or glutamine sidechains. Our studies also reveal that an unusual constellation of ionic and non-ionic residues in the binding site leads to specificity. Nature engineers the local environment of Asn45 of antithrombin, Gln255 of 3-O-sulfotransferase 3, Gln163 and Asn167 of 3-O-sulfotransferase 1 and Asn27 of basic fibroblast growth factor in the respective GBSs to induce specificity. Such residues are distinct from other uncharged residues on the same protein structure in possessing a significantly higher electrostatic potential, resultant from the local topology. In contrast, uncharged residues on nonspecific GBSs such as thrombin and serum albumin possess a diffuse spread of electrostatic potential. Our findings also contradict the paradigm that GAG-binding sites are simply a collection of contiguous Arg/Lys residues. Our work demonstrates the basis for discovering specifically interacting and druggable GAG-protein systems based on the structure of protein alone, without requiring access to any structure-function relationship data.  相似文献   

4.
The penultimate rotamer library   总被引:16,自引:0,他引:16  
All published rotamer libraries contain some rotamers that exhibit impossible internal atomic overlaps if built in ideal geometry with all hydrogen atoms. Removal of uncertain residues (mainly those with B-factors >/=40 or van der Waals overlaps >/=0.4 A) greatly improves the clustering of rotamer populations. Asn, Gln, or His side chains additionally benefit from flipping of their planar terminal groups when required by atomic overlaps or H-bonding. Sensitivity to skew and to the boundaries of chi angle bins is avoided by using modes rather than traditional mean values. Rotamer definitions are listed both as the modal values and in a preferred version that maximizes common atoms between related rotamers. The resulting library shows significant differences from previous ones, differences validated by considering the likelihood of systematic misfitting of models to electron density maps and by plotting changes in rotamer frequency with B-factor. Few rotamers now show atomic overlaps in ideal geometry; those overlaps are relatively small and can be understood in terms of bond angle distortions compensated by favorable interactions. The new library covers 94.5% of examples in the highest quality protein data with 153 rotamers and can make a significant contribution to improving the accuracy of new structures. Proteins 2000;40:389-408.  相似文献   

5.
A set of 298 protein families from psychrophilic Vibrio salmonicida was compiled to identify genotypic characteristics that discern it from orthologous sequences from the mesophilic Vibrio/Photobacterium branch of the gamma-Proteobacteria (Vibrionaceae family). In our comparative exploration we employed alignment based bioinformatical and statistical methods. Interesting information was found in the substitution matrices, and the pattern of asymmetries in the amino acid substitution process. Together with the compositional difference, they identified the amino acids Ile, Asn, Ala and Gln as those having the most psycrophilic involvement. Ile and Asn are enhanced whereas Gln and Ala are suppressed. The inflexible Pro residue is also suppressed in loop regions, as expected in a flexible structure. The dataset were also classified and analysed according to the predicted subcellular location, and we made an additional study of 183 intracellular and 65 membrane proteins. Our results revealed that the psychrophilic proteins have similar hydrophobic and charge contributions in the core of the protein as mesophilic proteins, while the solvent-exposed surface area is significantly more hydrophobic. In addition, the psychrophilic intracellular (but not the membrane) proteins are significantly more negatively charged at the surface. Our analysis supports the hypothesis of preference for more flexible amino acids at the molecular surface. Life in cold climate seems to be obtained through many minor structural modifications rather than certain amino acids substitutions.  相似文献   

6.
To investigate the functional role of an invariant histidine residue in Trigonopsis variabilis D-amino acid oxidase (DAAO), a set of mutant enzymes with replacement of the histidine residue at position 324 was constructed and their enzymatic properties were examined. Wild-type and mutant enzymes have been purified to homogeneity using the His-bound column and the molecular masses were determined to be 39.2 kDa. Western blot analysis revealed that the in vivo synthesized mutant enzymes are immuno-identical with that of the wild-type DAAO. The His324Asn and His324Gln mutants displayed comparable enzymatic activity to that of the wild-type enzyme, while the other mutant DAAOs showed markedly decreased or no detectable activity. The mutants, His324/Asn/Gln/Ala/Tyr/Glu, exhibited 38-181% increase in Km and a 2-10-fold reduction in kcat/Km. Based on the crystal structure of a homologous protein, pig kidney DAAO, it is suggested that His324 might play a structural role for proper catalytic function of T. variabilis DAAO.  相似文献   

