首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W R Jacobs  Y L Chan 《Life sciences》1987,40(16):1571-1578
Previous studies from this laboratory have demonstrated that norepinephrine (NE) increases sodium dependent phenylalanine uptake by in vitro rat cortical tubules. In the present study, we have examined whether the observed increase in proximal tubular sodium transport, during NE treatment, is related to changes in membrane Na-K-ATPase and cellular oxygen consumption. Treatment of intact tubules with NE increased microsomal Na-K-ATPase activity but had no effect on cellular oxygen consumption or ouabain inhibitable oxygen consumption. The increased Na-K-ATPase activity is consistent with the observed increase in sodium transport while the lack of a detectable effect on oxygen consumption suggests that the increased transport does not require additional oxygen utilization.  相似文献   

2.
When rat kidney slices were incubated in the presence of horseradish peroxidase, there was an energy-dependent uptake of the protein by the cells of the kidney tubules. The uptake was greatest in the proximal convoluted tubules and in the thick ascending limbs of the loops of Henle; it was abolished by cold, anoxia, 2,4-dinitrophenol, and fluoroacetate, and was more readily depressed by unfavorable metabolic conditions in the proximal convoluted tubules than in the thick ascending limbs. Protein uptake was inhibited when the kidney slices were incubated in electrolyte-free media. In sodium chloride solutions, uptake was reduced as sodium was progressively replaced by choline, and ouabain inhibited uptake in the proximal convoluted tubules, but not in the thick ascending limbs. To a limited extent, lithium could replace sodium in the incubation medium with no depression of peroxidase uptake. These results suggest that a sodium-stimulated, ouabain-sensitive ATPase may be involved in the uptake of protein by cells of the kidney tubule. The intracellular transport of peroxidase in cells of the proximal convoluted tubules was abolished by cold, anoxia, and 2,4-dinitrophenol, but it was not affected by concentrations of ouabain which inhibited the uptake of the protein.  相似文献   

3.
Phosphate deprivation causes a resistance to the phosphaturic effect of parathyroid hormone (PTH). The present study determined whether acute phosphate deprivation alters basal or stimulated activities of key enzymes of the cyclic adenosine monophosphate (cAMP) metabolism in microdissected proximal convoluted and proximal straight tubules, since blunted cAMP levels in these proximal subsegments might account for refractoriness to the effect of PTH on phosphate reabsorption in the proximal convoluted and proximal straight tubule segments. In the proximal convoluted tubules of rats fed a normal-phosphate diet (NPD), PTH increased the adenylate cyclase activity by tenfold. In the proximal convoluted tubule of rats fed a low-phosphate diet (LPD), PTH also increased the adenylate cyclase activity by tenfold. In addition, forskolin increased the adenylate cyclase activity to levels similar to PTH in the proximal convoluted tubule of rats fed NPD or LPD. In the proximal straight tubule of rats fed NPD, PTH resulted in an approximately fivefold increase in adenylate cyclase activity. In the proximal straight tubule of rats fed LPD, PTH resulted in a fourfold increase in adenylate cyclase activity. The forskolin-stimulated adenylate cyclase activity was markedly decreased (46%) in the proximal straight tubule of phosphate-deprived rats. The cAMP-phosphodiesterase activity in the proximal convoluted tubule was significantly increased by 26% in phosphate-deprived rats. The cAMP-phosphodiesterase activities in the proximal straight tubules from rats fed NPD or LPD were similar. We conclude that distinct differences in key enzymes of cAMP metabolism exist in the proximal convoluted and proximal straight tubule subsegments. Further, phosphate deprivation affects the cAMP-phosphodiesterase and adenylate cyclase activities differently in these nephron subsegments.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A modified cytochemical assay for [Na-K]ATPase in cryostat sections of kidney was further characterized and used to quantify activity in seven functionally distinct sites along the rat nephron. The activity of [Na-K]ATPase was defined as the difference in ATPase activity in specifically identified tubules contained in serial sections incubated with and without ouabain. Preincubation of sections with ouabain was required for maximal inhibition of [Na-K]ATPase activity in several distal sites. The concentration of ouabain necessary for maximal inhibition of activity was 3.0 mM and half-maximal inhibition was obtained in all regions with 30-100 microM ouabain. In distal sites, [Na-K]ATPase formed a higher proportion of total ATPase activity (60-80 per cent) than in proximal sites (20-40 per cent). Enzyme activity was quantified using two different methods. The first measured activity over the basal region of tubules and gave an index of the concentration of [Na-K]ATPase over the basal lateral infoldings of cells composing the tubule. The second read activity over the entire cross section of tubules and provided an estimate of [Na-K]ATPase per length of tubule. The highest activities over the basal basal region were obtained from tubules of the distal nephron including the inner (MALin) and outer (MALout) medullary ascending limb, distal convoluted tubule (DCT) and connecting segment (CS). Lower activities were obtained in proximal convoluted (PCT) tubules, proximal straight (PS) tubules and the papillary collecting duct (PD). Distal convoluted tubules contained the highest activity per length of tubule. Other sites contained lower levels of activity in the following order: MALin greater than MALout greater than PCT greater than PD greater than PS. The modifications introduced increase the sensitivity and precision of this assay and permit the application of this technique to studies of [Na-K]ATPase activity in the major functional regions of the rat nephron.  相似文献   

