首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
During the development of the spinal cord, proliferative neural progenitors differentiate into postmitotic neurons with distinct fates. How cells switch from progenitor states to differentiated fates is poorly understood. To address this question, we studied the differentiation of progenitors in the zebrafish spinal cord, focusing on the differentiation of Kolmer-Agduhr″ (KA″) interneurons from lateral floor plate (LFP) progenitors. In vivo cell tracking demonstrates that KA″ cells are generated from LFP progenitors by both symmetric and asymmetric cell divisions. A photoconvertible reporter of signaling history (PHRESH) reveals distinct temporal profiles of Hh response: LFP progenitors continuously respond to Hh, while KA″ cells lose Hh response upon differentiation. Hh signaling is required in LFP progenitors for KA″ fate specification, but prolonged Hh signaling interferes with KA″ differentiation. Notch signaling acts permissively to maintain LFP progenitor cells: activation of Notch signaling prevents differentiation, whereas inhibition of Notch signaling results in differentiation of ectopic KA″ cells. These results indicate that neural progenitors depend on Notch signaling to maintain Hh responsiveness and rely on Hh signaling to induce fate identity, whereas proper differentiation depends on the attenuation of both Notch and Hh signaling.  相似文献   

3.
4.
5.
The Hedgehog (Hh) signaling pathway regulates cell proliferation and differentiation in developing tissues, and abnormal activation of the Hh pathway has been linked to several tumor subsets. As a transducer of Hh signaling, the GPCR-like protein Smoothened (Smo) is a promising target for disruption of unregulated Hh signaling. A series of 1-amino-4-arylphthalazines was developed as potent and orally bioavailable inhibitors of Smo. A representative compound from this class demonstrated significant tumor volume reduction in a mouse medulloblastoma model.  相似文献   

6.
Endocardial cells form the inner endothelial layer of the heart tube, surrounded by the myocardium. Signaling pathways that regulate endocardial cell specification and differentiation are largely unknown and the origin of endocardial progenitors is still being debated. To study pathways that regulate endocardial differentiation in a zebrafish model system, we isolated zebrafish NFATc1 homolog which is expressed in endocardial but not vascular endothelial cells. We further demonstrate that Hedgehog (Hh) but not VegfA or Notch signaling is required for early endocardial morphogenesis. Pharmacological inhibition of Hh signaling with cyclopamine treatment resulted in nearly complete loss of the endocardial marker expression. Simultaneous knockdown of the two zebrafish sonic hedgehog homologs, shh and twhh or Hh co-receptor smoothened (smo) resulted in similar defects in endocardial morphogenesis. Inhibition of Hh signaling resulted in the loss of fibronectin (fn1) expression in the presumptive endocardial progenitors as early as the 10-somite stage which suggests that Hh signaling is required for the earliest stages of endocardial specification. We further show that the endoderm plays a critical role in migration but not specification or differentiation of the endocardial progenitors while notochord-derived Hh is a likely source for the specification and differentiation signal. Mosaic analysis using cell transplantation shows that Smo function is required cell-autonomously within endocardial progenitor cells. Our results argue that Hh provides a critical signal to induce the specification and differentiation of endocardial progenitors.  相似文献   

7.
During the development of multicellular animals, cell proliferation must be precisely controlled, as deregulated proliferation can lead to overgrowth and cancer. In addition, proliferation must be tightly integrated with pattern formation and differentiation to generate the required number of cells in the right organs, and at the right time. All major signaling pathways employed during embryogenesis have been implicated in cell cycle regulation, indicating that no single pathway has been dedicated to this task. Also, the precise role of a particular signaling pathway in regulating proliferation is highly dependent on the cellular context, and may have opposite effects on cell-cycle progression in different cells and tissues. The Hedgehog (Hh) family of signaling proteins is known to control both differentiation and proliferation during development. So far, studies addressing the effect of Hh signaling on proliferation have shown it to have a stimulatory effect on cell-cycle progression. Here we review several recent studies indicating that Hh signaling can also have the opposite effect, directing cell-cycle exit in a number of cell types in vertebrate and in invertebrate embryos.  相似文献   