7.
Singh RP  Brooks BR  Klauda JB 《Proteins》2009,75(2):468-477
Sterols have been shown experimentally to bind to the Osh4 protein (a homolog of the oxysterol binding proteins) of Saccharomyces cerevisiae within a binding tunnel, which consists of antiparallel beta-sheets that resemble a beta-barrel and three alpha-helices of the N-terminus. This and other Osh proteins are essential for intracellular transport of sterols and ultimately cell life. Molecular dynamics (MD) simulations are used to study the binding of cholesterol to Osh4 at the atomic level. The structure of the protein is stable during the course of all MD simulations and has little deviation from the experimental crystal structure. The conformational stability of cholesterol within the binding tunnel is aided in part by direct or water-mediated interactions between the 3-hydroxyl (3-OH) group of cholesterol and Trp(46), Gln(96), Tyr(97), Asn(165), and/or Gln(181) as well as dispersive interactions with Phe(42), Leu(24), Leu(39), Ile(167), and Ile(203). These residues along with other nonpolar residues in the binding tunnel and lid contribute nearly 75% to the total binding energy. The strongest and most populated interaction is between Gln(96) and 3-OH with a cholesterol/Gln(96) interaction energy of -4.5 +/- 1.0 kcal/mol. Phe(42) has a similar level of attraction to cholesterol with -4.1 +/- 0.3 kcal/mol. A MD simulation without the N-terminus lid that covers the binding tunnel resulted in similar binding conformations and binding energies when compared with simulations with the full-length protein. Steered MD was used to determine details of the mechanism used by Osh4 to release cholesterol to the cytoplasm. Phe(42), Gln(96), Asn(165), Gln(181), Pro(211), and Ile(206) are found to direct the cholesterol as it exits the binding tunnel as well as Lys(109). The mechanism of sterol release is conceptualized as a molecular ladder with the rungs being amino acids or water-mediated amino acids that interact with 3-OH.  相似文献   

8.
Here we report an orientation-dependent statistical all-atom potential derived from side-chain packing, named OPUS-PSP. It features a basis set of 19 rigid-body blocks extracted from the chemical structures of all 20 amino acid residues. The potential is generated from the orientation-specific packing statistics of pairs of those blocks in a non-redundant structural database. The purpose of such an approach is to capture the essential elements of orientation dependence in molecular packing interactions. Tests of OPUS-PSP on commonly used decoy sets demonstrate that it significantly outperforms most of the existing knowledge-based potentials in terms of both its ability to recognize native structures and consistency in achieving high Z-scores across decoy sets. As OPUS-PSP excludes interactions among main-chain atoms, its success highlights the crucial importance of side-chain packing in forming native protein structures. Moreover, OPUS-PSP does not explicitly include solvation terms, and thus the potential should perform well when the solvation effect is difficult to determine, such as in membrane proteins. Overall, OPUS-PSP is a generally applicable potential for protein structure modeling, especially for handling side-chain conformations, one of the most difficult steps in high-accuracy protein structure prediction and refinement.  相似文献   

9.
A 1.10-A atomic resolution X-ray structure of human fibroblast growth factor 1 (FGF-1), a member of the beta-trefoil superfold, has been determined. The beta-trefoil is one of 10 fundamental protein superfolds and is the only superfold to exhibit 3-fold structural symmetry (comprising 3 "trefoil" units). The quality of the diffraction data permits unambiguous assignment of Asn, Gln, and His rotamers, Pro ring pucker, as well as refinement of atomic anisotropic displacement parameters (ADPs). The FGF-1 structure exhibits numerous core-packing defects, detectable using a 1.0-A probe radius. In addition to contributing to the relatively low thermal stability of FGF-1, these defects may also permit domain motions within the structure. The availability of refined ADPs allows a translation/libration/screw (TLS) analysis of putative rigid body domains. The TLS analysis shows that beta-strands 6-12 together form a rigid body, and there is a clear demarcation in TLS motions between the adjacent carboxyl- and amino-termini. Although separate from beta-strands 6-12, the individual beta-strands 1-5 do not exhibit correlated motions; thus, this region appears to be comparatively flexible. The heparin-binding contacts of FGF-1 are located within beta-strands 6-12; conversely, a significant portion of the receptor-binding contacts are located within beta-strands 1-5. Thus, the observed rigid body motion in FGF-1 appears related to the ligand-binding functionalities.  相似文献   