5.
Oxidation of [U14C]lactate to 14CO2 was measured in vitro, in nonperfused anatomically defined segments of rabbit proximal tubule (S1, proximal convoluted, and S2 and S3, proximal straight tubules). The rate of lactate oxidation was similar in S2 and S3 segments, and within the range of lactate oxidation rates measured in vivo. In contrast, the oxidation rate of S1 segments was significantly lower than that of S2 or S3. In proximal straight tubules, lactate oxidation was inhibited by incubation at 0 degrees C, or by application of 1 mM ouabain. To determine if the rate of transepithelial transport affected the rate of lactate oxidation, lactate oxidation was measured in proximal straight tubules after the lumen had been opened by perfusion with Ringer's containing 10 mM polyethylene glycol. No difference in lactate oxidation rate was observed between tubules with patent lumina and nonperfused tubules. These results suggest that the various segments of the renal proximal tubule have different metabolic characteristics, and that the rate of substrate oxidation is related to the activity of the Na+, K+-ATPase.  相似文献   

6.
This study is aimed both at characterizing an ATPase activity in rat kidney equivalent to the proton pump described in bovine kidney medulla and at localizing this enzyme along the nephron. Membrane fractions isolated from kidney homogenates by differential and density gradient centrifugations were enriched 7-fold in ATPase activity sensitive to N-ethylmaleimide (NEM). These fractions also displayed ATP-dependent proton transport. ATPase activity and proton transport in vesicles had similar pharmacological properties as both were insensitive to vanadate and ouabain and had similar sensitivities toward NEM (apparent Ki = 20 microM) and N,N'-dicyclohexylcarbodiimide (apparent Ki = 50 microM). Proton transport was dependent on chloride availability as chloride addition to the extravesicular medium stimulated proton transport in a dose-dependent fashion (apparent K 1/2 = 7 mM). NEM-sensitive ATPase activity displaying similar pharmacological properties as proton transport in vesicles was also found in single segments of nephron. It was insensitive to vanadate and ouabain, was inhibited by similar concentrations of NEM (apparent Ki = 15-20 microM) and N,N'-dicyclohexylcarbodiimide (apparent Ki = 30 microM), and is therefore likely to be a proton pump. NEM-sensitive ATPase was localized in all the segments of the rat nephron; its activity was highest in proximal convoluted tubules; intermediate in proximal straight tubules, thick ascending limbs, and cortical collecting tubules; and lowest in outer medullary collecting tubules.  相似文献   

7.
The effect of 2-hydroxyethylhydrazine on the phosphatidylethanolamine methylation pathway in yeast was studied. 2-Hydroxyethylhydrazine inhibited the growth of cells. The concentration required for 50% inhibition was 66 microM. The growth rate decreased by 2-hydroxyethylhydrazine was restored by the addition of a low concentration of choline. Incorporation of radioactivity from L-[3-14C]serine, L-[methyl-14C]methionine and S-adenosyl-L-[methyl-14C]methionine into phosphatidylcholine was markedly reduced by 2-hydroxyethylhydrazine. The restoration of growth by choline was not due to the reversal of the inhibition, but to the formation of phosphatidylcholine via the CDPcholine pathway. Thus, the site of action of 2-hydroxyethylhydrazine in vivo was the phosphatidylethanolamine methylation pathway. Experiments with methylation mutants indicated that all three steps of methylation were sensitive to 2-hydroxyethylhydrazine. 2-Hydroxyethylhydrazine was shown to inhibit the methyltransferase after it had become chemically or metabolically transformed in cells. 2-Hydroxyethylhydrazine-resistant mutants were obtained and were found to have a defect in choline transport activity. Genetic data indicated that the uptake of 2-hydroxyethylhydrazine into cells is mediated by the choline transport system.  相似文献   