8.
Neural progenitors are organized as a pseudostratified epithelium held together by adherens junctions (AJs), multiprotein complexes composed of cadherins and α- and β-catenin. Catenins are known to control neural progenitor division; however, it is not known whether they function in this capacity as cadherin binding partners, as there is little evidence that cadherins themselves regulate neural proliferation. We show here that zebrafish N-cadherin (N-cad) restricts cell proliferation in the dorsal region of the neural tube by regulating cell-cycle length. We further reveal that N-cad couples cell-cycle exit and differentiation, as a fraction of neurons are mitotic in N-cad mutants. Enhanced proliferation in N-cad mutants is mediated by ligand-independent activation of Hedgehog (Hh) signaling, possibly caused by defective ciliogenesis. Furthermore, depletion of Hh signaling results in the loss of junctional markers. We therefore propose that N-cad restricts the response of dorsal neural progenitors to Hh and that Hh signaling limits the range of its own activity by promoting AJ assembly. Taken together, these observations emphasize a key role for N-cad-mediated adhesion in controlling neural progenitor proliferation. In addition, these findings are the first to demonstrate a requirement for cadherins in synchronizing cell-cycle exit and differentiation and a reciprocal interaction between AJs and Hh signaling.  相似文献   

9.
Hedgehog (Hh) signaling is an important regulator of embryonic patterning, tissue regeneration, stem cell renewal and cancer growth. A purine derivative named purmorphamine was previously found to activate the Hh pathway and affect osteoblast differentiation through an unknown mechanism. We demonstrate here that purmorphamine directly targets Smoothened, a critical component of the Hh signaling pathway.  相似文献   

10.
Pancreatic organogenesis is promoted or restricted by different signaling pathways. In amniotes, inhibition of hedgehog (Hh) activity in the early embryonic endoderm is a prerequisite for pancreatic specification. However, in zebrafish, loss of Hh signaling leads to a severe reduction of β-cells, leading to some ambiguity as to the role of Hh during pancreas development and whether its function has completely diverged between species. Here, we have employed genetic and pharmacological manipulations to temporally delineate the role of Hh in zebrafish endocrine pancreas development and investigate its relationship with the Bmp and retinoic acid (RA) signaling pathways. We found that Hh is required at the start of gastrulation for the medial migration and differentiation of pdx1-expressing pancreatic progenitors at later stages. This early positive role of Hh promotes β-cell lineage differentiation by restricting the repressive effects of Bmp. Inhibition of Bmp signaling in the early gastrula leads to increased β-cell numbers and partially rescued β-cell formation in Hh-deficient embryos. By the end of gastrulation, Hh switches to a negative role by antagonizing RA-mediated specification of the endocrine pancreas, but continues to promote differentiation of exocrine progenitors. We show that RA downregulates the Hh signaling components ptc1 and smo in endodermal explants, indicating a possible molecular mechanism for blocking axial mesoderm-derived Hh ligands from the prepancreatic endoderm during the specification stage. These results identify multiple sequential roles for Hh in pancreas development and highlight an unexpected antagonistic relationship between Hh and other signaling pathways to control pancreatic specification and differentiation.  相似文献   

11.
Hedgehog(Hh)信号通路是从果蝇到人类都非常保守的信号通路,在脊椎动物和非脊椎动物胚胎期多种组织器官的发育中发挥着重要作用。Hh信号通路的异常会导致疾病(先天性缺陷和癌症)的发生。近年的研究发现,Hh信号通路在脂肪生长发育中发挥重要作用,激活Hh信号通路能特异性地抑制白色脂肪组织细胞的分化,而对棕色脂肪组织细胞分化没有作用。该文综述了Hh信号通路在脂肪细胞分化中的作用及其分子机制,并对今后的研究和应用作了展望。  相似文献   

12.
Implications of hedgehog signaling antagonists for cancer therapy   总被引:1,自引:0,他引:1  
The hedgehog (Hh) pathway, initially discovered in Drosophila by two Nobel laureates, Dr. Eric Wieschaus and Dr. Christiane Nusslein-Volhard, is a major regulator for cell differentiation, tissue polarity and cell proliferation. Studies from many laboratories, including ours, reveal activation of this pathway in most basal cell carcinomas and in approximately 30% of extracutaneous human cancers, including medulloblastomas, gastrointestinal, lung, breast and prostate cancers. Thus, it is believed that targeted inhibition of Hh signaling may be effective in treating and preventing many types of human cancers. Even more exciting is the discovery and synthesis of specific signaling antagonists for the Hh pathway, which have significant clinical implications in novel cancer therapeutics. This review discusses the major advances in the current understanding of Hh signaling activation in different types of human cancers, the molecular basis of Hh signaling activation, the major antagonists for Hh signaling inhibition and their potential clinical application in human cancer therapy.  相似文献   