10.
RNA molecules play integral roles in gene regulation, and understanding their structures gives us important insights into their biological functions. Despite recent developments in template-based and parameterized energy functions, the structure of RNA--in particular the nonhelical regions--is still difficult to predict. Knowledge-based potentials have proven efficient in protein structure prediction. In this work, we describe two differentiable knowledge-based potentials derived from a curated data set of RNA structures, with all-atom or coarse-grained representation, respectively. We focus on one aspect of the prediction problem: the identification of native-like RNA conformations from a set of near-native models. Using a variety of near-native RNA models generated from three independent methods, we show that our potential is able to distinguish the native structure and identify native-like conformations, even at the coarse-grained level. The all-atom version of our knowledge-based potential performs better and appears to be more effective at discriminating near-native RNA conformations than one of the most highly regarded parameterized potential. The fully differentiable form of our potentials will additionally likely be useful for structure refinement and/or molecular dynamics simulations.  相似文献   

11.
A 36-kDa trypsin inhibitor was purified from Clostridium botulinum type E culture supernatant by multiple molecular sieve and ion exchange chromatographic steps. The sequence of the amino-terminal 13 amino acid residues of this single-chain protein is Asn.Gln.Glu.Val.Phe.Asn.Met.Pro.Lys.Phe.Ser.Thr.Ala-. This novel protein that also inhibits chymotrypsin is produced by an organism that does not appear to produce any protease.  相似文献   

12.
M Batkin  S Shaltiel 《FEBS letters》1999,452(3):395-399
A set of mutants of protein kinase A (PKA) in which Gln-127 was replaced by Gln, Asp, Asn, and Arg was prepared. Their Km and Vmax values show that the negative charge of Glu-127 (not merely its hydrogen bonding capacity) is indispensable for the kinase activity, since Glu-127/Gln is inactive, in spite of the fact that it can form hydrogen bonds and is very similar in bulkiness and conformation to wt-PKA. Glu-127 is involved in the biorecognition of PKA, interacting ionically with the positively charged guanido group of Arg P-3 (a major recognition element in the consensus sequence of PKA). In support of this conclusion, it is shown that a regression of the Glu-127 carboxylate by 1.54 A (as in Glu-127/Asp) results in an active kinase with a similar thermal stability and susceptibility to conformation-dependent proteolysis, a similar Vmax, an identical Km for ATP, but a > 20-fold higher Km for kemptide. The two inactive mutants of PKA, Glu-127/Gln and Glu-127/Asn, are potentially useful for studying protein-protein interactions of PKA, e.g. for monitoring enzymatically the displacement of active PKA from its complexes.  相似文献   

13.
The rates of deamidation of Asn and Gln residues in peptides and proteins depend upon both the identity of other nearby amino acid residues, some of which can catalyze the deamidation reaction of the Asn and Gln side chains, and upon polypeptide conformation. Proximal amino acids can be contiguous in sequence or brought close to Asn or Gln side chains by higher order structure of the protein. Local polypeptide conformation can stabilize the oxyanion transition state of the deamidation reaction and also enable deamidation through the beta-aspartyl shift mechanism. In this paper, the environments of Asn and Gln residues in known protein structures are examined to determine the configuration and identity of groups which participate in deamidation reactions. Sequence information is also analyzed and shown to support evolutionary selection against the occurrence of certain potentially catalytic amino acids adjacent to Asn and Gln in proteins. This negative selection supports a functional role for deamidation in those non-mutant proteins in which it occurs.  相似文献   

14.
The long-chain flavodoxins, with 169-176 residues, display oxidation-reduction potentials at pH 7 that vary from -50 to -260 mV for the oxidized/semiquinone (ox/sq) equilibrium and are -400 mV or lower for the semiquinone/hydroquinone (sq/hq) equilibrium. To examine the effects of protein interactions and conformation changes on FMN potentials in the long-chain flavodoxin from Anacystis nidulans (Synechococcus PCC 7942), we have determined crystal structures for the semiquinone and hydroquinone forms of the wild-type protein and for the mutant Asn58Gly, and have measured redox potentials and FMN association constants. A peptide near the flavin ring, Asn58-Val59, reorients when the FMN is reduced to the semiquinone form and adopts a conformation ("O-up") in which O 58 hydrogen bonds to the flavin N(5)H; this rearrangement is analogous to changes observed in the flavodoxins from Clostridium beijerinckii and Desulfovibrio vulgaris. On further reduction to the hydroquinone state, the Asn58-Val59 peptide in crystalline wild-type A. nidulans flavodoxin rotates away from the flavin to the "O-down" position characteristic of the oxidized structure. This reversion to the conformation found in the oxidized state is unusual and has not been observed in other flavodoxins. The Asn58Gly mutation, at the site which undergoes conformation changes when FMN is reduced, was expected to stabilize the O-up conformation found in the semiquinone oxidation state. This mutation raises the ox/sq potential by 46 mV to -175 mV and lowers the sq/hq potential by 26 mV to -468 mV. In the hydroquinone form of the Asn58Gly mutant the C-O 58 remains up and hydrogen bonded to N(5)H, as in the fully reduced flavodoxins from C. beijerinckii and D. vulgaris. The redox and structural properties of A. nidulans flavodoxin and the Asn58Gly mutant confirm the importance of interactions made by N(5) or N(5)H in determining potentials, and are consistent with earlier conclusions that conformational energies contribute to the observed potentials.The mutations Asp90Asn and Asp100Asn were designed to probe the effects of electrostatic interactions on the potentials of protein-bound flavin. Replacement of acidic by neutral residues at positions 90 and 100 does not perturb the structure, but has a substantial effect on the sq/hq equilibrium. This potential is increased by 25-41 mV, showing that electrostatic interaction between acidic residues and the flavin decreases the potential for conversion of the neutral semiquinone to the anionic hydroquinone. The potentials and the effects of mutations in A. nidulans flavodoxin are rationalized using a thermodynamic scheme developed for C. beijerinckii flavodoxin.  相似文献   