8.
A cytochemical method for the light and electron microscope localization of the K- and Mg-dependent phosphatase component of the Na-K-ATPase complex was applied to rat kidney cortex, utilizing p-nitrophenylphosphate (NPP) as substrate. Localization of K-N-ATPase activity in kidneys fixed by perfusion with 1% paraformaldehyde -0.25% glutaraldehyde demonstrated that distal tubules are the major cortical site for this sodium transport enzyme. Cortical collecting tubules were moderately reactive, whereas activity in proximal tubules was resolved only after short fixation times and long incubations. In all cases, K-NPPase activity was restricted to the cytoplasmic side of the basolateral plasma membranes, which are characterized in these neplron segments by elaborate folding of the cell surface. Although the rat K-NPPase appeared almost completely insensitive to ouabain with this cytochemical medium, parallel studies with the more glycoside-sensitive rabbit kidney indicated that K-NPPase activity in these nephron segments is sensitive to this inhibitor. In addition to K-NPPase, nonspecific alkaline phosphatase also hydrolyzed NPP. The latter could be differentiated cytochemically from the specific phosphatase, since alkaline phosphatase was K-independent, insensitive to ouabain, and specifically inhibited by cysteine. Unlike K-NPPPase, alkaline phosphatase was localized primarily to the extracellular side of the microvillar border of proximal tubules. A small amount of cysteine-sensitive activity was resolved along peritubular surfaces of proximal tubules. Distal tubules were unreactive. In comparative studies, Mg-ATPase activity was localized along the extracellular side of the luminal and basolateral surfaces of proximal and distal tubules and the basolateral membranes of collecting tubules.  相似文献   

9.
We have previously shown that neonate rabbit tubules have a lower chloride permeability but comparable mannitol permeability compared with adult proximal tubules. The surprising finding of lower chloride permeability in neonate proximals compared with adults impacts net chloride transport in this segment, which reabsorbs 60% of the filtered chloride in adults. However, this maturational difference in chloride permeability may not be applicable to other species. The present in vitro microperfusion study directly examined the chloride and mannitol permeability using in vitro perfused rat proximal tubules during postnatal maturation. Whereas there was no maturational change in mannitol permeability, chloride permeability was 6.3 +/- 1.3 x 10(-5) cm/s in neonate rat proximal convoluted tubule and 16.1 +/- 2.3 x 10(-5) cm/s in adult rat proximal convoluted tubule (P < 0.01). There was also a maturational increase in chloride permeability in the rat proximal straight tubule (5.1 +/- 0.6 x 10(-5) cm/s vs. 9.3 +/- 0.6 x 10(-5) cm/s, P < 0.01). There was no maturational change in bicarbonate-to-chloride permeabilities (P(HCO3)/P(Cl)) in the rat proximal straight tubules (PST) and proximal convoluted tubules (PCT) or in the sodium-to-chloride permeability (P(Na)/P(Cl)) in the proximal straight tubule; however, there was a significant maturational decrease in proximal convoluted tubule P(Na)/P(Cl) with postnatal development (1.31 +/- 0.12 in neonates vs. 0.75 +/- 0.06 in adults, P < 0.001). There was no difference in the transepithelial resistance measured by current injection and cable analysis in the PCT, but there was a maturational decrease in the PST (7.2 +/- 0.8 vs. 4.6 +/- 0.1 ohms x cm2, P < 0.05). These studies demonstrate there are maturational changes in the rat paracellular pathway that impact net NaCl transport during development.  相似文献   