13.
14.
15.
16.
The Hedgehog (Hh) signaling pathway affects fetal testis growth. Recently, we described the dynamic cellular production of Hh signaling pathway components in juvenile and adult rodent testes. The Hh signaling is understood to regulate cord formation in the fetal testis, but minimal knowledge exists regarding how Hh signaling impacts the postnatal testis. To investigate this, we employed hanging drop cultures, which are used routinely in embryoid body formation. This approach has the advantage of using small media volume, and we examined its suitability for short-term culture of both murine embryonic gonads and adult testis tubules. The effects of cyclopamine, a specific Hh signaling inhibitor, were examined following culture of Embryonic Day 11.5 urogenital ridges (as control) and adult seminiferous tubule fragments for 24-48 h using histological, cell proliferation, and gene expression analyses. Cultured embryonic testes displayed generally normal cord structure, anti-Müllerian hormone (Amh) expression, and cell proliferation; known Hh target gene expression (Gli1, osteopontin, official symbol Spp1, and Amh) was altered in response to cyclopamine. Cultured adult tubules exhibited some loss of seminiferous epithelium organization over 48 h. Spermatogonia continued to proliferate, however, and no significant loss of viability was noted overall. Addition of cyclopamine significantly affected levels of Gli1, Igfbp6, Ccnd2 (cyclin D2), Ccnb1 (cyclin B1), Spp1, Kit, and Amh mRNAs; these genes have been shown previously to be expressed in Sertoli and germ cells. These novel results identify Hh target genes in the testis and demonstrate this signaling pathway likely affects cell survival and differentiation in the context of normal adult testis.  相似文献   

17.
The Hedgehog (Hh) pathway regulates proliferation in a variety of tissues, however its specific effects on the cell cycle are unclear. During retinal proliferation in particular, the role of Hh has been controversial, with studies variably suggesting a stimulatory or an inhibitory effect on proliferation. Our recent data provide an underlying mechanism, which reconciles these different views. We showed that Hh signaling in the retina accelerates the G1 and G2 phases of the cell cycle and then pushes these rapidly dividing cells out of the cell cycle prematurely. From this and other evidence, we propose that Hh converts quiescent retinal stem cells into fast-cycling transient amplifying progenitors that are closer to cell cycle exit and differentiation. This is, we suggest, likely to be a general role of Hh in the nervous system and other tissues. This function of Hh in cell cycle kinetics and cell cycle exit may have implications for tumorigenesis and brain evolution.  相似文献   

18.
Hedgehog (Hh) proteins regulate important developmental processes, including cell proliferation and differentiation. Although Patched acts as the main Hh receptor in Drosophila, Hh signaling absolutely requires the additional Hh-binding proteins Ihog and Boi. Here we show that, unexpectedly, cerebellar granule neuron progenitors (CGNPs) lacking Boc and Cdon, the vertebrate orthologs of Ihog and Boi, still proliferate in response to Hh. This is because in their absence, Gas1, an Hh-binding protein not present in Drosophila, mediates Hh signaling. Consistently, only CGNPs lacking all three molecules-Boc, Cdon, and Gas1-have a complete loss of Hh-dependent proliferation. In a complementary manner, we find that a mutated Hh ligand that binds Patched1 but not Boc, Cdon, or Gas1 cannot activate Hh signaling. Together, this demonstrates an absolute requirement for Boc, Cdon, and Gas1 in Hh signaling and reveals a distinct requirement for ligand-binding components that distinguishes the vertebrate and invertebrate Hh receptor systems.  相似文献   

19.
20.
Human mesenchymal stem cells (hMSC) have the ability to differentiate into osteoblasts, adipocytes and chondrocytes. We have previously shown that hMSC were endowed with a basal level of Hedgehog signaling that decreased after differentiation of these cells. Since hMSC differentiation is associated with growth-arrest we investigated the function of Hh signaling on cell proliferation. Here, we show that inhibition of Hh signaling, using the classical inhibitor cyclopamine, or a siRNA directed against Gli-2, leads to a decrease in hMSC proliferation. This phenomenon is not linked to apoptosis but to a block of the cells in the G0/G1 phases of the cell cycle. At the molecular level, it is associated with an increase in the active form of pRB, and a decrease in cyclin A expression and MAP kinase phosphorylation. Inhibition of Hh signaling is also associated with a decrease in the ability of the cells to form clones. By contrast, inhibition of Hh signaling during hMSC proliferation does not affect their ability to differentiate. This study demonstrates that hMSC are endowed with a basal Hedgehog signaling activity that is necessary for efficient proliferation and clonogenicity of hMSC. This observation unravels an unexpected new function for Hedgehog signaling in the regulation of human mesenchymal stem cells and highlights the critical function of this morphogen in hMSC biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号