15.
The Hsp70 and Hsp40 chaperone machine plays critical roles in protein folding, membrane translocation, and protein degradation by binding and releasing protein substrates in a process that utilizes ATP. The activities of the Hsp70 family of chaperones are recruited and stimulated by the J domains of Hsp40 chaperones. However, structural information on the Hsp40–Hsp70 complex is lacking, and the molecular details of this interaction are yet to be elucidated. Here we used steered molecular dynamics (SMD) simulations to investigate the molecular interactions that occur during the dissociation of the auxilin J domain from the Hsc70 nucleotide-binding domain (NBD). The changes in energy observed during the SMD simulation suggest that electrostatic interactions are the dominant type of interaction. Additionally, we found that Hsp70 mainly interacts with auxilin through the surface residues Tyr866, Arg867, and Lys868 of helix II, His874, Asp876, Lys877, Thr879, and Gln881 of the HPD loop, and Phe891, Asn895, Asp896, and Asn903 of helix III. The conservative residues Tyr866, Arg867, Lys868, His874, Asp876, Lys877, and Phe891 were also found in a previous study to be indispensable to the catalytic activity of the DnaJ J domain and the binding of it with the NBD of DnaK. The in silico identification of the importance of auxilin residues Asn895, Asp896, and Asn903 agrees with previous mutagenesis and NMR data suggesting that helix III of the J domain of the T antigen interacts with Hsp70. Furthermore, our data indicate that Thr879 and Gln881 from the HPD loop are also important as they mediate the interaction between the bovine auxilin J domain and Hsc70.  相似文献   

16.
Langen R  Oh KJ  Cascio D  Hubbell WL 《Biochemistry》2000,39(29):8396-8405
High resolution (1.43-1.8 A) crystal structures and the corresponding electron paramagnetic resonance (EPR) spectra were determined for T4 lysozyme derivatives with a disulfide-linked nitroxide side chain [-CH(2)-S-S-CH(2)-(3-[2,2,5,5-tetramethyl pyrroline-1-oxyl]) identical with R1] substituted at solvent-exposed helix surface sites (Lys65, Arg80, Arg119) or a tertiary contact site (Val75). In each case, electron density is clearly resolved for the disulfide group, revealing distinct rotamers of the side chain, defined by the dihedral angles X(1) and X(2). The electron density associated with the nitroxide ring in the different mutants is inversely correlated with its mobility determined from the EPR spectrum. Residue 80R1 assumes a single g(+)()g(+)() conformation (Chi(1) = 286, X(2) = 294). Residue 119R1 has two EPR spectral components, apparently corresponding to two rotamers, one similar to that for 80R1 and the other in a tg(-)() conformation (Chi(1) = 175, X(2) = 54). The latter state is apparently stabilized by interaction of the disulfide with a Gln at i + 4, a situation also observed at 65R1. R1 residues at helix surface site 65 and tertiary contact site 75 make intra- as well as intermolecular contacts in the crystal and serve to identify the kind of molecular interactions possible for the R1 side chain. A single conformation of the entire 75R1 side chain is stabilized by a variety of interactions with the nitroxide ring, including hydrophobic contacts and two unconventional C-H.O hydrogen bonds, one in which the nitroxide acts as a donor (with tyrosine) and the other in which it acts as an acceptor (with phenylalanine). The interactions revealed in these structures provide an important link between the dynamics of the R1 side chain, reflected in the EPR spectrum, and local protein structure. A library of such interactions will provide a basis for the quantitative interpretation of EPR spectra in terms of protein structure and dynamics.  相似文献   