10.
To evaluate further the signal transduction mechanisms involved in the short-term modulation of Na-K-ATPase activity in the mammalian kidney, we examined the role of phospholipase C-protein kinase C (PLC-PKC) pathway and of various eicosanoids in this process, using microdissected rat proximal convoluted tubules. Dopamine (DA) and parathyroid hormone (either synthetic PTH1-34 or PTH3-34) inhibited Na-K-ATPase activity in dose-dependent manner; this effect was reproduced by PKC530-558 fragment and blocked by the specific PKC inhibitor calphostin C, as well as by the PLC inhibitors neomycin and U-73122. Pump inhibition by DA, PTH, or arachidonic acid, and by PKC activators phorbol dibutyrate (PDBu) or dioctanoyl glycerol (DiC8) was abolished by ethoxyresorufin, an inhibitor of the cytochrome P450-dependent monooxygenase pathway, but was unaffected by indomethacin or nordihydroguaiaretic acid, inhibitors of the cyclooxygenase and lipoxygenase pathways of the arachidonic acid cascade, respectively. Furthermore, each of the three monooxygenase products tested (20-HETE, 12(R)-HETE, or 11,12-DHT) caused a dose-dependent inhibition of the pump. The effect of DA, PTH, PDBu or DiC8, as well as that of 20-HETE was not altered when sodium entry was blocked with the amiloride analog ethylisopropyl amiloride or increased with nystatin. We conclude that short-term regulation of proximal tubule Na-K-ATPase activity by dopamine and parathyroid hormone occurs via the PLC-PKC signal transduction pathway and is mediated by cytochrome P450-dependent monooxygenase products of arachidonic acid metabolism, which may interact with the pump rather than alter sodium access to it. Received: 7 January 1996/Revised: 24 April 1996  相似文献   

11.
To determine the possible intrarenal site of action of an endogenous ouabain-like natriuretic factor, we searched for the presence of NaK-ATPase highly sensitive to ouabain in the kidney, an organ previously reported to display a low sensitivity to ouabain. For this purpose, the sensitivity of NaK-ATPase to ouabain was determined at the level of single, well defined segments of nephron microdissected from rabbit kidney. Results indicated that NaK-ATPase activity is 10- to 30-fold more sensitive to ouabain in the collecting tubule, where final adjustments of sodium excretion take place, than in more proximal segments of the nephron. [3H]Ouabain binding experiments confirmed this finding as the affinity for ouabain increases from the proximal tubule to the collecting tubule. These results suggest that endogenous natriuretic factor may control sodium transport in the collecting tubule preferentially.  相似文献   

12.
13C-n.m.r. spectroscopy was used to determine the metabolic fate of alanine and aspartate in rat and rabbit kidney proximal tubules. The main purpose of the present study was to investigate the effect of streptozotocin-induced diabetes on the influx of 13C label from [3-13C]alanine into the tricarboxylic acid cycle and through the fructose-1,6-bisphosphatase pathway. This influx was calculated from the relative enrichment of 13C in the various glutamate and glutamine carbon atoms. The relative proportion of 13C label which entered the tricarboxylic acid cycle via pyruvate carboxylase relative to the proportion that entered via pyruvate dehydrogenase was 1.92 +/- 0.02 in fed control rats and 2.27 +/- 0.04 in streptozotocin-treated rats. However, streptozotocin-induced diabetes did not significantly affect this ratio in rabbit proximal convoluted tubular cells. Only in rat proximal convoluted tubular cells did we observe an increase in flux through the fructose-1,6-bisphosphatase pathway by streptozotocin treatment compared with fed controls. The data suggest that streptozotocin-induced diabetes in rats causes the same metabolic changes as does chronic acidosis.  相似文献   

13.
In the study of active transport it is important to distinguish between oxygen consumption sustaining transepithelial transport and that responsible for other tissue functions (basal metabolism). Since amiloride blocks transepithelial active sodium transport and the associated oxygen consumption in the frog skin and toad bladder, we and others have employed this agent to evaluate the rate of basal metabolism. This technique has recently been criticized in a report that amiloride (and ouabain) increased oxygen consumption when no sodium was available for transport. We have been unable to corroborate these observations. With magnesium-Ringer as external bathing solutions, amiloride and ouabain failed to stimulate oxygen consumption. With sodium-Ringer as external bathing solution amiloride reduced oxygen consumption about 30%, to a level indistinguishable from that found on external substitution of magnesium-Ringer for sodium-Ringer. We conclude that the use of amiloride permits evaluation of the rate of basal metabolism with acceptable accuracy; a possible slight depressant effect of ouabain on basal metabolism remains to be investigated.  相似文献   

14.
In the study of active transport it is important to distinguish between oxygen consumption sustaining transepithelial transport and that responsible for other tissue functions (basal metabolism). Since amiloride blocks transepithelial active sodium transport and the associated oxygen consumption in the frog skin and toad bladder, we and others have employed this agent to evaluate the rate of basal metabolism. This technique has recently been criticized in a report that amiloride (and ouabain) increased oxygen consumption when no sodium was available for transport. We have been unable to corroborate these observations.With magnesium-Ringer as external bathing solutions, amiloride and ouabain failed to stimulate oxygen consumption. With sodium-Ringer as external bathing solution amiloride reduced oxygen consumption about 30%, to a level indistinguishable from that found on external substitution of magnesium-Ringer for sodium-Ringer. We conclude that the use of amiloride permits evaluation of the rate of basal metabolism with acceptable accuracy; a possible slight depressant effect of ouabain on basal metabolism remains to be investigated.  相似文献   

15.
Primary cultures of rabbit-kidney epithelial cells derived from purified proximal tubules were maintained without fibroblast overgrowth in a hormone-supplemented serum-free medium (Medium RK-1). A hormone- deletion study indicated that the primary cultures derived from purified rabbit proximal tubules required all of the three supplements in Medium RK-1 (insulin, transferrin, and hydrocortisone) for optimal growth but did not grow in response to EGF and T3. In contrast, the epithelial cells in primary cultures derived from an unpurified preparation of rabbit kidney tubules and glomeruli grew in response to EGF and T3, as well as insulin, transferrin, and hydrocortisone. These observations suggest that kidney epithelial cells derived from different segments of the nephron grow differently in response to hormones and growth factors. Differentiated functions of the primary cultures derived from proximal tubules were examined. Multicellular domes were observed, indicative of transepithelial solute transport by the monolayers. The proximal tubule cultures also accumulated alpha- methylglucoside (alpha-MG) against a concentration gradient. However, little or no alpha-MG accumulation was observed in the absence of Na+. Metabolic inhibitor studies also indicated that alpha-MG uptake by the primaries is an energy-dependent process, and depends upon the activity of the Na+/K+ ATPase. Phlorizin at 0.1 mM significantly inhibited 1 mM alpha-MG uptake whereas 0.1 mM phloretin did not have a significant inhibitory effect. Similar observations have been made concerning the Na+-dependent sugar-transport system located on the lumenal side of the proximal tubule, whereas the Na+-independent sugar transporter on the peritubular side is more sensitive to inhibition by phloretin than phlorizin. The cultures also exhibited PTH-sensitive cyclic AMP synthesis and brush-border enzymes typical of proximal cells. However, the activities of the enzymes leucine aminopeptidase, alkaline phosphatase, and gamma-glutamyl-transpeptidase were lower in the cultures than in purified proximal-tubule preparations from which they are derived.  相似文献   

16.
M Burg  Y Iino 《Membrane biochemistry》1979,2(3-4):405-411
Single rabbit renal tubules were perfused in vitro to elucidate the factors that control bicarbonate transport. One factor studied was the preexisting acid-base status of the rabbits. Cortical collecting ducts from acidotic rabbits (given ammonium chloride) transported bicarbonate from lumen to bath. Collecting ducts from alkalotic rabbits (given sodium bicarbonate) transported bicarbonate in the opposite direction. Thus, bicarbonate transport by collecting ducts in vitro was conditioned by the preexisting state of the rabbit in vivo. In contrast, bicarbonate transport by proximal straight tubules and cortical thick ascending limbs was not affected by ammonium chloride or sodium bicarbonate given to the rabbits. Parathyroid hormone, the second factor studied, strongly inhibited bicarbonate absorption by proximal straight tubules.  相似文献   

17.
《Molecular membrane biology》2013,30(3-4):405-411
Single rabbit renal tubules were perfused in vitro to elucidate the factors that control bicarbonate transport. One factor studied was the preexisting acid-base status of the rabbits. Cortical collecting ducts from acidotic rabbits (given ammonium chloride) transported bicarbonate from lumen to bath. Collecting ducts from alkalotic rabbits (given sodium bicarbonate) transported bicarbonate in the opposite direction. Thus, bicarbonate transport by collecting ducts in vitro was conditioned by the preexisting state of the rabbit in vivo. In contrast, bicarbonate transport by proximal straight tubules and cortical thick ascending limbs was not affected by ammonium chloride or sodium bicarbonate given to the rabbits. Parathyroid hormone, the second factor studied, strongly inhibited bicarbonate absorption by proximal straight tubules.  相似文献   