17.
Knowledge-based potentials are used widely in protein folding and inverse folding algorithms. Two kinds of derivation methods are used. (1) The interactions in a database of known protein structures are assumed to obey a Boltzmann distribution. (2) The stability of the native folds relative to a manifold of misfolded structures is optimized. Here, a set of previously derived contact and secondary structure propensity potentials, taken as the "true" potentials, are employed to construct an artificial protein structural database from protein fragments. Then, new sets of potentials are derived to see how they are related to the true potentials. Using the Boltzmann distribution method, when the stability of the structures in the database lies within a certain range, both contact potentials and secondary structure propensities can be derived separately with remarkable accuracy. In general, the optimization method was found to be less accurate due to errors in the "excess energy" contribution. When the excess energy terms are kept as a constraint, the true potentials are recovered exactly.  相似文献   

18.
X-ray crystallography, although a powerful technique for determining the three-dimensional structure of proteins, poses inherent problems in assigning the primary structure in residues Asp/Asn and Glu/Gln since these cannot be distinguished decisively in the electron density maps. In our recently published X-ray crystal structure of the Sclerotium rolfsii lectin (SRL) at 1.1 A resolution, amino acid sequence was initially deduced from the electron density map and residues Asp/Asn and Glu/Gln were assigned by considering their hydrogen bonding potential within their structural neighborhood. Attempts to verify the sequence by Edman sequencing were not successful as the N terminus of the protein was blocked. Mass spectrometry was applied to verify and resolve the ambiguities in the SRL X-ray crystal structure deduced sequence. From the Matrix assisted laser desorption/ionization time-of-flight-mass spectrometry (MALDI TOF-MS) and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) analysis of tryptic and chymotryptic peptides of SRL, we could confirm and correct the sequence at five locations with respect to Asp/Asn and Glu/Gln. Analysis data also confirmed the positions of Leu/Ile, Gln/Lys residues and the sequence covering 118 of the total 141 residues accounting to 83.68% of the earlier deduced sequence of SRL.  相似文献   

19.
To gain insight into intramolecular carbohydrate-protein interactions at the molecular level, the solution structure of differently deglycosylated variants of the alpha-subunit of human chorionic gonadotropin have been studied by NMR spectroscopy. Significant differences in chemical shifts and NOE intensities were observed for amino acid residues close to the carbohydrate chain at Asn78 upon deglycosylation beyond Asn78-bound GlcNAc. As no straightforward strategy is available for the calculation of the NMR structure of intact glycoproteins, a suitable computational protocol had to be developed. To this end, the X-PLOR carbohydrate force field designed for structure refinement was extended and modified. Furthermore, a computational strategy was devised to facilitate successful protein folding in the presence of extended glycans during the simulation. The values for phi and psi dihedral angles of the glycosidic linkages of the oligosaccharide core fragments GlcNAc2(beta1-4)GlcNAc1 and Man3(beta1-4)GlcNAc2 are restricted to a limited range of the broad conformational energy minima accessible for free glycans. This demonstrates that the protein core affects the dynamic behavior of the glycan at Asn78 by steric hindrance. Reciprocally, the NMR structures indicate that the glycan at Asn78 affects the stability of the protein core. The backbone angular order parameters and displacement data of the generated conformers display especially for the beta-turn 20-23 a decreased structural order upon splitting off the glycan beyond the Asn78-bound GlcNAc. In particular, the Asn-bound GlcNAc shields the protein surface from the hydrophilic environment through interaction with predominantly hydrophobic amino acid residues located in both twisted beta-hairpins consisting of residues 10-28 and 59-84.  相似文献   

20.
Although deamidation at asparagine and glutamine has been found in numerous studies of a variety of proteins, in almost all cases the analytical methodology that was used could detect only a single site of deamidation. For the extensively studied case of reduced bovine ribonuclease A (13,689 Da), only Asn67 deamidation has been demonstrated previously, although one study found three monodeamidated fractions. Here top down tandem mass spectrometry shows that Asn67 deamidation is extensive before Asn71 and Asn94 react; these are more than half deamidated before Asn34 reacts, and its deamidation is extensive before that at Gln74 is initiated. Except for the initial Asn67 site, these large reactivity differences correlate poorly with neighboring amino acid identities and instead indicate residual conformational effects despite the strongly denaturing media that were used; deamidation at Asn67 could enhance that at Asn71, and these enhance that at Gln74. This success in the site-specific quantitation of deamidation in a 14 kDa protein mixture, despite the minimal 1 Da (-NH2 --> -OH) change in the molecular mass, is further evidence of the broad applicability of the top down MS/MS methodology for characterization of protein posttranslational modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号