18.
A homogeneous population of single cells from the thick ascending limb of Henle's loop (TALH) has been isolated from the rabbit kidney medulla. A total medullary cell suspension was prepared by a series of collagenase, hyaluronidase, and trypsin digestions and separated on a Ficoll gradient (2.6-30.7% wt/wt). Morphologically, the cells isolated from the TALH were homogeneous and showed polarity within their plasma membrane structure, with a few blunt microvilli on their apical surface and deep infoldings of the basal-lateral membrane. Biochemically, the TALH cells were highly enriched in calcitonin-sensitive adenylate cyclase and Na, K-ATPase. Alkaline phosphatase and arginine vasopressin- sensitive adenylate cyclase, highly concentrated in proximal tubule and collecting duct, were present only in low concentrations in the TALH cells. Additionally, furosemide, a diuretic inhibiting sodium chloride transport in the TALH in vivo, inhibited oxygen consumption of the TALH cells in a dose-dependent manner. The TALH cells were viable, as judged by morphological appearance, trypan blue exclusion, the response of oxygen consumption to 2,4-dinitrophenol, succinate and ouabain, and the cellular Na, K and ATP levels.  相似文献   

19.
Endogenous cardiotonic steroids (ECS) are putative ligands of the inhibitory binding site of the membrane sodium pump (Na+, K+-ATPase). There is growing evidence that cardiotonic steroids may promote the growth of cardiac and vascular myocytes, including evidence indicating growth stimulation at concentrations in the same range as circulating ECS concentrations. We investigated four parameters to determine whether ouabain, a proposed ECS, promotes growth of immortalized rat proximal tubule epithelial cells: cell count by hemocytometer; metabolic activity as reflected in the mitochondrial conversion of the tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, to its formazan product (MA); DNA synthesis reflected as bromodeoxyuridine incorporation (DNA); and mitosis reflected as histone phosphorylation state detected using anti-phosphohistone 3 antibody (HP). Maximum stimulatory responses were observed at 1 nm ouabain (MA, 20.3% increase, p < 0.01; DNA, 28.4% increase, p < 0.001; HP, maximum response at 0.5 h, 50% increase, p < 0.001). We observed that growth stimulation was associated with stimulation of ERK1/2 phosphorylation (ERK-P), and both growth and ERK-P could be blocked by the MEK inhibitor (U0126, 100 nm). Western blot analysis revealed that the only alpha isoform of Na+, K+-ATPase that could be detected in these cultures was the highly ouabain-resistant alpha1 isoform. Measurement of ouabain inhibition of ion transport in these cultures using 86Rb+ uptake revealed the predominance of the expected ouabain-resistant isoform (IC50 = 24 microm) and an additional minor ( approximately 15%) ouabain-sensitive inhibition with IC50 approximately 30 pm. Similar bimodal transport inhibition curves were obtained in freshly dissected rat proximal tubules. These results indicate that renal epithelial cells may be a sensitive target of the ERK1/2-activating and growth-promoting effects of ouabain even in the presence of ouabain-resistant Na+, K+-ATPase.  相似文献   

20.
The movement of Ca2+ across the basolateral plasma membrane was determined in purified preparations of this membrane isolated from rabbit proximal and distal convoluted tubules. The ATP-dependent Ca2+ uptake was present in basolateral membranes from both these tubular segments, but the activity was higher in the distal tubules. A very active Na+/Ca2+ exchange system was also demonstrated in the distal-tubular membranes, but in proximal-tubular membranes this exchange system was not demonstrable. The presence of Na+ outside the vesicles gradually inhibited the ATP-dependent Ca2+ uptake in the distal-tubular-membrane preparations, but remained without effect in those from the proximal tubules. The activity of the Na+/Ca2+ exchange system in the distal-tubular membranes was a function of the imposed Na+ gradient. These results suggest that the major differences in the characteristics of Ca2+ transport in the proximal and in the distal tubules are due to the high activity of a Na+/Ca2+ exchange system in the distal tubule and its virtual absence in the proximal tubule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号